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Abstract Suppose R → S is a faithfully flat ring map. Given an S-module N , does
there exists some R-module M such that S⊗R M ∼= N? In this paper we work out (as
a special case of a more general question about extensions of comonads) a criterion
for the existence of such an R-module M , under some reasonable hypotheses on the
map R → S.

1 Introduction

Suppose R → S is an effective descentmorphismof rings, for example, a faithfully flat
morphism. We will write Rep(R),Rep(S) for the representation semirings of R and
S, that is, the isomorphism classes of finitely generated R-modules and S-modules,
respectively. Here addition is given by direct sum andmultiplication by tensor product.
We have a base-change (“tensoring-up”) map

Rep(R)
f−→ Rep(S).

This map may fail to be injective, but we have excellent control over its failure to be
injective. If N ∈ im f , then descent theory identifies the preimage f −1(N ) with the
set of S/R-descent data that N admits. When this set is nonempty, there are useful
and classical cohomological descriptions of it. See [4] for a nice exposition of some
results of this kind. A modern, very general version is in Mesablishvili’s paper [1].
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986 A. Salch

If one wants to understand the map Rep(R)
f−→ Rep(S), however, something

is missing from this picture: one needs to get some control over the failure of f to
be surjective. In other words, we do not know how to recognize which elements of
Rep(S) are indeed in the image of f . Another way of putting it is that we want to
know, given a finitely generated S-module N , whether there exists any S/R-descent
datum on N at all. Equivalently, we want to have a simple criterion for determining
whether N ∼= S ⊗R M for some R-module M . Such a recognition principle, along
with the descent theory described above, is what one needs in order to understand the
relationship between Rep(R) and Rep(S), or more generally, to understand how the
module theory of a ring changes under faithfully flat extension of that ring.

The purpose of this note is to describe and prove such a recognition principle
(Theorem 2.4). Our recognition principle is an abstract statement about extensions of
comonads, and as such, it has sufficient generality to be applied to many nonclassical
situations (e.g. cases in which the rings R, S are not commutative, and may have
gradings that we insist the modules respect; and there may perhaps be interesting
applications which are not of an algebraic nature at all). A short list of the easiest
cases to see that this recognition principle applies in is Theorem3.2,with consequences
listed in Corollaries 3.5 and 3.6.

The most familiar setting in which our main result applies is the case in which we
have a pair of maps

A → B → k ⊗A B (1.1)

of finite-dimensional commutative augmented algebras over a field k, such that the
map A → B is a split monomorphism as amap of A-modules, and such that, whenever
a ∈ A is in the kernel of the augmentation map A → k, then ba ∈ A for all b ∈ B.
Then our Corollary 3.5 states that a B-module M is of the form B ⊗A N for some
A-module N if and only if (k⊗A B)⊗B M ∼= k⊗B M is a free k⊗A B-module. In other
words, we have our criterion for the existence of a B/A-descent datum on a finitely-
generated B-module M : such a descent datum exists if and only if (k ⊗A B) ⊗B M is
a free k ⊗A B-module.

Consequently, if every finitely generated projective A-module is free and every
finitely-generated projective B-module is free (both of which are often satisfied in
cases of interest—for example, when A, B are both Artin k-algebras, since they are
then nilpotent extensions of k and hence local rings), then we get an exact sequence
of commutative monoids

StableRep(A) → StableRep(B) → StableRep(B ⊗A k) → 0,

where we write StableRep for the commutative monoid of stable equivalence classes
of finitely generated modules. This is our Corollary 3.6.

We use these results in our work on stable representation theory and stable algebraic
G-theory, [3].

We note that the initial version of this paper was entirely in terms of “extensions of
abelian categories,” and an anonymous referee suggested rephrasing and generalizing
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the results to be in basically the level of generality of Definition 2.1. Namely: one has
two comonads b, c on categories B, C and a commutative diagram

c -coalg F �� b -coalg

Ub

��

t∗ �� c -coalg

Uc

��
B s∗ �� C,

and given an object X of B such that s∗X admits the structure of a c-coalgebra, one
wants to know whether X admits the structure of a b-coalgebra. Our Theorem 2.4
gives necessary and sufficient conditions for this to be so, and it in turns implies our
main result with algebraic applications, Theorem 3.2. It would be interesting to know
if there exist non-algebraic applications for our Theorem 2.4.

We are grateful to the anonymous referee for their apt and helpful suggestions, and
also to C. Weibel for his editorial help.

2 The main definitions and the main result

Definition 2.1 Let C be a category, c a comonad on C. By a pointed extension of c we
mean the following data:

• a category B and a comonad b on B, and
• functors F, t∗, s∗ which admit right adjoints G, t∗, s∗, respectively, which fit into
the following diagram and make it commute:

c -coalg F �� b -coalg

Ub

��

t∗ �� c -coalg

Uc

��
B s∗ �� C,

where by c -coalg and b -coalg we mean the categories of c-coalgebras and b-
coalgebras, respectively, and by Uc,Ub we mean the usual forgetful functors. (In
what follows, we will write Wc,Wb for the usual right adjoints to these functors.)

The above data is required to satisfy the following conditions:

• (Pointedness) t∗ ◦ F � idc -coalg.
• (Beck-Chevalley condition) Ub ◦ t∗ = s∗ ◦Uc.
• (Affineness) The functors G and Wb preserve epimorphisms.
• (Semisimplicity) Every epimorphism in the category of c-coalgebras is split.
• (Nakayama axiom) The unit map X → s∗s∗X of the adjunction is an epimorphism
for all objects X of B, and s∗s∗ has the property that if s∗s∗ f is an isomorphism,
then f is an epimorphism.

Thenamesof the axiomswhich suggest a geometric origin are because these axiomsare
motivated by, and satisfied in, algebraic situations of geometric interest. Specifically,
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in the case where we have a field k, an augmented commutative k-algebra R, and
a monomorphism of commutative k-algebras R → S, we let B be the category of
S-modules and we let C be the category of k ⊗R S-modules, with t∗ the base change
functor M 	→ (k ⊗R S) ⊗S M . We let b be the base-change comonad M 	→ S ⊗R M
on S-modules, and we let c be the base-change comonad M 	→ (k ⊗R S) ⊗k M on
k ⊗R S-modules. Then the category of c-coalgebras is equivalent to the category of k-
modules (thanks to the anonymous referee, who pointed out this useful fact!), and the
category of b-coalgebras is equivalent to the category of R-modules if the morphism
R → S is an effective descent morphism.

In that situation, the pointedness axiom in Definition 2.1 is satisfied because of R
being an augmented, i.e., pointed, k-algebra. The affineness axiom is satisfied because
the schememorphisms Spec S → Spec R andSpec R → Spec k are affinemorphisms,
so their induced direct image functors on the quasicoherent module categories are right
exact, i.e., preserve epimorphisms. The semisimplicity axiom is satisfied because the
category of k-vector spaces is semisimple. On restricting to the finitely-generated
module categories, theNakayama condition is satisfiedwhen the kernel of S → k⊗R S
is contained in the Jacobson radical of S, by Nakayama’s lemma.

Nowwedefinewhat itmeans for an object to be “formally supported” by a comonad.
The definition looks technical at a glance, but it has two advantages: first, the objects X
formally supported by a comonad b have the property that they admit the structure of a
b-coalgebra if and only if s∗X admits the structure of a c-coalgebra. See Theorem 2.4
for this result. Second, the condition required for an object to be formally supported
by a comonad is actually concrete enough that it is checkable in situations of concrete
interest, and frequently holds for all objects on which the comonad is defined. See
our Theorem 3.2, where we verify that all objects are formally supported by certain
base-change comonads arising in a wide class of very concrete and explicit algebraic
cases of interest.

Definition 2.2 Let c be a comonad and (b, F, t∗, s∗) a pointed extension of c. (Our
notation is as in Definition 2.1.) We say that an object M of B is formally supported
by b, F, t∗, s∗, c, or formally supported by b for short, if the following condition is
satisfied:

• (Lifting axiom) For every c-coalgebra Y and every epimorphism σ̃ : UbFY → M
such that s∗σ̃ is an isomorphism, there exists a map φ̃ : M → UbWbM making the
diagram

UbFY

σ̃

��

UbηFY�� UbWbUbFY

UbWbσ̃

��
M

φ̃ ������� UbWbM

commute.

If enough objects are formally supported by a comonad, we say that the pointed
extension of comonads is short:
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Definition 2.3 Let c be a comonad and (b, F, t∗, s∗) a pointed extension of c. We say
that b is an short extension of c if, whenever M is an object of B such that s∗M is
isomorphic to s∗UbFY for some c-coalgebra Y , we have that M is formally supported
by b.

Now here is our main technical result, which implies the concrete results in the next
section:

Theorem 2.4 Let c be a comonad and (b, F, t∗, s∗) a pointed extension of c. (Our
notation is as in Definition 2.1.) Suppose M is an object of B which is formally
supported by b. Then M admits the structure of a b-coalgebra if and only if s∗M
admits the structure of a c-coalgebra.

Proof Suppose s∗M admits the structure of a c-coalgebra. Then we can choose a
c-coalgebra Y such thatUcY = s∗M in C. Let σ : UbFY → s∗s∗M be the composite

UbFY
ηUbFY��

σ̃

���
�
�

σ

������������ s∗s∗UbFY
∼= �� s∗Uct∗FY

∼=
��

M
ηM �� s∗s∗M s∗UcY,=��

(2.1)

i.e., s = ηUbFY .
We have the commutative diagram of hom-sets

homB(UbFY, M) ��

∼=
��

homB(UbFY, s∗s∗M)

∼=
��

homc -coalg(Y,GWbM) �� homc -coalg(Y,GWbs∗s∗M)

(2.2)

in which the bottom horizontal map is split epic, since M → s∗s∗M is epic by the
Nakayama axiom in Definition 2.1, since G,Wb both preserve epimorphisms by the
affineness axiom in Definition 2.1, and since every epimorphism in c-coalgebras is
split by the semisimplicity axiom in Definition 2.1. So the top horizontal map in
diagram (2.2) is also a split epimorphism. So the map σ ∈ homB(UbFY, s∗s∗M) lifts
to a map σ̃ ∈ homB(UbFY, M) which fills in the dotted arrow in diagram (2.1).

We claim that σ̃ is epic. By the commutativity of diagram (2.1), s∗s∗σ̃ makes the
diagram

s∗s∗UbFY

s∗s∗σ̃
��

∼= �� s∗Uct∗FY
∼=

��
s∗s∗M s∗UcY

=��

commute, hence s∗s∗σ̃ is an isomorphism. Now since s∗s∗σ̃ is an isomorphism, σ̃ is
an epimorphism by the Nakayama axiom.

123



990 A. Salch

We now have the diagram in B:

UbFY
Ubη

b
FY��

σ̃

��

UbWbUbFY

UbWbσ̃

��
M

ψ̃ ������ UbWbM,

(2.3)

and the lifting axiom in Definition 2.2 now guarantees the existence of a map ψ̃ filling
in the dotted arrow and making the diagram commute.

We claim that ψ̃ is in fact a b-coalgebra structure map on M . To prove this claim,
we must check that it is counital and coassociative. But this follows automatically
from σ̃ being an epimorphism, from commutativity of the diagram (2.3), and from
Ubη

b
FY being a b-coalgebra structure map.

Conversely, if M is a b-coalgebra, then M is in the image of Ub. Choose N in the
category of b-coalgebras such that M = Ub(N ). Then we have

s∗M = s∗UbN

= Uct
∗N ,

so s∗M is in the image of Uc. So s∗M admits the structure of a c-coalgebra. 
�
Corollary 2.5 Let c be a comonad and let b be an short extension of c. Then an object
M of B admits the structure of a b-coalgebra if and only if s∗M admits the structure
of a c-coalgebra.

Corollary 2.5 makes it clear that the relationship between c-coalgebras and b-
coalgebras is very simple when b is an short extension of c. We claim that short
extensions of comonads are actually not unusual, in fact occuring in practical, concrete
situations. See Theorem 3.2 for a wide class of examples.

3 Special cases and applications

Now we introduce a useful definition which plays an essential role in Theorem 3.2.

Definition 3.1 Suppose k is a field, and A, B are k-algebras. Suppose A is equipped
with a k-algebra augmentation map ε : A → k. We say that a monomorphism f :
A → B of k-algebras is (right) short if, for each element b ∈ B and each element
a ∈ ker ε, the element ba ∈ B is in im f ⊆ B.

One can define a “left short” morphism by simply swapping right-multiplication out
for left-multiplication in Definition 3.1.

Note that any short morphism R → S has the property that S → S ⊗R k is a
(right) square-zero extension of algebras, but the converse is not necessarily true: if
S → S⊗R k is a right square-zero extension, it is not always true that R → S is a right
short morphism, even when R → S is injective. For example, let S = k[x]/x4 and let
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R = k[y]/y2, and let R → S send y to x2. This map is not short, but S → S⊗R k is a
square-zero extension. On the other hand, the map of k-algebras k[y]/y2 → k[x]/x3
sending y to x2 is a good example of a short morphism.

Here are some examples of pointed extensions of comonads, to which Theorem 2.4
applies.

Theorem 3.2 Suppose k is a field. Suppose A is an augmented commutative algebra
over k, and f : A → B is an effective descent morphism of commutative k-algebras.
Suppose both A and B are finite-dimensional as k-vector spaces. Let C be the algebra
B ⊗A k, and suppose the kernel of the ring map B → B ⊗A k is contained in the
Jacobson radical of B. Then the commutative diagram of categories and functors

fgMod(k) F �� fgMod(A)

Ub

��

t∗ �� fgMod(k)

Uc

��
fgMod(B)

s∗ �� fgMod(C)

expresses b as a pointed extension of c, where we are writing b for the base change
comonad M 	→ bM = M ⊗A B on fgMod(B), and c for the base-change comonad
M 	→ cM = M ⊗B C on fgMod(C). Here F,Ub,Uc, t∗ are all the obvious base-
change (tensoring-up) functors.

Furthermore, if f is short, then b is an short extension of c.

Proof Suppose A is an augmented commutative algebra over k, and f : A → B
is an effective descent morphism of commutative k-algebras. Suppose both A and
B are finite-dimensional as k-vector spaces. Let C be the algebra B ⊗A k. Then
the category of c-coalgebras is naturally equivalent to the category of k-vector spaces,
since the unit k-algebramap k → C is clearly faithfully flat, hence an effective descent
morphism. Furthermore, the category of b-coalgebras is naturally equivalent to the
category of A-modules, by the assumption that f is an effective descent morphism.
It is trivial that these statements remain true with the adjective “finitely generated”
included throughout.

Now we check the relevant conditions, from Definition 2.1, for b to be a pointed
extension of c.

• Pointedness is immediate from the composite of the k-algebra maps k → C → k
being the identity on k.

• The Beck-Chevalley condition is a classical property of restriction and induction of
scalars.

• The affineness condition is classical: the restriction of scalars functor induced by a
map of rings (or k-algebras) is exact.

• Semisimplicity is due to k being a field, hence the category of k-modules (or of
finitely-generated k-modules) is semisimple.

• For theNakayama condition: since themorphismof k-algebras B → C is surjective,
we have that M ∼= B ⊗B M → C ⊗B M ∼= s∗s∗M is surjective for all B-modules
M . So the unit map id → s∗s∗ is always an epimorphism, satisfying the first part
of the Nakayama condition.
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For the second part, we must use the assumption that all our modules are finitely
generated. Now the functor s∗s∗ is the functor

M 	→ M ⊗B (B ⊗A k) ∼= M ⊗A k ∼= M/M(ker f ).

If M/M(ker g) ∼= 0, then the inclusion M(ker g) ↪→ M is an isomorphism.
Nakayama’s Lemma now applies: since (ker g) is contained in the Jacobson radical
of B, (ker g)M = M and M finitely generated together imply that M = 0.

Now suppose that f is short, and suppose that M is a finitely-generated B-module

equipped with an epimorphism UbFY = Y ⊗k B
i−→ M of B-modules such that

s∗i = i ⊗B C is an isomorphism, where Y is a finitely-generated k-module. We will
write ε : A → k for the augmentation map on A. Then ker i consists entirely of
elements of the free B-module Y ⊗k B which are divisible by elements in ker ε, that
is, ker i consists entirely of elements of the form ya for some y ∈ Y ⊗k B and some
a ∈ ker ε.

Now we choose a basis y1, . . . , yn for Y . If ya is some element of ker i , we write
it in the form

ya =
⎛
⎝

n∑
j=1

α j y j

⎞
⎠ a

and we observe that, since f is short, each element α j y j a ∈ B{y j } ∼= B is contained
in im f . Hence ya is contained in

Y ⊗k im f : Y ⊗k A → Y ⊗k B.

Hence, in the commutative diagram

ker i

����� �
�

�
�

Y ⊗k A �� Y ⊗k B ��

i
��

Y ⊗k B ⊗A B

��
M M ⊗A B

(3.1)

there exists a map as in the dotted arrow which makes the diagram commute. Since
the row in diagram (3.1) is exact and since the middle column in diagram (3.1) is a
short exact sequence, the composite map ker i → M ⊗A B is zero, hence there exists
a map M → M ⊗A B = s∗s∗M fitting into the bottom row of diagram (3.1) and
making the diagram commute. This is precisely the lifting axiom in Definition 2.2. So
if M ⊗B C is a free B-module, then M is formally supported by b. So b is an short
extension of c. 
�
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A version of Theorem 3.2 also holds for the categories of graded modules, under
the additional assumption that all algebras in question are graded, and the algebra
homomorphisms preserve the gradings.

It is convenient to have a characterization of effective descent morphisms which is
applicable to short k-algebra morphisms, so that one can use Theorem 3.2 in practical
situations.One knows, fromclassical descent theory, that faithfully flat ringmorphisms
are effective descent morphisms. This is not so helpful, however, since it is very rare
for a short k-algebra map to be flat. Instead, the more general Joyal-Tierney theorem
is quite helpful for determining when a short morphism of commutative k-algebras is
an effective descent morphism. See [2] for the following result, which Mesablishvili
attributes to Joyal and Tierney, but which was apparently never written up by Joyal
and Tierney themselves:

Theorem 3.3 (Joyal-Tierney) Suppose f : R → S is a homomorphism of com-
mutative rings. Then f is an effective descent morphism if and only if f is a pure
monomorphism.

We remind the reader that amonomorphism of R-modules f : M → N is said to be
pure if, for every R-module M0, the tensor product M0⊗R f : M0⊗R M → M0⊗R N
is a monomorphism. So the condition of Theorem 3.3 is that the map R → S is a pure
monomorphism, as a map of R-modules.

The following is a corollary of the Joyal-Tierney theorem but is also not hard to
prove directly.

Corollary 3.4 Suppose f : R → S is a homomorphism of commutative rings which
is a split monomorphism as a map of R-modules. Then f is an effective descent
morphism.

Proof If f is a split monomorphism as a map of R-modules, we can write S as R⊕M
for some R-module M , with the map f being the inclusion of the summand R. Then,
for any R-module M0, the map

M0 ∼= M0 ⊗R R
M0⊗R f−→ M0 ⊗R (R ⊕ M) ∼= M ⊕ M0 ⊗R M

is also inclusion of a summand, hence still a monomorphism. Hence f is a pure
monomorphism, hence an effective descent morphism by Theorem 3.3.

Now we can list some more corollaries of Theorem 3.2.

Corollary 3.5 Suppose, for any ring R, we writeRep(R) for the commutative monoid
of isomorphism classes of finitely-generated right R-modules, with addition given by
direct sum. Suppose k is a field, A is an augmented commutative k-algebra, and B is a
commutative k-algebra equipped with a short k-algebra monomorphism f : A → B.
Suppose A, B are both finite-dimensional as k-vector spaces, and suppose that f ,
when regarded as a map of A-modules, is a split monomorphism. Finally, suppose the
kernel of the ring map B → B ⊗A k is contained in the Jacobson radical of B. Then
the image of the base-change (“tensoring up”) map of monoids Rep(A) → Rep(B)

consists of exactly the isomorphism classes of B-modules M such that M ⊗A k is a
free B ⊗A k-module.
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Corollary 3.6 Suppose k, A, B, f are as in Corollary 3.5. Write StableRep(A)

(resp. StableRep(B)) for the stable representation monoid of A (resp. B), that
is, the monoid of stable equivalence classes of finitely generated A-modules
(resp. f ini telygeneratedB−modules). Suppose every finitely generated projective
B ⊗A k-module is free. Then the sequence of monoid maps

StableRep(A) → StableRep(B) → StableRep(B ⊗A k) → 0 (3.2)

is exact.

Wewould be very interested in knowing whether there is any natural way to extend
exact sequence (3.2) to the left. This wouldmake Corollary 3.6 quite useful for making
very concrete computations of stable representation rings of Artin algebras.

Warning 3.7 The reader should be careful to note that, while the sequence 3.2 is an
exact sequence of commutativemonoids—that is, the image of eachmap is equal to the
kernel of the next—the same is not necessarily true after one takes the Grothendieck
group completion of those monoids. Furthermore, exact sequences of commutative
monoids really are quite different from exact sequences of abelian groups. In par-
ticular, StableRep(B) is capable of being non-finitely-generated even when both
StableRep(A) and StableRep(B ⊗A k) are finitely generated. This actually occurs
in the case where A → B is the short morphism k[y]/y2 ↪→ k[x, y]/x2, xy, y2.
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