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Abstract Extendingourmethod for investigatingReal cobordism (whichwas recently
used by Hill, Hopkins and Ravenel in their solution of the Kervaire invariant 1
problem), we investigate the RO(G)-graded homotopy groups of a (non-complete)
Z/2×Z/2-equivariant spectrumcalled topologicalHermitian cobordism.Themethods
of this paper may be useful in computing the homotopy groups of other G-equivariant
spectra where G �= Z/2.
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1 Introduction

A decade ago, the authors [5] studied Real cobordism MR, an RO(Z/2)-graded
Z/2-equivariant spectrum discovered by Landweber [9], which is related to complex
cobordism MU in the same way as Atiyah’s Real K -theory K R [1] does to K -theory.
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In particular, the authors computed the RO(Z/2)-graded coefficients of MR. A key
step in that computation was the fact that MR is a complete Z/2-equivariant spec-
trum, which means that the spectrum of its fixed points is equivalent to its spectrum
of homotopy fixed points. At that time, the authors thought about the possibility of
enhancing, in some way, the Z/2-action on MR or some modification of it and com-
puting the coefficients in hopes of obtaining more homotopy-theoretical information,
but didn’t make much progress. The subject was recently revived in a spectacular way
by Hill et al. [4] who solved negatively the famous Kervaire invariant 1 problem using
an RO(Z/8)-graded Z/8-spectrum obtained, roughly speaking, from smashing four
copies of MR and considering the Z/8-action which combines a cyclic permutation
of the factors with the Real action.

In the present paper, we consider a more straightforward action onMR itself, by the
group Z/2×Z/2. This action, also, gives rise to an RO(Z/2×Z/2)-graded spectrum
(or, in the terminology of [10], spectrum indexed over the complete universe), which
we call MRZ/2. The action is defined precisely in the next section, but roughly speak-
ing, it combines the Real structure with a structure of “Z/2-equivariant cobordism”.
In fact, the authors were aware of this action while writing [5], but couldn’t calculate
the coefficients at that time.

Recently, the authors’ interest in MRZ/2 was renewed for a reason unrelated to [4]:
the construction of MRZ/2 is a direct cobordism analogue of Karoubi’s topological
L-theory [7], which can also be thought of as “KRZ/2”. In a joint paper with Ormsby
[6], the authors gave a set of foundations of G-equivariant stable motivic homotopy
theory, and used it to give a solution to the homotopy fixed point problem for Karoubi’s
algebraic Hermitian K H -theory for a field of characteristic 0, where the full force of
motivic homotopy theory can be brought to bear. [6] also contains a definition of
algebraic Hermitian cobordism MGLR. Algebraic Hermitian cobordism is still quite
mysterious, but when we specialize to the field R, similarly as in [7] for the case of
K -theory, there is a topological version, which turns out to coincide with MRZ/2.
Therefore, knowing more about MRZ/2 gives information about MGLR.

At the same time, we also realized that MRZ/2 may be calculationally accessible,
and this is the subject of the present paper. Interestingly, the techniques are a little
different than we expected. In [4], a “slice spectral sequence” plays a crucial role.
This is also the case in [6]. However, in the case of [6], the main point was to define
a motivic analogue of the “Tate diagram” of Greenlees and May [3], and then use a
slice spectral sequence to investigate Tate cohomology, which is more accessible than
the Borel cohomology itself.

In the case of the Z/2 × Z/2-spectrum MRZ/2, one also has an analogue of such
“Tate diagram”, but two things should be pointed out. First of all, the relevant diagram
is not the case for G = Z/2 × Z/2 of the Tate diagram canonically associated to
G-equivariant spectra for any compact Lie group by Greenlees and May. The diagram
we need is a generalized construction which brings more fully to bear the theory of
universal spaces of families by Lewis et al. [10], to take a “Tate diagram” with respect
to a Z/2 subgroup of Z/2×Z/2 (which we call Z/2{h}), and then consider separately
the fixed points of the Z/2{h}-fixed point spectrum under the quotient Z/2. The other
thing to realize is that MRZ/2 is not a complete spectrum, and thus our “Tate diagram”
plays a somewhat different role than in completion theorems. The Tate diagram was
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previously used in a similar way by the second author in the simpler problem of
computing the coefficients of MUZ/p [8].

In the final step, we encounter MR
∗ cohomology groups of (Z/2-fixed) stunted

projective spaces, which is also a calculation we were aware of in [5] as desirable, and
couldn’t do. In the present paper, we do this calculation by taking advantage of the fact
thatMR, again, is a complete spectrum.We completely identify the differentials of the
corresponding Borel cohomology spectral sequence, and as a result compute an asso-
ciated graded object of the RO(Z/2×Z/2)-graded coefficients ofMRZ/2 with respect
to a suitable complete filtration (Theorem 5); we lack a good enough “nomenclature”
for the elements to solve all the extensions at this point. However, for a subring graded
by certain special dimensions, we do have a complete answer as a ring (Theorem 3).

The present paper is organized as follows. All of our precise statements are too
technical to make in the introduction. In the Sect. 2, we establish the notation to state
the non-calculational part of our result. We also do all the relevant equivariant stable
homotopy theory. In Sect. 3, we compute the MR

∗ cohomology of stunted projective
spaces. In the Appendix, we say a few words on how MRZ/2 relates to MGLR.

2 The topological hermitian cobordism spectrum and its coefficients

Notation:We begin with establishing some notation.Z/2-equivariant Real cobordism
is a Z/2× Z/2-equivariant spectrum indexed over the complete universe. This means
that we must distinguish carefully between the different elements of Z/2 × Z/2 and
its different real irreducible representations. We will denote the non-zero elements of
Z/2 × Z/2 by gα , gγ and h, and its non-trivial real irreducible representations by
α, γ and γα: By definition, on α, h, gα act by minus, on γ, h, gγ act by minus, on
γα, gα, gγ act by minus. We will think of gγ , gα as “real structures”, and of h as the
“Z/2-equivariant structure”.

Accordingly, we will consider a complete complex universe, i.e.

U = (C[Z/2{h}])∞.

We denote complex conjugation by gα , and put gγ = hgα . (However, note that we
can think of gγ as the complex conjugation.) For a Z/2-equivariant complex Z/2-
representation V , denote by Gr(V, n) the space of all n-dimensional complex vector
subspaces ofV . Then as usual, there is a “tautological”Z/2-equivariant complexvector
bundle γ n on Gr(V, n) where the fiber over an n-subspace W ⊂ V is W . We let

(MRZ/2)V := Gr(U ⊕ V, |V |)γ|V | (1)

(where the superscript denotes the Thom space). For V ⊂ W ⊂⊂ U,Gr(U ⊕V, |V |)
is canonically embedded into Gr(U ⊕ W, |W |) by adding W − V (in the second
summand), and accordingly the restriction of the bundle γ|W | on Gr(U ⊕ W, |W |) to
Gr(U ⊕ V, |V |) canonically splits off the equivariant “trivial” (i.e. induced from a
point) bundle W − V , i.e. we get a canonical map

SW−V ∧ (MRZ/2)V → (MRZ/2)W .
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Taking into account the whole Z/2×Z/2-action, the resulting Z/2×Z/2-equivariant
spectrum indexed over the complete universe U is what we denote by MRZ/2. It
is worth commenting that the construction we described is obviously promoted to
a Z/2 × Z/2-equivariant symmetric spectrum, and hence MRZ/2 is a Z/2 × Z/2-
equivariant E∞ ring spectrum indexed over the complete universe (see [6]).

The goal of this paper is to compute the “coefficients”

(MRZ/2)k+�γ α+mα+nγ , k, �,m, n ∈ Z. (2)

There is one simplification which we may deduce right away. Recall [2] that a
Z/2-equivariant commutative associative ring spectrum E indexed over the complete
universe is called complex-oriented if for every Z/2-equivariant finite-dimensional
complex vector bundle ξ of dimension n on a Z/2-equivariant CW-complex X , there
exists a Thom class, i.e. a class

uξ ∈ ˜E2n X ξ

such that if we denote by θ : X ξ → X ξ ∧ X+ the Thom diagonal, then we have an
isomorphism

θ∗(uξ⊗?) : Ek+�αX
∼= ��

˜Ek+�α+2n X ξ (3)

where α is the sign representation. (The definition really works for G-equivariant
spectra for any finite abelian group G, but the case of G = Z/2 is the only one we
need here.)

Observation 1 When E is a complex-oriented Z/2-equivariant spectrum, then the
coefficients of E are 2− 2α-periodic. MUZ/2 is a complex-oriented Z/2-equivariant
spectrum.

Proof For the first statement, consider the Z/2-equivariant complex bundle 2α over a
point. For the second statement, apply classification of equivariant complex n-bundles
to Gr(U ⊕ n, n). �

Now following Atiyah [1], a Z/2-equivariant Real bundle is a Z/2-equivariant
complex bundle with a Z/2-equivariant antilinear involution. Following the conven-
tions at the beginning of this section, we call a Z/2 × Z/2-equivariant commutative
associative ring spectrum indexed over the complete universe Real-oriented if for
every n-dimensional Real bundle on Z/2 × Z/2-space X , there exists a Thom class,
i.e. a class

uξ ∈ ˜En(1+γα)X ξ ,

such that we have an isomorphism

θ∗(uξ⊗?) : Ek+�α+mγ+rγαX
∼= ��

˜Ek+�α+mγ+rγα+n(1+γα)X ξ .

Lemma 2 When E is a Real-oriented Z/2×Z/2-equivariant spectrum, indexed over
the complete universe, the coefficients of E are (γ + α − 1 − γα)-periodic. The
spectrum MRZ/2 is Real-oriented. Additionally, we have
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Topological Hermitian cobordism 177

MRk+�α+mγ+nγα
∼= MRk+mα+�γ+nγα. (4)

Proof For the first statement, consider the Real Z/2-equivariant bundle α + γ over a
point. For the second statement, consider the n-dimensional Real bundle classifying
spaces Gr(U ⊕ n, n). For the last statement, note that α and γ play symmetric roles
in the definition of MRZ/2. �

Lemma 2 identifies certain dimensions in the coefficients of MRZ/2, so it reduces
the set of separate “dimensions” wemust consider. To get an further, however, wemust
substantially use equivariant stable homotopy theory, as developed in Lewis et al. [10].
The method we present here may well be more general, and useful in computing the
coefficients of G-equivariant spectra where G is a non-cyclic finite abelian group.

The strategy, in our case, is to investigate the Z/2-equivariant spectrum

(MRZ/2)
Z/2{h}.

This, in turn, can be computed by considering the “Z/2{h}-Tate diagram” in the
language of Greenlees and May [3]. In our case, it is important to note that this is not
the same approach as considering directly the Z/2 × Z/2-equivariant Tate diagram.
One must note that after taking Z/2{h}-fixed points, our “Tate diagram” retains a
Z/2-equivariant action by taking

Z/2 = (Z/2 × Z/2)/(Z/2{h}).

Fortunately, the foundations of what we need have been completely set up in [10].
Using the terminology of [10], we have a Z/2×Z/2-equivariant cofibration sequence

EF+ → S0 → S∞α+∞γ (5)

whereF is the family of subgroups disjointwithZ/2{h} (recall that the universal space
of a family F of subgroups of a finite group G is a G–CW complex EF such that for
H ⊆ G, EFH is contractible when H ∈ F and empty otherwise). The diagram we
have in mind is

EF+ ∧ MRZ/2 ��

�
��

MRZ/2 ��

��

S∞α+∞γ ∧ MRZ/2

��
EF+ ∧ F(EF+, MRZ/2) �� F(EF+, MRZ/2) �� S∞α+∞γ ∧ F(EF+, MRZ/2).

(6)

The reason the left column is an equivalence is as follows: For a family F of
subgroups of G, we have a notion of F-equivalence of G-equivariant spectra, which
means equivalence on H -fixed points for every H ∈ F . Now it is obvious that the
natural map

MRZ/2 → F(EZ/2+, MRZ/2)
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is an F-equivalence, and hence by Lemma 2.12 of [10], the left hand column of (6) is
an F-equivalence. However, these spectra are homotopy equivalent to F-CW spectra
(i.e. CW-spectra whose cells are of the form G/H+ ∧ Dn, n ∈ Z, H ∈ F), and by
Theorem 2.2 of [10], the left hand column of (6) is a weak equivalence). Now applying
(?)Z/2{h} to (6), we therefore obtain a (weak) homotopy pullback

(MRZ/2)
Z/2{h} ��

��

(S∞α+∞γ ∧ MRZ/2)
Z/2{h}

��
F(EF+, MRZ/2)

Z/2{h} �� (S∞α+∞γ ∧ F(EF+, MRZ/2))
Z/2{h}

(7)

It is also worth noting that by the Adams isomorphism [10] Theorem 7.1, the
homotopy fiber of the rows of (7) is

(EF+ ∧ MRZ/2)/(Z/2{h}).

Now the main point of our method is that the upper left, lower left and lower
right corners of the pullback (7) can be calculated directly. In many was, in fact, the
computation is analogous to [8]; if we do not do any suspensions by sums of copies of
α or γ , the complications introduced by the Real structure are in fact only minor. We
will treat this case first, in part because in this case, we have a more precise theorem.

Regarding the upper right corner, the main idea is that we can compute the Z/2{h}-
fixed point of the spectrum S∞α+∞γ ∧MRZ/2 on the prespectrum level and then take
the colimit. This relies on a result of Lewis et al. [10] that in general, for a normal
subgroup H of a (say) finite group G, and a based CW G-space X , if we denote by
FH the family of subgroups not containing H , and consider the cofibration sequence

(EFH )+ → S0 → ẼFH ,

then we have an equivalence of G/H -spectra indexed over the complete universe

(ẼFH ∧ �∞
G X)H � �∞

H XH . (8)

Note that in the case discussed in this paper, FZ/2{h} coincides with the family of
subgroups ofZ/2×Z/2 disjoint withZ/2{h}. Similarly as in tom Dieck [11] (cf. [8]),
this then identifies the upper right corner as

∨

n∈Z
�n(1+γα)BU+ ∧ MR (9)

where U is the infinite unitary group with Z/2-action by complex conjugation.
The lower left corner of (7) is computed as follows: Consider the inclusion of

universes
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i : UZ/2{h} → U.

ThenoverUZ/2{h},wehave a “Z/2{h}-fixedReal cobordismspectrumwith completely
replicates the definition ofMRZ/2 withU replaced byUZ/2{h} (so the action ofZ/2{h}
on all spaces constituting the prespectrum is trivial). This is also essentially the same
construction as the construction of MR (cf. [5]), so we will also denote this UZ/2{h}-
indexed Z/2 × Z/2-spectrum by MR. Then we have a standard map

MR → i∗MRZ/2 (10)

which is an F-equivalence, so the natural map on Z/2{h}-fixed points is a Z/2-
equivariant weak equivalence:

F(EF+, MR)Z/2{h} � �� F(EF+, MRZ/2)
Z/2{h}. (11)

(Recall that in applying (?)Z/2{h} to a spectrum indexed over the complete universe,
we apply i∗ implicitly first.)

The left hand side of (11) is, by definition,

F(EF/(Z/2{h})+, MR). (12)

However, we have

EF/(Z/2{h}) � BZ/2(Z/2)

(the right hand side is, by definition, the classifying space ofZ/2-equivariant principal
Z/2-bundles). In the next section, we will show that the natural inclusion

BZ/2(Z/2) → BS
1

(where S
1 denotes the unit sphere in C with Z/2-action by complex conjugation)

induces in MR-cohomology (in dimensions k + �γ α, k, � ∈ Z) the map

MR
∗BS

1 = MR
∗[[u]] → MR

∗[[u]]/[2]F (u) (13)

where F is the universal formal group law, and u is a variable in dimension −1− γα

(just as in [5], in an effort to prevent constant confusions, all gradings are homological).
Combining (9), (11), (13), we get that the diagram of the coefficients of the upper

right, lower left and lower right corner of the diagram (7) in dimensions k+�γ α, k, � ∈
Z is

MR
∗[u, u−1][b1, b2, ...]

��
MR

∗[[u]]/[2]F (u) �� (MR
∗[[u]]/[2]F (u))[u−1]

(14)
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The generators bk are in dimensions k(1+ γα) and just as in [8], Theorem 1.1, the
images of bk are the coefficients of xk in x +F u. Also, just as in [8], the images of
the upper right and lower left corners span the lower right corner, and we get

Theorem 3 The bigraded module of coefficients

((MRZ/2)k+�γ α)k,�∈Z

is isomorphic to the pullback of the diagram of rings (14). �
Of course, we are not donewith computing the RO(Z/2×Z/2)-graded coefficients

of MRZ/2, since we must also discuss suspensions by linear combinations, with coef-
ficients in Z, of α and γ . Let us realize first precisely which coefficients are left to
compute. We claim, in fact, that it suffices to compute

(MRZ/2)k+�γ α+mα, m < 0. (15)

To see this, consider an arbitrary coefficient (2). By Lemma 2, we may assume, say,
that m ≤ n. Using the periodicity in Lemma 2, however, we may then add n to k, �
and subtract n from m, n and the resulting isomorphic coefficient is either of the form
(15) (when m < n), or of the form covered in Theorem 3 (when m = n).

Now the idea is to consider (15) onem at a time. This means replacing the diagram
(7) by

(�mαMRZ/2)
Z/2{h} ��

��

(S∞α+∞γ ∧ MRZ/2)
Z/2{h}

��
F(�−mαEF+, MRZ/2)

Z/2{h} �� (S∞α+∞γ ∧ F(EF+, MRZ/2))
Z/2{h},

(16)

−m > 0. (We realize that the right column is periodic with respect to suspending by
a multiple of α.) Therefore, the main task remaining is to compute

F(�−mαEF+, MRZ/2)
Z/2{h}. (17)

Using the “splitting” (10), we get that (17) is equivalent to

F(�−mαEF+, MR)Z/2{h} � F((�−mαEF+)/(Z/2{h}), MRZ/2). (18)

Note that the right hand side is simply a Z/2-spectrum. But we can do better. Recall
(12). It follows that

(�−mαEF+)/(Z/2{h}) � (BZ/2(Z/2))−mγ1 (19)

where γ 1 is the “tautological” 1-dimensional real bundle on BZ/2(Z/2), induced by
the sign representation of Z/2 on R. Additionally, again, if we consider the fixed
Z/2-space RP∞, we have a canonical inclusion
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Topological Hermitian cobordism 181

(RP∞)−mγ1 → (BZ/2(Z/2))−mγ1 ,

which, since MR is a complete spectrum, induces an equivalence

F((BZ/2(Z/2))−mγ1 , MR) � F((RP∞)−mγ1 , MR). (20)

Note that one commonly refers to (RP∞)−mγ1 as the stunted projective space RP∞−m,

so our problem is reduced to computing

M̃R
∗
(RP∞−m), −m ≥ 0 (21)

(where RP∞−m is considered as a fixed Z/2-space), and the bottom row of diagram
(16), which, in view of naturality and Theorem 3, follows from knowing

M̃R
∗
(RP∞−m) → MR

∗(RP∞), (22)

induced by the “0-section” map

RP∞ → RP∞−m, m > 0.

Unfortunately,we cannot determine (22) completely. Themain problem is thatwe have
no obvious “pretty” expression for (21) akin to (13). What we do have is a complete
computation of the Borel cohomology spectral sequence (BCSS) for (22), and the
map to the BCSS for MR

∗
RP∞. Ordinarily, one would think this is not sufficient

information to determine the coefficients of the upper left corner of (7) or even its
associated graded object, since taking associated graded objects does not preserve
pullbacks. However, in the present case, the pullbacks we are dealing with are rather
special, and therefore it is possible to state a theorem on this level of precision. Let us
begin with a preliminary lemma.

Let Fi , i ≥ 0 be a decreasing filtration on an abelian group X . We will call this
filtration complete if the natural map

X → lim
←

X/Fi X (23)

is an isomorphism.

Lemma 4 Suppose we have a cartesian co-cartesian square of abelian groups

A ��

��

B

f
��

C g
�� D.

(24)

(Recall that this is the same thing as a cartesian square, or pullback diagram, such
that Im( f ) + Im(g) = D.) Suppose further we have complete decreasing filtrations
Fi , i ≥ 0 on B,C, D such that
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f (Fi B) + g(FiC) = Fi D. (25)

Then forming the pullback

Fi A ��

��

Fi B

Fi f
��

FiC
Fi g

�� Fi D,

(26)

(Fi A)i is a complete decreasing filtration on A, and we also have a pullback of the
corresponding associated graded objects

E0A ��

��

E0B

E0 f
��

E0C E0g
�� E0D.

(27)

Proof We may view as a cartesian co-cartesian square (24) as a short exact sequence

0 �� A �� B ⊕ C
f ⊕g �� D �� 0. (28)

Assuming (26), we have a short exact sequence embedded into (28)

0 �� Fi A �� Fi B ⊕ FiC
Fi f ⊕Fi g�� Fi D �� 0. (29)

Therefore, we have a quotient short exact sequence

0 �� A/Fi A �� B/Fi B ⊕ C/FiC
f/Fi f⊕g/Fi g�� D/Fi D �� 0.

(30)
Now interpreting (30) as a pullback again, taking inverse limits over i and using the
commutation of categorical limits gives the completeness of the filtration (Fi A)i .
Taking the quotient of (29) by the same short exact sequence with i replaced by i + 1
gives the last statement. �

Consider now the fixed point inclusion of Z/2 × Z/2-spaces

b : S0 → Sγα. (31)

Theorem 5 There is a complete filtration on (15) such that the associated graded
object is isomorphic to the pullback of the diagram

123



Topological Hermitian cobordism 183

E0MR
∗[u, u−1][b1, b2, ...]

��
E0M̃R

∗
(RP∞−m) �� E0(MR

∗[[u]]/[2]F (u))[u−1]
(32)

where in the upper right, lower left and lower right corner of (32), E0 denotes the
associated graded object of the decreasing filtration by powers of the ideal (b). The
lower horizontal arrow of (32) is as computed in Theorems 11, 12 below.

Comment: It is not being asserted that the filtration of (2) mentioned in the Theorem
is the filtration by powers of the ideal (b).

Proof (with the exception of the last statement, which is proved in the next section).
The strategy is to show that the RO(Z/2)-graded coefficients of diagram (16) satisfy
the hypotheses of Lemma 4. To this end, note that the lower left corner is MR

∗-
cohomology of a spectrum (reduced cohomology of a space, actually), so the filtration
by powers of (b) is simply the BCSS filtration, and the statement follows from the
convergence of the corresponding BCSS (to be completely precise, the BCSS is only
conditionally convergent, so the proof follows from our complete computation of the
differentials, which is done in the next section).

To prove completeness of the filtration by powers of (b) in the lower right and upper
right corner of the diagram (32), our strategy is to show that any infinite series of
elements in the same dimension divisible by an increasing power of b can be written
as an infinite series of elements divisible by an increasing power of b using only
um, m ≥ −n with constant n. Such series then converge in u−nMR

∗[[u]]/[2]F (u),
which is a shift of MR

∗
RP∞, where the series converges by the completeness of MR

(since the filtration by powers of (b) is the filtration associated with the BCSS).
The statement asserted in the last paragraph follows, in effect, from dimensional

considerations. Recall from [5] (or verify directly) that the cokernel of the canonical
inclusion

Z[a]/(2a) → MRk+�α (33)

is 0 when k + � < 0. Since u−1 is of dimension 1+α (from the point of view of MR,
the dimension is 1+ γα from the point of view of our entire calculation), if we have a
homogeneous infinite series as mentioned in the last paragraph involving powers of u
not bounded below, then the MR∗-coefficients of those powers must be in the image
of (33). (In the case of the upper right corner, recall that bk is in dimension k(1+ α).)
One easily sees however that as we increase the power of a in (33), adding no multiple
of 1 + α can bring the elements into the same dimension. This proves the required
completeness statement.

To complete verifying the assumptions of Lemma 4, it remains to verify (25). This
is done as follows: Denote by γC

1 the Z/2-equivariant Real line bundle on BZ/2(Z/2)
given by letting the generator of Z/2 act on C by −1. Then we have the “0-section
map”
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ι : (BZ/2(Z/2))γ1 → (BZ/2(Z/2))γ
C

1 . (34)

Applying MR
∗, and inverting u, we get a diagram

umMR
∗[[u]]/[2]F (u)

ι∗ ��

κ
������������������� M̃R

∗
RP∞−m

��
(MR

∗[[u]]/[2]F (u))[u−1].

(35)

In the upper right corner, we use the equivalence (20) again, and in the upper left
corner we use the Real orientation of −mγC

1 . In fact, this also implies that κ is the
ordinary localization map, so its image together with the image of the vertical map
(14) span (MR

∗[[u]]/[2]F (u))[u−1]. This implies (25) for i = 0. Note, however, that
since Fi = bi F0 in all the three terms of (32), the general case follows. �

3 The Real cobordism of stunted projective spaces

The following result is well known, but we restate it to make the exposition self-
contained:

Lemma 6 Let E∗∗∗ be a spectral sequence (graded homologically). Suppose we have
numbers p, s and a morphism of spectral sequences

φ : E ′∗∗∗ → E∗∗∗

which is an isomorphism on Es
m,q -terms for m ≤ p, and Es

m,q = 0 for m > p. Then
for r ≥ s,m ≤ p

E ′r∗,∗ ∼= Er∗,∗ ⊕ ⊕

s≤i<r

Im(dic) (36)

where dic is the restriction of d
i to

Ei
>p,∗ → Ei≤p,∗.

Furthermore, in the isomorphism (36), φ corresponds to the projection to the first
summand. Similarly, suppose we have a morphism of spectral sequences

ψ : E∗∗∗ → E∗′∗∗

which is an isomorphism on Es
m,q -terms for m > p, and Es

m,q = 0 for m ≤ p. Then
for r ≥ s, m ≥ p

E ′r∗,∗ ∼= Er∗,∗ ⊕ ⊕

s≤i<r

Coim(dic). (37)
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Furthermore, in the isomorphism (37), ψ corresponds to the injection of the first
summand.

Proof Induction on r . For r = s, the statement is assumed. Consider now, say, φ.
Assuming the induction hypothesis for a given r , the second summand by definition
may be non-zero only in filtration degrees> p−r+1, and hence φ is an isomorphism
on Er≤p−r+1,∗-terms. This means that E ′r≤p−r,∗, which can be taken as the codomain
of dr -differentials in E ′r , is mapped by φ monorphically, and hence φdr = drφ
determines dr . This implies the statement with r replaced by r + 1, hence completing
the induction. The proof of the statement for ψ is analogous. �

For example, this lemma (applied with s = 1) implies that quite generally, the dif-
ferentials of a Borel homology and Borel cohomology spectral sequence with respect
to a cyclic group are precisely the restrictions of the differentials in the corresponding
Tate spectral sequence (see also [3]).

Let RP∞ denote the infinite real projective space with trivial Z/2-action. observe
that

RP∞ = (BS
1)Z/2 (38)

where S
1 is the unit sphere in C with the Z/2-action of complex conjugation. Recall

[5] that by the theory of Real-oriented spectra,

BPR
∗BS

1 = BPR
∗[[u]],

where the dimension of u, graded homologically, is −1 − α.

Proposition 7 The relation (38) induces an isomorphism

BPR
∗
RP∞ ∼= BPR

∗[[u]]/[2]F (u).

Proof If we denote by S
∞ the unit sphere in C

∞ with Z/2-action by complex conju-
gation, then S

∞/(Z/2) is the unit sphere of the Real line bundle (γ1)
2 on BS

1 where
γ 1 is the tautological bundle. Thus, we have a cofibration sequence

S
∞/(Z/2) → BS

1 → (BS
1)(γ

1)2 ,

which gives an isomorphism

BPR
∗(S∞/(Z/2)) ∼= BPR

∗[[u]]/[2]F (u).

On the other hand, notice that (38) factors through the natural equivariant embedding

RP∞ = (S∞)Z/2/(Z/2) ⊂ S
∞/(Z/2) (39)

which is an equivalence non-equivariantly and hence induces an isomorphism in BPR-
cohomology, since BPR is a complete spectrum. This completes the proof. �
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Note that (39) is not an equivalence equivariantly: in fact, the right hand side is
BZ/2(Z/2), the classifying space for Z/2-equivariant Z/2-principal bundles.

Even though Proposition 7 gives a complete calculation of BPR
∗(RP∞), for the

purposes of comparison with stunted projective spaces, we need to study its Borel
cohomology spectral sequence. Let us begin by studying the [2]F -series in BPR∗
further. Even though one may think this is the same as the [2]F -series in BP∗, there
are some fundamental differences. For example, the natural map

BP∗[[u]]/
( [2]F (u)

u

)

→ BP∗[[u]]/
( [2]F (u)

u

)

[u−1]

is an inclusion. This is not the case when we replace BP∗ by BPR
∗. If we choose a

natural number n, then in BPR
∗[[u]],

a2
n−1([2]F (u) + vnu

2n ) ≡ a2
n−1(vnu

2n + vn+1u
2n+1

) mod u2
n+1+1. (40)

We denote the left hand side by a2
n−1φnu2

n
.

We shall also put

wna
2n−1u2

n := a2
n−1(φn − vn).

Here we treat a2
n−1φnu2

n
, wna2

n−1u2
n
. By abuse of notation, we use the same sym-

bols also for their representative in a Borel cohomology spectral sequence. We do not
assign a meaning to wn, φn at this point. However, as is common in calculating spec-
tral sequences, we will need to discuss “corresponding” elements in different spectral
sequences. The suggestive notation allows more flexibility in this direction. For exam-
ple, the representative of a2

n−1φnu2
n
in a Borel cohomology spectral sequence can

be multiplied by powers of a. Also, in related spectral sequences, additional elements
may sometimes survive, allowing for the notation φn, wn to “spread”. (For example,
in a Tate cohomology spectral sequence, a becomes invertible, so we can write φnu2

n
.

Those types of liberties with notation may seem dangerous, and in general they
are. We are, however, safe in the special type of argument we are using, which is to
identify enough differentials in the Tate cohomology spectral sequence to get the right
E∞-term, and then conclude that none other can occur. We will see the differentials
from [5], and in the case of stunted projective spaces, also other differentials which
come from comparisons of spectral sequences. The final “jigsaw puzzle” fitting the
differentials together is quite complicated. In this context, insisting on a separate name
of elements in each spectral sequence (or worse yet, each page) would become terribly
cumbersome.

Lemma 8 The Borel cohomology spectral sequence for BPR
∗(RP∞) has E1-term

BP∗[a][σ, σ−1][[u]]/[2]F (u)
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where, to conform with [5], everything is graded homologically, |vn| = (2n − 1)(1 +
α), |a| = −α, |σ | = α − 1, |u| = −1 − α. The differentials are

d(xσ−2n ) = xa2
n+1−1vn, (41)

where
x ∈ Z/2[vn, vn+1, . . .][a][σ±2n+1]u j (42)

with

0 ≤ j < 2n,

(when n = 0, Z/2[v0, v1...] is replaced by BP∗) and

d(yσ−2n ) = ya2
n+1−1wn, (43)

where
y ∈ Z/2[vn+1, . . .][a][σ±2n+1]u j (44)

with

j ≥ 2n .

Proof The statement about the E1-term is obvious. The fact that u is a permanent
cycle follows from Proposition 7. The differential (41) follows from the fact that the
Borel cohomology spectral sequence (BCSS) for BPR

∗
RP∞ is a module over the

BCSS for BPR
∗. The differential (43) is a rewriting or (41) by the discussion in the

paragraph preceding the Lemma. (The point is that for j ≥ 2n , the leading term is
already wiped out by the differential (41), but the same differential still has a non-zero
target by the congruence (40).) There can be no further differentials by Lemma 6 since,
as one easily checks, after introducing the differentials (41), (43), the corresponding
“Tate spectral sequence” (i.e. the spectral sequence obtained by inverting a) converges
to its correct target, HZ/2∗

RP∞[a, a−1]. �
Remark It is important to realize that Tate cohomology is the generalized cohomol-
ogy theory represented by its spectrum in the Tate diagram. The Tate cohomology
spectral sequence converges to generalized Tate cohomology. For a space, such as
RP∞, which is not a finite cell complex, the generalized Tate cohomology is not
obtained by inverting a in the Borel cohomology. Thereby, the 2-series [2]F (u) is 0

in B̃ PR
∗
(RP∞), but not in (BPR

∗(RP∞))[a−1].
We shall not tackle the case of stunted projective spaces. In this case, additional

differentials do occur.

Lemma 9 When q = 2p, and

� = 2n1 − 2n2 + · · · − 2nq , (45)
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n1 > · · · > nq > 0 or q = 2p + 1 and

� = 2n1 − 2n2 + · · · + 2nq − 1, (46)

n1 > · · · > nq > 0, then in the BCSS for BPR
∗
RP∞

2�+1,

du�+1 = σ 2nq vqa
2nq+1−1u�+1. (47)

Proof As an induction hypothesis, we claim that the kernel of the Tate cohomology
spectral sequence (TCSS) map induced by the projection

RP∞ → RP∞
2�+1

where � ≡ 2k mod 2k+1 or � ≡ 2k + 1 mod 2k+1 on the 2m − 1’st page, m ≤ k, is
a free Z/2[vm, vm+1, . . .][a, a−1][σ±2m ]-module Mm on the generators

φmu
�+i , 1 ≤ i ≤ 2m . (48)

Form = 1, this is a statement about the E1-term. Suppose it is true for a givenm. Then
first of all, d<2m+1−1 of σ−2n u�+1 must be contained in Mm (because the differential
is 0 in the TCSS associated to BPR

∗
RP∞). However, we see that d1 is excluded by

explicit formula (this is also related to the different behavior of � even and odd). For
dimensional reasons, d>1 can only arise from a shift of power of σ , so d2

m+1−1 is
the lowest possible differential (corresponding to shift by σ 2m ), so d<2m+1−1 cannot
occur.

Now from considering the map of TCSS associated with

�2�+1MZ/2 → RP∞
2�+1, (49)

we see that for m < �,

d2
m+1−1σ−2mu�+1 = vma

2m+1−1u�+1 + ∑

1<i≤2m
xi u

�+i a2
m+1−1 (50)

where xi ∈ φmZ/2[vn, vn+1, . . .] (the power ofσ is excluded for dimensional reasons).
But then by the module structure over the TCSS for BPR

∗,

d2
m+1−1u�+1 = ∑

1<i≤2m
σ 2m xi u

�+i a2
m+1−1.

However, for the lowest i for which xi �= 0, we then have by (50)

d2
m+1−1(σ 2m xi u

�+i a2
m+1−1) �= 0 mod u�+i+1,
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which is a contradiction with d2
m+1−1 being a differential. Therefore, xi = 0 for all i

and

d2
m+1−1σ−2mu�+1 = vma

2m+1−1u�+1

and

d2
m+1−1φmu

�+1 = 0.

This, in turn, implies the induction step.
Now let us consider d2

k+1−1. Then by (49),

d2
�+1−1u�+1 = φ�σ

2�

a2
�+1−1 + ∑

1<i≤2�

xi u
�+i a2

m+1−1,

d2
�+1−1(u�+1σ−2�

) = w�a
2�+1−1 + ∑

1<i≤2�

xiu
�+iσ−2�

a2
�+1−1.

Again, however, for the lowest i for which xi �= 0, we conclude that then

d2
�+1−1(xi u

�+iσ−2�

a2
�+1−1) �= 0 mod u�+i+1,

which is a contradiction with d2
�+1−1 being a differential. This implies that xi = 0 for

all i , and the statement of the Lemma. �
Now let � be as in (45) or (46). Let

ε(�) := 2� − 2n1 + 1.

Let further

�1 := �,

�i+1 := 2ni − �i − 1, i < q.

Set

εi := 1 + � + ε(�q) + · · · + ε(�i+1).

Lemma 10 For 0 ≤ i ≤ q, in the BCSS for BPR
∗
RP∞

2�+1 we have

d(uεi ) = σ 2ni vni a
2ni+1−1uεi .
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Proof One notes that if one puts

�′ := 2n1 − 2n2 + · · · − 2ni if i is even

and

�′ := 2n1 − · · · + 2ni + 1 if i is odd,

then

�′ ≤ ε(�q) + · · · + ε(�i+1) < �′ + 2ni − 1.

If i is odd, then �′ ≥ �, so we have a map

RP∞
2�+1 → RP∞

2�′+1,

and we may therefore deduce the differential from Lemma 9 applied to �′ in place of
�.

When i is even, then �′ ≤ �, so we have a map in the opposite direction

RP∞
2�′+1 → RP∞

2�+1,

so the TCSS for BPR
∗
RP∞

2�′+1 detects the differential, but a priori, we don’t know that
there isn’t an error term. However, in this case, we may proceed by reversed induction
on i : if the statement is correct for i ′ > i , then we may use the differentials already
proved and the module structure of the TCSS E ′ corresponding to BPR

∗
RP∞

2�′+1,
and the TCSS E corresponding to BPR

∗
RP∞

2�+1, and prove that the map

E2ni+1−1 → E ′2ni+1−1

is injective, and hence the differential in the target determines the differential in the
source (see the statement of Theorem 11 which spells out this calculation explicitly).

�
Theorem 11 The BCSS for BPR

∗
RP∞

2k+1 has E
1-term

uk+1BP∗[a][σ, σ−1][[u]]/
( [2]F (u)

u

)

,

(|u| = −1−α). The differentials are as follows: For each i ≥ k+1, there are numbers
sk,i ≤ tk,i ∈ {1, 2, . . . ,∞} such that we have (41) with (42) for

0 ≤ p < sk,i

or

p = tk,i ,
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and (43) with (44) for

sk,i ≤ p < tk,i .

Additionally, we have the differential

dz = vpa
2p+1−1σ 2p , p = tk,i (51)

with
z ∈ uiZ/2[vp, vp+1, . . .][a][σ±2p+1 ]. (52)

These are the only differentials in this BCSS.
The numbers sk,i , tk,i are determined as follows: For k = 2� − 1, put

tk,i = � for k + 1 ≤ i ≤ 2k,

tk,i = ∞ for i > 2k.

We put

sk,i = j for k + 2 j−1 ≤ i < k + 2 j , 1 ≤ j ≤ �,

and

sk,i = j for i > 2k, 2 j ≤ i < 2 j+1.

For k not of the form 2� − 1, let k + 1 ≤ 2� ≤ 2k. Then

sk,i = s2�−k−1,2�−2k−1+i
tk,i = t2�−k−1,2�−2k−1+i

for i < 2�,

and if we let

2� − k ≤ 2m < 2�+1 − 2k − 2,

then for 2� ≤ i ≤ 2k, put

tk,i = �, sk,i = j

for

m < j ≤ �, 2k + 1 − 2� + 2 j−1 ≤ i < 2k + 1 − 2� + 2 j .

For i > 2k, put

tk,i = ∞, sk,i = j

for 2 j ≤ i < 2 j+1.
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Proof The differentials (51) with (52) follows from Lemma 10. The remaining differ-
entials follow from the module structure over the BCSS for BPR

∗
RP∞. Considering

the corresponding TCSS, one observes that these differentials get the correct answer
for

B̃ PR
∗
RP∞

2k+1 = HZ/2∗
RP∞

2k+1,

and hence no other differentials can occur. �
The result for BPR

∗
RP∞

2k is analogous, although the pattern is a little different.

Theorem 12 The BCSS for BPR
∗
RP∞

2k has E1-term

uk BP∗[a][σ, σ−1][[u]]/([2]F (u)),

(|u| = −1 − α). The differentials are as follows: For each i ≥ k, there are numbers
ak,i ≤ bk,i ∈ {0, 2, . . . ,∞} such that we have (41) with (42), (43) with (44) and (51)
with (52) occur as in Theorem 11 with sk,i replaced by ak,i and tk,i replaced by bk,i .

The numbers ak,i , bk,i are determined as follows: For k = 2�, put

bk,i = � for k ≤ i < 2k,

bk,i = ∞ for i ≥ 2k.

We put

ak,i = j for i = k and 0 = j, or k + 2 j−1 ≤ i < k + 2 j , 1 ≤ j ≤ �,

and

ak,i = j for i ≥ 2k, 2 j ≤ i < 2 j+1.

For k not of the form 2�, let k ≤ 2� < 2k. Then

ak,i = a2�−k,2�−2k+i
bk,i = t2�−k,2�−2k+i

for i < 2�,

and if we let

2� − k ≤ 2m < 2�+1 − 2k,

then for 2� ≤ i < 2k, put

bk,i = �, ak,i = j

for

m < j ≤ �, 2k − 2� + 2 j−1 ≤ i < 2k − 2� + 2 j .
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For i > 2k, put

bk,i = ∞, ak,i = j

for 2 j ≤ i < 2 j+1.

The proof is completely analogous to the proof of Theorem 11, so we only record
the main steps. Lemma 9 is replaced by

Lemma 13 When
� = 2n1 − 2n2 + · · · ± 2nq , (53)

(the sign is + resp. − when q is odd resp. even), n1 > · · · > nq−1 > nq + 1, then in
the BCSS for BPR

∗
RP∞

2� , there is a differential

du� = u�σ 2nq vnq a
2nq −1. (54)

Proof Analogous to the proof of Lemma 9. The principal difference is that (49) is
replaced by the inclusion of the bottom cell

S2� → RP∞
2� . (55)

�
To get the analogue of Lemma 10, let � be as in (53), and let

δ(�) := 2� = 2n1 ,

and let

�1 : = �,

�i+1 : = 2ni − �i , i < q.

Set

δi := � + δ(�i+1) + · · · + δ(�q).

The analogue of Lemma 10 then reads

Lemma 14 For 0 ≤ i ≤ q,

d(uδi ) = σ 2ni vni a
2ni+1−1uδi .

The proof is analogous to the proof of Lemma 10, and the proof of Theorem 12 is
analogous to the proof of Theorem 11.
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Example Let us compute the Borel cohomology spectral sequence for BPR
∗
RP∞

101.
This is the case of Theorem 11 with k = 50. For the purposes of the theorem, we
write

k = 26 − 24 + 22 − 21.

We refer to the differentials (41) as vertical, the differentials (43) as horizontal and
the differentials (51) as special.

In this terminology, we get special non-zero differentials

d3σ
0 mod 4u51,

d7σ
0 mod 8u52,

d31σ
0 mod 32ui , 53 ≤ i ≤ 63,

d127σ
0 mod 128ui , 64 ≤ i ≤ 100.

In addition, we have vertical differentials

d15σ
8 mod 16, 53 ≤ i ≤ 56,

d63σ
32 mod 64ui , 64 ≤ i ≤ 68

and horizontal differentials

d1σ
1 mod 2, i ≥ 51,

d3σ
2 mod 4, i ≥ 51,

d7σ
4 mod 8ui , i ≥ 52,

d15σ
8 mod 16, i ≥ 56,

d31σ
16 mod 32, i ≥ 53,

d63σ
32 mod 64, i ≥ 69,

d127σ
64 mod 128, i ≥ 64.

Differentials dσ j ui for i ≥ 101 are the same as in the BCSS for BPR
∗
RP∞.

Example Let us compute the Borel cohomology spectral sequence for BPR
∗
RP∞

100.
This is the case of Theorem 12 with k = 50. For the purposes of the theorem, we
write

k = 26 − 24 + 21.

In the above terminology, we get special differentials

d3σ
0 mod 4ui , i = 50, 51,

d31σ
0 mod 32ui , 52 ≤ i ≤ 63,

d127σ
0 mod 128ui , 64 ≤ i ≤ 99.
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In addition, we have vertical differentials

d1σ
1 mod 2u50,

d15σ
8 mod 16, 52 ≤ i ≤ 55,

d63σ
32 mod 64ui , 64 ≤ i ≤ 67

and horizontal differentials

d1σ
1 mod 2, i ≥ 51,

d3σ
2 mod 4, i ≥ 50,

d7σ
4 mod 8ui , i ≥ 52,

d15σ
8 mod 16, i ≥ 56,

d31σ
16 mod 32, i ≥ 52,

d63σ
32 mod 64, i ≥ 68,

d127σ
64 mod 128, i ≥ 64.

Differentials dσ j ui for i ≥ 100 are the same as in the BCSS for BPR
∗
RP∞.

Appendix: The topological realization of algebraic hermitian cobordism

Let us start with a warm-up case, Karoubi’s topological Hermitian K -theory [7] L,
which is the topological realization of his algebraic Hermitian K -theory over the
field R. When considered as a Z/2 × Z/2-equivariant spectrum indexed over the
complete universe, this is represented as follows: One chooses a complex universe
UB ∼= C

∞ together with a Real structure ? and a hyperbolic Real form B. Then the L0

is represented by theZ/2×Z/2-equivariant space BGL(UB), the classifying space of
the group GL(UB) which is the direct limit of groups of the form GL(VB) where VB

are finite-dimensional Real vector spaces endowed with the Z/2× Z/2-action where
one generator acts by complex conjugation, and the other by

A �→ (AT )−1 (56)

where (?)T denotes the adjoint matrix with respect to the symmetric bilinear form B:

B(Ax, y) = B(x, AT y).

The linkwithZ/2-equivariant Real K -theory is obtained as follows. Sincewe assumed
we have a Real structure on VB , we have a unique splitting

VB = (VB)+ ⊕ (VB)−

such that (VB)+, (VB)− are B-orthogonal, and B is positive definite on (VB)+ and
negative definite on (VB)−. Then define a positive definite symmetric bilinear form
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B+ to be equal to B on (VB)+ and to−B on (VB)−. Now consider the Hermitian form
on VB defined by

〈u, v〉 = B+(u, V ). (57)

LetU (VB) be the group of unitary matrices with respect to this Hermitian form. Then
we have a map

U (VB) → GL(VB) (58)

which is easily seen to be a weak Z/2 × Z/2-equivalence. Moreover, define a Z/2-
action on VB such that the generator h acts by 1 on (VB)+ and by−1 on (VB)−. The key
point then is that restricted to U (VB), (56) is complex conjugation, conjugated by h.
Passing to direct limit, this gives an equivalence of the 0-space ofZ/2-equivariant Real
K -theory to L. One checks that the periodicity maps given by Karoubi [7] coincide,
up to homotopy, with the KRZ/2-periodicity maps.

To treat topological Hermitian cobordism, which is the Z/2 × Z/2-equivariant
spectrum indexed over the complete universe which is the topological realization of
theZ/2-equivariant motivic spectrum MGLR over the fieldR, we must enrich (58) to
“Thom spaces”. To this end, recall [6] that the “Thom space” in that case is obtained
as the homotopy cofiber of the map from the “unit sphere bundle” to the base space.
The reason of the quotation marks is that the we cannot take the complement of the
0-section in the vector bundle, since this would not have a Z/2-action. Instead, the
“unit sphere” is emulated by the quadric

B(x, y) = 1, x, y ∈ VB (59)

whichhas both aGL(VB) actionwhere A acts by A on the x-coordinates andby (AT )−1

on the y coordinates. Note that projection to the x-coordinates (or the y-coordinates)
is a motivic homotopy equivalence onto VB − {0}.

For the purposes or comparison of the topological realization of this with Z/2-
equivariant Real cobordism, we take the topological subspace S+ of (59) consisting
of all points of (59) where

y = h(x). (60)

By projecting to the x-coordinates, this is homeomorphic to the set of all points of VB

satisfying
B+(x, x) = 1, (61)

which is the unit sphere. Thus, the inclusion of S+ to the quadric (59) is a (non-
equivariant homotopy equivalence). Now one sees, however, that the restriction of the
GL(VB)-action on (59) restricts to an action of U (VB) on S+, and that, in effect,
the Z/2 � U (VB)-space S+ is isomorphic to the unit sphere of VB with respect to
the positive-definite Hermitian form (57). On the other hand, the inclusion of S+ to
(59) is a Z/2 � U (VB)-homotopy equivalence. Thus, we have exhibited homotopy
equivalences of the homotopy cofiber of the projection

B(S+,U (VB), ∗)+ → BU (VB)+

both to the VB-space of the topological realization of MGLR over R and of MRZ/2.
One easily checks that the structure maps coincide as well.
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