J. Homotopy Relat. Struct. (2015) 10:939-969 @ CrossMark
DOI 10.1007/s40062-014-0090-7

(Non-)Koszulness of operads for n-ary algebras,
galgalim and other curiosities

Martin Markl - Elisabeth Remm

Received: 10 August 2013 / Accepted: 26 September 2014 / Published online: 15 October 2014
© Thilisi Centre for Mathematical Sciences 2014

Abstract We investigate operads for various n-ary algebras. As a useful tool we
introduce galgalim—analogs of the Lie-hedra for n-ary algebras. We then focus on
algebras with one anti-associative operation. We describe the relevant part of the
deformation cohomology for this type of algebra using the minimal model for the anti-
associative operad. We also discuss free partially associative algebras and formulate
some open problems.

Keywords Operad - Koszulness - Partial and total associativity - Minimal model

Mathematics Subject Classfication 8D50 - 55P48

Communicated by Tom Lada.

The first author was supported by the grant GA CR 201/08/0397 and by the Academy of Sciences
of the Czech Republic, Institutional Research Plan No. AV0Z10190503.

M. Markl ()

Mathematical Institute of the Academy, Zitnd 25 s
115 67 Prague 1, Czech Republic

e-mail: markl@math.cas.cz

M. Markl
MFF UK, Sokolovskd 83, 186 75 Prague 8, Czech Republic

E. Remm

Laboratoire de Mathématiques et Applications, Faculté des Sciences et Techniques,
Université de Haute Alsace, 4 rue des Fréres Lumiére,

68093 Mulhouse cedex, France

e-mail: Elisabeth.Remm @uha.fr

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s40062-014-0090-7&domain=pdf

940 M. Markl, E. Remm

Contents

I Introduction . . . . . .. ... ... 940
2 Duality for quadratic operads revisited . . . . .. ... .. Lo 940
3 Four families of n-ary algebras . . . . . . . .. ... 945
4 Sundry facts about n-ary algebras . . . . . ... 947
5 Koszulness: thecasestudy . . . . . . . ... L 951
6 Cohomology of algebras over non-Koszul operads: anexample . . . . ... ... ........ 958
7 Free partially associative n-algebras . . . . . . .. ... oL Lo 964
8 Openproblems . . . . . .. ... 968
References . . . . . . . . . . . L 968

1 Introduction

We study Koszulness of operads for various n-ary algebras, i.e. algebras with an n-
multilinear operation satisfying a specific version of associativity. In Sect. 2 we recall
basic notions of quadratic duality and Koszulness for quadratic operads and prove a
couple of related statements, emphasizing specific features of the non-binary case.

In Sect. 3 we introduce four families of operads—operads for totally resp. partially
associative n-algebras, and the operadic suspensions of these operads. In Sect. 4 we
define galgalim that, in some sense, generalize the classical Stasheft’s associahedra to
the realms of partially associative n-algebras. We will see that galgalim encode some
properties of free partially associative algebras.

In Sect. 5 we formulate and prove results concerning Koszulness of operads for n-
ary algebras. They are summed up in the table of Fig. 3. We will then, in Sect. 6, focus
on the particular case of algebras with one anti-associative operation, i.e. an operation
a, b+ ab satisfying a(bc)+ (ab)c = Oforeacha, b and c. The corresponding operad
“Ass is not Koszul, so the deformation cohomology differs from the “standard” one.
We describe the relevant part of the deformation cohomology based on the minimal
model of Ass.

In Sect. 7 we give a description of the free partially associative algebras which,
in the Koszul cases, coincides with the one given in [10]. Section 8 formulates open
problems.

Conventions. The basic reference for operads, quadratic duality and Koszulness is the
classical [9] or more recent [14], our notation and terminology will also be based on
[20] and [24]. We will work with operads in the category of chain complexes over a
field k of characteristic zero though, in the light of [7], most if not all results remain
valid over the ring of integers.

2 Duality for quadratic operads revisited
In this section we recall necessary notions and results related to Koszul duality of
quadratic operads generated by operations of the same arity, emphasizing specific

features of the non-binary case. Most of the ideas mentioned here are implicitly present
in the classical sources [8,9], in explicit form they appeared in Chapter 7 of [14].

@ Springer



(Non-)Koszulness of operads 941

Fix anatural n > 2 and assume E = {E(a)},>2 is a X-module such that E(a) =0
if @ # n and that, moreover, E(n) is finite-dimensional. We will study operads P
of the form P = I'(E)/(R), where I'(E) is the free operad generated by E and (R)
the operadic ideal generated by a subspace R C I'(E)(2n — 1). Operads of this type
are particular examples of quadratic operads in the sense of [14, Chapter 7], they are
binary quadratic if n = 2." Let EY = {E" (a)}4>2 be a £-module with

sgn,® 14=2 E(a)*, if a =n and

EY(a) := {
0, otherwise

where 1¢~2 denotes the suspension iterated  —2 times, s gn,, the signum representation

of the symmetric group X,, and # the linear dual of a graded vector space with the

induced representation. Recall that v# .= Hom(V,K), so (V¥); = (V_g)*. There is

a non-degenerate, Y,,_-equivariant pairing

(—=]=):T(EV)2n — 1) @ T(E)(2n — 1) — sgny,_, (1)
determined by requiring that
<Tn72 e/o,- TVHZ f/ | e’ oj f//) = 5,']‘(—])(i+l)(n+l)6/(6//)f/(f”) ck = sgny, 1,

for arbitrary ¢/, f' € E(n)¥, ¢’, f” € E(n). The following definition is a particular
case of the Koszul dual of a quadratic operad P as defined in [14, Chapter 7] when P
is generated by operations of arity .

Definition 1 The Koszul or quadratic dual of a quadratic operad P = I'(E)/(R) as
above is the quotient

PH=T(EY)/(RY),

where R ¢ T'(EY)(2n — 1) is the annihilator of R C T'(E)(2n — 1) in the pairing
(1), and (R™) the operadic ideal generated by R+

Remark 2 If ‘P is a quadratic operad generated by an operation of arity n and degree
d, then the generating operation of P' has the same arity but degree —d +n — 2, i.e.
for n # 2(d + 1) the Koszul duality does not preserve the degree of the generating
operation. As in the binary case, the quadratic dual is a reflection, (P')' =

Recall that the operadic suspension sE of a X-module E = {E(a)},>1 is the X-
module SE = {SE(a)},>1, where SE(a) := sgn,® ¢a_1 E(a). It is a standard fact
that, for a dg-operad P = {P(a)},>1, the operadic suspension sP = {sP(a)},>1 of
the underlying ¥-module is has a natural dg-operad structure. The operadic suspension
therefore extends from X-modules to an endofunctor on the category of dg-operads.
Likewise, the operadic suspension sC of a dg-cooperad C is a dg-cooperad. We denote

! In the original paper [9], quadratic always meant binary quadratic in the terminology of the present note.
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942 M. Markl, E. Remm

by s~! the inverse operation and call it, if necessary, the operadic desuspension. In
the following proposition, P* denotes the componentwise linear dual of a dg-operad
with components of finite type, with the obvious cooperad structure.

Proposition 3 The free operad functor commutes with the operadic suspension, sST" =
I's. For a dg-operad ‘P with components of finite type, one has a natural isomorphism

sP)* =s7H(PY)

of dg-cooperads. Finally, if P is a quadratic operad as in Definition 1, its operadic
suspension SP is again quadratic and one has a natural isomorphism of quadratic
operads

(sP) =s ' (Ph. )

Proof The first, rather nontrivial, claim of the proposition is the content of [24,
Proposition 1I1.3.20]. The second claim is obvious and the third can be verified
directly. O

The cobar construction [24, Definition 11.3.9] of a coaugmented cooperad C is a
dg-operad (C) of the form Q(C) = (I'(} sC), dq). Here s denotes the cooperadic
suspension recalled above, sC the coaugmentation coideal of the coaugmented coop-
erad sC, and | the component-wise desuspension. The differential dg, is induced by the
structure operations of the cooperad C. If P = {P(a)},>1 is an augmented operad with
finite-dimensional components, the component-wise linear dual P# = {P(a)*},> is
a coaugmented cooperad. The composition D(P) := Q(P*) of the linear dual with
the cobar construction is the dual operad of [9, (3.2.12)]. In section I1.3.3 of the
monograph [24], D(—) was called the dual bar construction. We will use the latter
terminology.

For P quadratic, there exists a natural map D(P') — P of dg-operads. The fol-
lowing definition is a straightforward extension of [9, Definition 4.1.3], allowing that
the quadratic operad P may not be binary (i.e. generated by operations of arity two),
see also [14, Corollary 7.4.3] for the general case.

Definition 4 A quadratic operad P is Koszul if the natural map D(P) — P'is a
homology isomorphism.

Let us close this section by formulating a couple of properties of quadratic operads.

Proposition 5 A quadratic operad as in Definition 1 is Koszul if and only ifits operadic
suspension sP is Koszul, i.e. the operadic suspension preserves Koszulness.

Proof Assume that P is Koszul. This, by definition, means that the map p : D(P) —
P' is a homology isomorphism. Since the operadic desuspension obviously preserves
homology isomorphisms, the desuspension of p,

s lp:sTIDP) - sTH(PY 3)
is ahomology isomorphism, too. Expanding the definition of the dual bar construction,

one readily sees that the properties of the operadic (de)suspension stated in Proposition
3 imply that
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(Non-)Koszulness of operads 943

s~ 'D(P) = D(sP)

Combining this isomorphism with (3) and (2), we obtain a homology isomorphism
D(sP) — (sP)', which coincides with the canonical map for the quadratic operad
sP. This shows that s’P is Koszul. To prove that the Koszulness of s P implies the
Koszulness of P, all one needs to do is to reverse the steps of the proof of the above
implication. O

Observe that quadratic operads P as we introduced them at the beginning of this
section have the properties that P(1) = k and that P(a) is finite-dimensional for each
a > 1. This means that they are admissible in the sense of [9, (3.1.5)]. Therefore, all the
properties of the dual bar construction D(—) proved in [9] apply to our case. Namely,
the contravariant functor D(—) preserves homology isomorphisms [9, Theorem 3.2.7b]
and the canonical map D (D(P)) — P is a homology isomorphism. We also have the
following extension of [9, Proposition 4.1.4a] to the non-binary case, see also [14,
Proposition 7.4.4].

Proposition 6 A quadratic operad P is Koszul if and only if so is P*, i.e. the quadratic
duality preserves Koszulness.

Proof A verbatim transcription of the corresponding statement of [9]. Suppose that P
is Koszul and let p : D(P) — P' be the canonical map. One then has the composition

D) 22 D(DP)) > P

which is, due to the properties of the dual bar construction recalled above, a homology
isomorphism. It is immediate that this composition coincides with the canonical map

D(P) — P' for P'. So the Koszulness of P implies the Koszulness of P*. The opposite
implication is obtained by applying the above arguments to P' instead of P. O

The Poincaré or generating series of a graded operad Py, = {Py(a)},>1 with finite-
dimensional components is defined by

1
gp(0) =D —x(P@),

a>1

where x (P(a)) denotes the Euler characteristic of the graded vector space Py (n),

X(P(@) := > (=) dim(P;(a)).

1

Recall that each operad P with P(1) = k admits a minimal model, unique up to
isomorphism [24, I1.3.10]. This is, by definition, a homology isomorphism (P, 0) Z
(I'(M), 0) from the free operad I' (M) on a collection M = {M (a)},>2, equipped with
a differential 9, to the operad P with the trivial differential. The minimality requires
that (M) consists of decomposable elements of the free operad I" (M). The following
proposition relates the generating series of P to the generating series of the collection
of generators of its minimal model.
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944 M. Markl, E. Remm

Proposition 7 Let P be an arbitrary operad with P(1) = Kk and finite-dimensional

pieces. Let (P, 0) Z (C'(M), 3) be its minimal model. The Poincaré series gp(t) of
P is related to the generating function

1
gu(0) = —t+ 3 —x(M@)

a>2

of the X-module M = {M (a)},>2 by the functional equation

gp(—gm@)) =1t. “)
In other words, gy (t) is the formal inverse of gp(t) taken with the opposite sign.

Proof This proposition has been known to experts for many years; a standard homo-
logical proof is referred to e.g. in [3, Remark 2.3]. An interested reader may find
a detailed self-contained proof which is a modification of the proof of [9, Theorem
3.3.2] in the preprint version [21] of the present paper. O

The following important criterion of Koszulness, which is a verbatim generalization
of [9, Theorem 3.3.2], follows easily from Proposition 7.

Theorem 8 If a quadratic operad P is Koszul, then its Poincaré series and the
Poincaré series of its dual P* are tied by the functional equation

gp(—gp(—n) =1t ®)

Proof 1f P is quadratic Koszul, then its minimal model is isomorphic to the dual bar
construction D(P") of its Koszul dual P'. The dual bar construction is, as a graded

. = —2 ol N# .
operad, generated by the X-collection | sP* = {197~ P*(a)"}4>2. So, in the Koszul
case

gm0 = g s (1) = g (1),

which, substituted in (4), gives (5). O

Formula (5) can be obtained by taking y := —1 in [14, Theorem 7.5.1]. On the
other hand, it is easy to show that for quadratic operads generated by operations of
the same arity, (5) implies the formula of [14, Theorem 7.5.1] for arbitrary y, so the
Koszulity test provided by [14, Theorem 7.5.1] is not stronger than ours.

Let us close this section with another criterion for Koszulness. Denote by I'2(M)
the subcollection of I"(M) spanned by expressions with precisely two instances of
elements of the generating collection M or, equivalently, by M-decorated trees with
two vertices. We say that the minimal model (I'(M), 9) of P is quadratic if 9(M) C
r'2(M).

Fact 9 A quadratic Koszul operad has a quadratic minimal model.
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(Non-)Koszulness of operads 945

Indeed, if P is Koszul, by Proposition 6 so is P'. This, by definition, means that
the natural map D(P') — P is a homology isomorphism, therefore it is a quadratic
minimal model of P.

We are aware that Fact 9 is a very simple-minded Koszulness test. Yet, we will see in
Sect. 6 that the non-Koszulness of the operad%for anti-associative algebras can be
proved by showing that it does not admit a quadratic minimal model. It is also possible
that the non-Koszulness of the operads #.Ass’; introduced in the following section can
be, for n > 8 and d odd, established using Fact 9, while the Ginzburg—Kapranov test
(Theorem 8) may not be determinative. See also a discussion in [22].

3 Four families of n-ary algebras

We introduce four families of quadratic operads and describe their Koszul duals.
These families cover most of examples of ‘n-ary algebras’ with one operation without
symmetry which we were able to find in the literature.

Let V be a graded vector space, n > 2, and u : V®" — V a degree d multilinear
operation symbolized by

We say that A = (V, w) is a degree d totally associative n-ary algebra if, for each
l<i,j=n,

i (11®i71 ®u® 11®n7i) = (u®j71 ®u® H®n7j) ,

where 1l : V — V is the identity map. Graphically, we demand that

jth input

for each i, j for which the above compositions make sense. Observe that degree 0
totally associative 2-algebras are ordinary associative algebras.

In the following definitions, I" (1) will denote the free operad on the X-module E,,
with

the regular representation k[ %, ] generated by ©  if a = n and

Eula) = 0 otherwise.
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946 M. Markl, E. Remm

Definition 10 We denote #.Ass’; the operad for totally associative n-ary algebras with
operation in degree d, that is,

tAssy =T (w)/(R; Ags1)

with p an arity n generator of degree d and
Ry Assn :=Span{uoi,u—uo]~ w, fori, j = 1,...,n}.

We call A = (V, w) adegree d partially associative n-ary algebra if the following
single axiom is satisfied:

n

z(_l)(H*l)(nfl)M (11®i71 Qu® 11®n7i) —0. (6)

i=1

Degree 0 partially associative 2-ary algebras are classical associative algebras. A
more interesting observation is that degree (n — 2) partially associative n-ary algebras
are the same as Axo-algebras A = (V, w1, na, ...) [15, Sect. 1.4] which are “meager”
in that they satisfy u; = 0 for k # n. Symmetrizations of these meager Ao-algebras
are Lie n-algebras in the sense of [12].

Definition 11 We denote p.Ass’; the operad for partially associative n-ary algebras
with operation in degree d. Explicitly,

pAssl = F(M)/(Z(_l)(i+l)(n—l)'u o M)

i=1
with p a generator of degree d and arity n.

It follows from the above remarks that 1. Assg = p.Assg = Ass, where Ass is the
operad for associative algebras. We are going to introduce the remaining two families
of operads. Recall that s denotes the operadic suspension and s ! the obvious inverse
operation.

Definition 12 We define tjél;;Z =stAssy_,., and pjél?gz = s_lpAssZJrn_l.

We leave as an exercise to verify that t Ass’;-algebras are structures A = (V, u),
where i : V" — V is a degree d linear map satisfying, foreach 1 <i, j <n,

(—1)i D, (H®i—l Qu® H®n—i) — (=1)/n+D (H®j—l Qu® H®n—j) .

Likewise, pAss’j-algebras are similar structures, but this time satisfying

n
> (11@1'*1 Qu® 11®’H‘) =0.
i=1
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(Non-)Koszulness of operads 947

Definition 13 Let Ass 1= t//Ts?% = p//ts?(z). Explicitly, /./Ts?-algebras are structures
A = (V, u) with a degree 0 bilinear operation i : V ® V — V satisfying

pp@)+pule@u) =0

or, in elements
a(be) + (ab)e =0, @)

for a, b, c € V. We call these objects anti-associative algebras.

Anti-associative algebras can be viewed as associative algebras with the associativ-
ity taken with the opposite sign which explains their name. Similarly, t.Ass% = p.Ass%-
algebras are associative algebras with operation of degree 1. The corresponding, essen-
tially equivalent, operads are the simplest examples of non-Koszul operads, as we will
see in Sect. 5. The proof of the following proposition is an exercise.

Proposition 14f3£ each n/;/Z and d, (t.As/sg\/)I = p.és\s/'idﬂfz, (p.AssZ)! =
tAss™ oo (tAssZ)! = pAss” ;,,_, and (pAssg)! =t Ass" ;. o

4 Sundry facts about n-ary algebras

In this section we discuss two constructions (galgalim and higher associahedra) that, in
some sense, generalize classical Stasheff’s associahedra to the realms of partially resp.
totally associative n-algebras. We also show how galgalim encode some properties
of free partially associative algebras. Necessary facts about the associahedra can be
gained from [24, I1.1.6] or from the original source [25].

Galgalim. This part is devoted to degree O partially associative n-algebras, i.e. to
algebras over the operad p.Assg. The fact that, for n > 3, their defining axiom (6) has
more than two terms rules out the existence of an analog of the Stasheff associahedra —
the edges of such a hypothetical polyhedra ought to have more than two end-points. One
can, however, still draw some graphs that visualize the relations among the axioms,
similar to the Lie-hedron constructed in [23]. Their nature is somehow dual to the
nature of the associahedra in that their vertices are indexed by the defining relations,
while their edges are labelled by the iterated structure operations.

Let us start with the case n = 2, when p.Assj is the operad for associative algebras,
so the associahedra actually exist. There are five ways to apply a binary operation to
four elements:

((ee)e)e, (o(ee))e, (0e)(ee), o((ee)e), o(e(ee)). (8)

There are five relations between these expressions obtained by one instance of the
axiom (6) which is, for n = 2, the associativity, namely
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948 M. Markl, E. Remm

(e0)(00) — o(0(00)) =0 which we denote ee(ee),

o(o(0e)) —o((00)e) =0 which we denote e(eee),

o((e0)e) — (o(00))e =0 which we denote e(ee)e, ©)
(o(00)) @ —((00)0)e =0 which we denote (eee)e, and

((e0)e) @ —(00)(00) =0 which we denote (ee)ee.

We call these relations elementary. Observe that each symbol listed in (8) appears
in precisely two elementary relations of (9). So we may draw a graph with edges
labelled by the five symbols in (8) which share a common vertex if and only if their
labels appear in the same relation of (9). The common vertex emerging in this way
will be labelled by this relation. We get a graph with five vertices and five edges:

o(e0)e

(o(e0))e o((e0)e)

(s00)e o(e0e)

(10)

((e0)0)e \’ Y, o(o(00))

(e0)oe ee(00)

(e0)(00)
which is dual to the 1-skeleton of the Stasheff pentagon K4 indicated by the dotted
lines.

For n = 3, there are 12 ways to multiply 7 elements by a ternary operation:

((e0e)ee)ee, (o(0e)e)ee, (ee(00e))oe, o((e0e)ee)e,
o(o(ee)e)e, o(ee(00e))e, eo((0ee)ee), oe(e(00)e)e, (11

oo(ee(00e)), (00e)(00e)e, (00e) e (e0e), o(0ce)(0oe)

and 8 elementary relations between these terms obtained by one instance of the partial
associativity (eee)ee | e(eee) ¢ |- ee(eee), namely

(1] denoting (ee(eee))ee + e(e(eee)e)e +oo((e0e)oe) =0,

(2] denoting ee((eee)ee) + eo(e(eee)e) + eo(ee(eee)) =0,

(3] denoting e(eee)(eee) + (eee)e(eee) | ee(ee(eee)) — 0.

(4] denoting (e(eee)e)ee |+ e((eee)ee)e + o (e0e)(eee) = 0,

(5] denoting e((eee)ee)e | e(e(eee)e)e | o(ee(eee))e =0,

(6] denoting (eee)(eee)e + e(ee(eee))e +ee(e(eee)e) =0,

(7] denoting ((eee)ee)ee + (eee)e(eee) | (e0e)(eee)e — 0, and
(8] denoting ((eee)ee)ee | (e(eee)e)ee + (ee(eee))ee = (),

Each element of (11) again appears in precisely 2 elementary relations. The corre-

sponding graph with 12 edges indexed by expressions (11) and 8 vertices labelled by
elementary relations is the wheel with eight spikes:
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(Non-)Koszulness of operads 949

(12)

Observe that elementary relations have a left-right mirror symmetry: (1] and (5] are
self-symmetric, while the mirror image of [2] is (8], the image of [3] is[7] and the image
of [4] is [6]. This symmetry is reflected by the left-right symmetry of (12).

For n = 4, there are 22 ways of applying a 4-ary operation to 10 elements, and 11
elementary relations among these elements. The resulting graph is shown in Fig. 1.
The 5th galgal (case n = 5) has 14 vertices and 35 edges, its portrait is given in Fig. 2.
We call these figures galgalim (plural of galgal), the Hebrew for wheel.

Galgalim can be used to analyze the structure of free n-ary algebras. Let us, for
instance, investigate possible linear dependence of the five elementary relations (9)
among binary bracketings (8) of five variables. We need to solve

aj e(ee)e + ) e(eee) + a3 ee(ee) + a4 (ee)ee + a5 (eee)e =0, (13)

for some scalars ay, ..., as € k. If we view the coefficients ap, . . ., as as decorations
of the corresponding vertices of the 2nd galgal (10), the above relation is obviously
satisfied if and only if the decorations of vertices connected by an edge agree. Therefore
(13) holds if and only if

ay = apy = a3z = a4 = as.

Fig. 1 4th galgal G*
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950 M. Markl, E. Remm

Fig. 2 5th galgal G° (the
central point is not a vertex)

The last condition is fulfilled for instance by (ai, ..., as) = (1,..., 1), so the five
elementary relations (9) are not linearly independent. This is of course elementary and
well-known.

Let us proceed to the ternary case. We have eight elementary relations which we

denote, to save the space, (1], .. ., [8]. We consider the equation
ap+---+ag8l =0, (14)
with some scalars ay, ..., ag € k which we again view as decorations of the vertices

of the 3th galgal G3. Since all the terms in the elementary relations have the + signs,
(14) is satisfied if and only if the decorations of two vertices connected by an edge
differ by the sign. The presence of closed paths of odd lengths excludes this possibility.
For instance, one has the circle [1]—{2]—{3]—{4]—{5]—{11, so one requires

+a) = —ay = +a3 = —a4 = +as = —ay

which implies a; = —ajy, therefore a; = 0 thus g; = O forall 1 < i < 5. The
vanishing of the remaining coefficients in (14) can be established in the same way.
We conclude that elementary relations for ternary partially associative algebras are
linearly independent. Observe that we did not need to know the labels of the vertices
and edges of the 3rd galgal explicitly, its shape was enough to establish the linear
independence of the elementary relations. We will see in Remark 29 how G helps to
understand free partially associative 3-algebras.

For n = 4, axiom (6) and thus also the elementary relations acquire nontrivial signs.
Each half-edge emerging from a vertex of the 4th galgal G* is therefore decorated
by the sign of the corresponding term in the relation labelling the vertex. Explicit
calculations show that this decoration obeys the rule
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(Non-)Koszulness of operads 951

meaning that the antipodal half-edges acquire the same sign. It also turns out that
the decorations possess the rotational symmetry, therefore the decorations of all half-
edges are determined by the decoration of the half-edges adjacent to the upper vertex
shown in Fig. 1. It is immediate to see that two half-edges of the same edge bear the
opposite signs. Therefore the elementary relations are not linearly independent, but
they, as in the binary case, sum up to zero.

All terms of axiom (6) and therefore also all terms of the elementary relations for

5-ary algebras have the 4 sign. As in the ternary case, their linear independence is
implied by the existence of paths of odd length in the Sth galgal G°. We leave as
an exercise to find such paths. The conclusion is that elementary relations for 5-ary
degree O partially associative algebras are linearly independent.
Higher associahedra. Degree 0 totally associative n-algebras, i.e. algebras over the
operad t Assj, are, for n > 1, straightforward generalizations of associative algebras.
Observe, for instance, that the operad tAssg is, for each n > 2, the linearization of an
operad living in the monoidal category of sets and that this property singles degree 0
totally associative algebras out from the four families of n-ary algebras introduced in
Sect. 3.

In [22] we conjectured the existence of an analog K" = {K"'(a)},>1 of the Stasheff
associahedra for an arbitrary n > 2. We also constructed some initial pieces of the
hypothetical 3-associahedra /C3. It turned out that the inductive construction contained
some choices. For example, in arity 7 we found the following three combinatorially
distinet K3(7)’s:

They are convex 2-dimensional polyhedra with twelve vertices, sixteen edges and
five 2-dimensional faces. We refer to [22] for more details.

5 Koszulness: the case study

This section is devoted to the following statement organized in the table of Fig. 3.

Theorem 15 Let n < 7. Then the operad t Ass’; is Koszul if and only if d is even.
The operad pAss'y is Koszul if and only if n and d have the same parity. The operad

I%Z is Koszul if and only if n and d have different parities. The operad pﬁg is
Koszul if and only if d is odd.
The operads t Ass’y with d even, pAss); with n and d of the same parity, t Ass’)

with n and d of different parities, and pjél?;g with d odd, are Koszul for alln > 2.

The Koszulness part (“yes” in the table of Fig. 3) will follow from [13] and relations

between the operads t.Aw , pAss?, t Ass" » and p.As sy, see Proposition 17. The non-
Koszulness part (“no” in F1g 3) will, for n < 7, follow in a similar fashion from
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Proposition 23. We do not know how to extend our proof of Proposition 23 forn > 8,
we therefore put question marks to the corresponding places in Fig. 3. See also Remark
24 and the first problem of Sect. 8.

In particular, the operadsji;;and tAss% = pAss% are not Koszul. Let us formulate
useful

Lemma 16 Let Py be one of the operads above. Then Py is Koszul if and only if P
is Koszul, that is, only the parity of d matters.

Proof There is a ‘twisted’ isomorphism

0 :Ph > Ph,, (15)

i.e. a sequence of equivariant isomorphisms ¢(a) : Pj(a) — P} 4o(a@),a = 1, that
commute with the o;-operations such that the component ¢ (k(n — 1) + 1) is of degree
2k, for k > 0.

To construct such an isomorphism, consider an operation u’ of arity n and degree
d, and another operation p” of the same arity but of degree d + i. We leave as an
exercise to verify that the assignment /' — " extends to a twisted isomorphism
w: () — (") if and only if i is even.

LetP; = T'(1))/(R") and Py, = T'(n”)/(R"). It is clear that the twisted isomor-
phism w : T'(u') — T'(u”) preserves the ideals of relations, so it induces a twisted
isomorphism (15). A moment’s reflection convinces one that ¢ induces similar twisted
isomorphisms of the Koszul duals and the bar constructions. This, by Definition 4,
gives the lemma. O

Proposition 17 The operads marked “yes” in the tables of Fig. 3 are Koszul.

n<7 n>7
n even| n odd |n even| n odd
t Ass™ d even| Yyes yes yes yes
d
dodd| mo no ? ?
— d even| no yes ? yes
tAss)
dodd | yes no yes ?
d even| Yyes no yes ?
pAssy
dodd| mno yes ? yes
—— |deven| no no ? ?
pAssy
dodd | yes yes yes yes

Fig.3 Koszulness of the operads . Ass”}, pAss’, t Ass’; and p.Ass’}. “Yes” means that the corresponding
operad is Koszul, “no” that it is not Koszul
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Proof As observed in [13, Sect. 7.2], the operads ¢t Ass;; admit for all n > 2 a PBW
basis? for the lexicographic order, so they are Koszul by [13, Theorem 6.6] (see also
[10] for the case n even and d = 0). So, by Lemma 16, the operads t.Ass’;l are Koszul
for all even d and n > 2, which gives the four “yes” in the first row of the table in
Fig. 3.

The “yes” in the 3rd row follow from the “yes” in the Ist row, the fact that an
operad is Koszul if and only if its dual operad is Koszul proved in Proposition 6, and
the isomorphism ( pAsss)! = tAss” ;. ,_, established in Proposition 14. The “yes”
in the remaining rows in Fig. 3 follow from the “yes” in the 1st and the 3rd rows, and
Proposition 5 by which the suspension preserves Koszulness. O

Remark 18 Let us describe explicitly the lexicographic order and the PBW basis of
t Ass(, mentioned in the proof of Proposition 17. We will use it later in the proof of
Theorem 26.

The free operad I" (i) generated by an operation w of arity n and degree O has a
linear basis formed by rooted (= directed) planar trees whose vertices have n incoming
edges, see e.g. [24, I1.1.5] for the terminology. Let T be such a tree with u leaves. We
associate to it the sequence of natural numbers ny = (n1, ..., ny), where n; is, for
1 <i < u, the number of vertices on the edge-path connecting the ith leaf of 7" with
its root.

Let 77, T” be two trees as above. If 77 has more leaves than T we put T’ > T”.
If the numbers of leaves agree, we put T’ > T” if and only if n7- > ny~ in the usual
lexicographic order. This order is a particular case of the order defined in [13, Sect.
3.3].

A PBW basis of #.Ass;; compatible with the above order consists of trees whose
all internal edges are the leftmost incoming edges of their terminal vertices, i.e. they
look as the edge e in

(16)

In terms of operations, the PBW basis of 7 Ass{ consists of the iterated compositions
(- (uorp)or---)or .

This PBW basis is generated, in the sense of [2, Theorem 3], by the Grobner basis of
t Ass{) for the reversed order® given by

moppu—porp, I <p=<n.

The above bases are clearly PBW resp. Grobner bases for t.Ass’, with arbitrary
evend.

2 Abbreviating Poincaré-Birkhoff-Witt.

3 The authors of [2] use different convention, so we need to reverse the order to get the expected result.
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The “no” entries in Fig. 3 will be established using the Ginzburg—Kapranov criterion
(5). Our first task will therefore be to describe the Poincaré series of the family 7.4ss
which generates, via the duality and suspension, all the remaining operads.

Lemma 19 The generating function for the operad t Ass'; is

t
—_— ifdi , and
8rass () =1 1 =11 Hdis even, an (17
t—t" 4+t ifdisodd.

Proof The components of the operad ¢.Ass’; are trivial in arities different from k(n —

1) + 1, k > 0. The piece tAss)j(k(n — 1) + 1) is generated by all possible o;-
compositions involving k instances of the generating operation w, modulo the relations

mwojpu—pojpu, fori,j=1,...,n (18)
which enable one to replace each u o; w,2 <i < n,by oy ou.
If the degree d is even, the operad 1 Ass’) is evenly graded, so the associativity [17,

p. 1473, Eqn. (1)] of the o;-operations does not involve signs. Therefore an arbitrary
o;-composition of k instances of u can be brought to the form

N := (- ((woy p)or w)oy---)op W
We see that t Ass” (k(n — 1) 4 1) is spanned by the set {n 0 0; 0 € Zgu-1)+1}, 50
dim(t Assly(k(n — 1) + 1)) = (k(n — 1) + 1)!

and, by definition,

t

k(n—1)+1

glASSZ(t) = Zt (n—1)+ = m,
k>0

which verifies the even case of (17).
The odd case is subtler since the associativity [17, p. 1473, Eqn. (1)] may involve
nontrivial signs. As in the even case we calculate that

dim(t Ass’y(k(n — 1) + 1)) = (k(n — 1)+ 1)! for k=0,1,2,  (19)

because these small arities do not require the associativity.

If kK > 3, we can still to bring each o;-composition of k instances of u to the form
of the ‘canonical’ generator 7, but we may get a nontrivial sign which may moreover
depend on the way we applied the associativity. Relation (18) implies that

(or pu)or = (onu)op (20)

@ Springer



(Non-)Koszulness of operads 955

in t Ass7(3n — 2). Applying (18) and the associativity [17, p. 1473, Eqn. (1)] several
times, we get that

(o pu)oru =pop (o) =pop(Uoy k) = (o) o = (lon L) on [k
=pop (Hop ) = oy (Uoy ) = (op 1) o2p—1 1
= (U o1 ) 02p—1 M. (21)

Since the degree of u is odd, the first line of the associativity [17, p. 1473, Eqn.
(1)] implies

(1 o1 ) o2p—1 = —( oy 4) o1 i

therefore (20) and (21) combine into

(Loyp)or p=—(or pu)og [

This means that (o ) o1 = 0sot Ass’(3n—2) = 0. Since t Ass”y (k(n—1)+1)
is, for k > 3, generated by tAss’;(3n — 2), we conclude that t Ass’y (k(n — 1) +1) =0
for k > 3 which, along with (19), verifies the odd case of (17). O

Remark 20 The Poincaré series of an operad P and its suspension s P are related by
gsp(t) = —gp(—1t). Lemma 19 thus implies that the generating series of the operad

tAssy = stAssy_, ., equals

t 4+ (=" +1>*~1 if n and d have the same parity, and

g,;;m/;(t) = { ;

T—(—ndmT if n and d have different parities.

We do not know explicit formulas for the Poincaré series of p.Ass) and pAss)
except in the case n = 2 when these operads coincide with the corresponding (anti)-
associative operads.

Example 21 Tt easily follows from the above calculations that, for the anti-associative
operad Ass, one has

Ass(1) =k, Ass(2) = Kk[Z;] and Ass(3) = k[Z3],

while Ass(a) = 0 fora > 4.

Let us return to our task of proving the non-Koszulness of the “no” cases in the
tables of Fig. 3. Our strategy will be to interpret (5) as saying that —gpi(—1) is a
formal inverse of gp(r) at 0. Since g%, (0) = 1, this unique formal inverse exists.
In the particular case of P = r.Ass}, with d odd, this means that —g, 45" vina D
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should be compared to a formal inverse of g, 4 s (1) = t—1"+1>"~1. A simple degree
count shows that g, 45" dina (t) is of the form

t— A" 4+ Apr?=1 — A33"=2 4 ... forneven and
4+ A" 4 Ayt 4 A33"=2 4 ... fornodd ’
for some non-negative integers A1, Az, As, ..., therefore —g, 45" dina (—t)isinboth

cases the formal power series
A" 4 Apt? T 4 AT (22)

with non-negative coefficients. If we show that the formal inverse of  — " + 12"~ ! is
not of this form, by Theorem 8 the corresponding operad #.Ass’; is not Koszul.

Example 22 The Poincaré series of the operad tAss% is, by Lemma 19,
gan ) =1 =12 +1.
One can compute the formal inverse of this function as
t4+ 2403 —4r — 145 =307 — 338 4557 4 ...

The presence of negative coefficients implies that the operad t.Ass% is not Koszul,
neither is the anti-associative operad Ass = rAss3 = s 1t Ass?.
Likewise, the Poincaré series of the operad t.Ass? equals

Gai O =11 +1°
and we computed, using Matematica, the initial part of the formal inverse as
t4+ 420 4407 4507 — 131 — 1478

The existence of negative coefficients again implies that the operad t.Ass? is not
Koszul. The formal inverse of

gt.Ass?(t) =1- t4 + t7
up to the first negative term is
t4 1307+ 11010 + 42013 415311 4+ 46910 + 690122 — 59671 + - - -

SO tAss? is not Koszul.

The complexity of the calculation of the relevant initial part of the inverse of
Zrassi (1) =t — 1" + 1?"=1 grows rapidly with n. We have, however, the follow-
ing:
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Proposition 23 For n < 7, the formal inverse of t — t" + t*"~! has at least one
negative coefficient. Therefore the operads t Ass; for d odd and n < 7 are not Koszul.

Proof The function g(z) := z — z" + z?"~! is analytic in the complex plane C. Its
analytic inverse g~!(z) is a not-necessarily single-valued analytic function defined
outside the points in which the derivative g’(z) vanishes. Let us denote by 3 the set of
these points, i.e.

3:={z€C; g'z) =0}

The key observation is that, for n < 7, the equation g’(z) = 0 has no real solutions,
3N R = ¢. Indeed, one has to solve the equation

d@=1—nz"142n-1z"2%=0 (23)
which, after the substitution w := z"~! leads to the quadratic equation
l—nw+Q2n—1Dw>=0

whose discriminant n2 — 81 + 4 is, forn < 7, negative.
Let f(z) be the power series representing the branch at 0 of ¢ () such that
f(0) = 0.1Itis clear that f(¢) is precisely the formal inverse of g(¢) at 0. Suppose that

f@) =z4+am® +a3z® +asz* +-- -,

with all coefficients as, a3, a4, . . . non-negative real numbers. Since 3 # ¢ and obvi-
ously 0 ¢ 3, the radius of convergence of f(z) at 0, which equals the radius of the
maximal circle centered at 0 whose interior does not contain points in 3, is some
number » with 0 < r < oo. Let 3 € 3 be such that |3] = r. Since all coefficients of
the power series f are positive, we have

lf@I = fU3h = f@r),

so the function f(r) must have singularity at the real point r € R, i.e. g’(z) must
vanish at r. This contradicts the fact that g’(z) = 0 has no real solutions. O

Remark 24 Equation (23) has, for n = 8, two real solutions, 3; = +/1/3 and 3, =
J/T/5. This means that the inverse function of z — z” 4+ z?*~! has two positive real
poles and the arguments used in our proof of Proposition 23 do not apply.

We verified Proposition 23 using Matematica. The first negative coefficient in
the inverse of ¢ — " + 2"~1 was at the power 7 forn = 5, at 116! for n = 6, and
at t'7! for n = 7. For n = 8 we did not find any negative term of degree less than
10,000. It is indeed possible that all coefficients of the inverse of r — 8 + 115 are
positive.

Proposition 23 together with the fact that the suspension and the !-dual preserves
Koszulness (Propositions 5 and 6) imply the “no” entries of the tables in Fig. 3 for
n<T.
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6 Cohomology of algebras over non-Koszul operads: an example

In this section we study anti-associative algebras introduced in Definition 13, i.e. struc-

tures A = (V, n) with a degree-0 bilinear anti-associative multiplication p : Vel y,

We describe the ‘standard’ cohomology H %/ (A; A)g of an anti-associative algebra
S

A with coefficients in itself and compare it to the relevant part of the deformation

cohomology H *;‘\/ (A; A) based on the minimal model of the anti-associative operad
SS

:@; Since/.A?s?is, by Theorem 15, not Koszul, these two cohomologies differ. While
the standard cohomology has no sensible meaning, the deformation cohomology coin-
cides with the triple cohomology [5,6] and governs deformations of anti-associative
algebras.

Examples Anti-associative algebras, as algebras over a non-Koszul operad, should
possess a lot of peculiar properties. Therefore, due to the ‘anthropic principle,” one
can hardly expect to find examples of these structures in Nature. Observe, however, that
there still are ‘natural’ examples of the anti-associativity. For instance, the standard
basis elements {1, eq, ..., e7}, see e.g. [1], of the octonions (also called the Cayley
algebra) satisfy

(eiej)ex = —ei(ejer),

whenever e;e; # tep and 1 <1, j, k < 7 are distinct.

Since Ass(a) = 0 for a > 4, the product of four elements in an arbitrary anti-
associative algebra is trivial. Anti-associative algebras are therefore always 3-step
nilpotent. Below we classify, for k < 3, isomorphism classes of anti-associative struc-
tures on the k-dimensional vector space V := Span(ey, ..., ex).

Case k = 1. The only 1-dimensional anti-associative algebra is the trivial one, with
ey ey = 0.

Case k = 2. In dimension 2, there are two non-isomorphic anti-associative algebras:
the trivial one, and the one defined by ¢; - e = e, and the remaining products of the
basis elements trivial.

Case k = 3.Indimension 3, we distinguish two subclasses of anti-associative algebras.
Algebras in the first subclass satisfy v - v = 0 for all v € V. There are two non-
isomorphic algebras in this subclass, the trivial one, and the one with ey -e» = —ep-e; =
e3 and the remaining products of the basic elements trivial.

Algebras in the second subclass contain some v with v - v # 0. Algebras with this
property are either isomorphic to the one given by:

ep-ep =ey,
€1 -6 = —ey- e =e;3,

which happens to be the free anti-associative algebra on one generator, or to an algebra
belonging to one of the following two 2-dimensional families:
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e|-ep=¢e
PO er-e; =e,
el -e3 =aep,
e|-e3 =aep,
e3-e| = bey, B
e3-e; = be,
€3 -e3 = ey,

where a, b € k.

Let us return to the main construction of this section. For each algebra over a
quadratic operad P, one has the ‘standard’ cohomology H?, (A; A)s defined as the
cohomology of the ‘standard’ cochain complex

4

1 84 2 8% 3 8% 4 g
Cp(A; At — Cp(A; A)st —> Cp(As; A)st —> Cp(As A)st —> -+

in which C%,(A; A)g := Hom(P'(p) ®s, VEP, V), p > 1, and the differential 87 is
induced from the structure of P' and A, see [6, Section 8] or [24, Definition 11.3.99].

Since for non-Koszul operads the ‘standard’ cohomology has no sensible meaning,
one needs to use the deformation (also called, in [16], the cotangent) cohomology
based on the minimal model of P. Recall [17, p. 1479] that the minimal model of an
operad P is a homology isomorphism

(P,0) <~ (I'(M), d)

of dg-operads such that the image of d consists of decomposable elements of the
free operad I' (M) (the minimality). It is known [24, Section I1.3.10] that each operad
with P(1) = k admits a minimal model unique up to isomorphism. The deformation
cohomology H ’;D (A; A) is the cohomology of the complex

1 2 3 4
Ch (A1 A) 2> Ch (A A) = Ch (A A) = Ch (A A) = -+
in which Cj, (A; A) := Hom(V, V) and
Ch (A A) = Hom(@D,=, Mp-2(q) ®x, V¥, V), forp>2.

The differential §* is defined by the formula which can be found in [18, Section 2] or
in the introduction to [19]. If P is quadratic Koszul, the dual bar construction of P" is,
by [17, Proposition 2.6], isomorphic to the minimal model of P, thus the standard and
deformation cohomologies coincide, giving rise to the ‘standard’ constructions such
as the Hochschild, Harrison or Chevalley—Eilenberg cohomology.

Neither H”, (A; A)s nor H, (A; A) have the Oth term. A natural H 0 exists only
for algebras for which the concept of unitality makes sense. This is not always the
case. Assume, for example, that an anti-associative algebra A = (V, ) has a unit, i.e.
and element 1 € V such that la = al = qa, for all @ € V. Then the anti-associativity
(7) with ¢ = 1 gives ab + ab = 0,so ab = 0 foreacha,b € V.

Let us describe the standard cohomology H *]v (A; A)g of an anti-associative
SS

algebra A = (V, ). The operad;\s\_gis, by Proposition 14, self-dual and it follows
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from the description of /.A?s? = //ts? given in Example 21 that H *:4 (A; A)g 1s the
SSs
cohomology of

33
T W A>st—“>c —(A; A>st—*‘>c - (4 Ay 50202 ...

in which c%, (A; A):==Hom(V®? V) for p=1,2,3,andall higher c%, (A; A)’s
SS SS

are trivial. The two nontrivial pieces of the differential are basically the Hochschild

differentials with “wrong” signs of some terms:

81 (p)(a, b) == ap(b) — p(ab) + p(a)b, and
82(f)a,b,c) == af(b,c) + flab,c) + f(a, bc) + f(a, b)c,

for ¢ € Hom(V,V), f € Hom(V®?%, V) and a, b, ¢ € V. We abbreviated ula,b) =
ab, u(a, ¢(b)) = ap(b), &c. One sees, in particular, that H (A A)g = 0 for
p=4

Let us describe the relevant part of the deformation cohomology of A. It can be
shown that Ass has the minimal model

(15, o) L), 9)

with the generating ¥-module M = {M(a)},>2 such that

M (2) is generated by a degree 0 bilinear operation 2 : V@V — V,

— M (3) is generated by a degree 1 trilinear operation u3 : V&3 — V,

M(4) =0, and

M (5) is generated by four 5-linear degree 2 operations ,ué, ,u%, ,ug, ,ug VSV,

so the minimal model of ]iv?is of the form
(Ass, 0) < (F (Mz, 13, 45, U3, 143, 143, - ) : 8) :

Notice the gap in the arity 4 generators! We do not know the exact form of the pieces
M(a), a > 6, of the generating ¥-module M, but we know that they do not contain
elements of degrees <2. We can still, however, determine the Euler characteristic of
the generating X -module using Proposition 4.

Inverting the generating series g%(t) =t 41> 4 13, we read the Euler charac-

teristic of the X-module of generators of the minimal model of Ass as

x(M2) =1, x(M(3)) =—1, x(M(4)) =0, x(M(5)) =4,
x(M(6)) = —14, x(M(7)) =30, x(M(8)) = =33, x(M(9)) = =55
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The differential d of the relevant generators is given by:

d(u2) =0,

9(u3) == p2 o1 U2 + 12 02 K2,

A(ud) == (2 02 13) 04 o — (143 03 p2) 04 112 + (2 01 H2) 03 U3 — (U3 01 [42) 03 K2
+(u2 o1 u3) o1 2 — (13 o1 H2) o1 p2 + (2 o1 ©3) o4 U2 — (U3 02 U2) 04 2,

d(ud) 1= (u3 01 12) o1 k2 — (12 01 H3) o1 K2 + (L2 01 143) 03 1 — (143 02 [2) 03 K2
+(u2 02 u3) 03 2 — (43 03 42) 03 2 + (2 o1 ®2) 03 U3 — (U3 o1 U2) 04 K2,

3(#2) = (3 02 u2) o4 mo — (U2 02 u3) 02 2 + (U3 02 2) 02 2 — (2 01 M42) 02 U3
+(ua 01 p3) oz o2 — (201 u3) o1 ua + (2 01 H2) o1 43 — (U3 01 2) 02 (2, and

3(#?) = (13 01 u2) 03 mo — (U3 03 2) 03 2 + (2 02 3) 03 2 — (U3 02 U2) 03 U2
+(p2 o1 12) 02 13 — (2 01 U3) 02 U2 + (M2 01 (2) o1 ;3 — (U2 01 [43) 01 M.

One can make the formulas clearer by using the nested bracket notation. For instance,
o will be represented by (ee), 13 by (eee), ,L,Lg by (e0000)Z, U3 03 o2 by (e(ee)e),
&c. With this shorthand, the formulas for the differential read

d(ee) := 0,
d(eee) := ((e0)e) + (o(e0)),

3(00000)1 ;= (o(0e(00))) — (e0(e(0e))) + ((00)(00e)) — ((00)(00)e)
+(((e0)0e)e) — (((00)0)00) + ((e00)(ee)) — (o(00)(ee)),

3(00000)2 ‘= (((e0)0)0e) — (((e0)0e)e) | ((e0(0e))e) — (o(e(00))e)
t(e(e(00)e)) — (e0((00)0)) + ((e0)(000)) — ((00)e(e0)),

3(00000)3 = (o(00)(00)) — (o((00)00)) + (o((00)e)e) — ((o(000))e)
+((ee(00))e) — (((s0)e0)e) + (((s00)0)e) — ((e(ee))ee), and

3(00000)4 ‘= ((e0)(00)e) — (00((00)e)) | (o(o(00)e)) — (o(e(00))e)
+((e(e0e))e) — ((s(00)e)e) + (((e00)0)e) — (((e0)00)e).

Let us indicate how we obtained the above formulas. We observed first that the
degree-one subspace I"(u2, #3)(5)1 C I'(u2, 13)(5) is spanned by o;-compositions
of two w2’s and one i3, i.e., in the bracket language, by nested bracketings of five o’s
with two binary and one ternary bracket. These elements are in one-to-one correspon-
dence with the edges of the 5th Stasheff associahedron K5 shown in Fig. 4, see [24,
Section I1.1.6].

Let x, € I'(2, u3)(5)1 be the element indexed by an edge e of Ks. Clearly
d(x.) = xq+xp, Wherea, b are the endpoints of e and x,, x5, € I'(u2)(5)¢ the elements
given by the nested bracketings of five e’s with three binary brackets corresponding
to these endpoints. We concluded that the d-cycles in I'(uz, 3)(5)1 are generated
by closed edge-paths of even length in Kjs; the cycle corresponding to such a path
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Fig. 4 Stasheff’s associahedron
Ks

(o0(0(00))) ((00)(00e))

(o(00(00))) ((e0)(00)e)

(o(e0)(00)) (((e@)00)e)
((e00)(00))  (((e0)0)00)

Fig. 5 An closed edge path of length 8 in K5 defining B(M;)

P = (e1,e2,...,ey) being

Z (—1)*x.

1<i<2r

Examples of these paths are provided by two adjacent pentagons in K5 such as the
ones shown in Fig. 5.

There are also three edge paths of length 4 given by the three square faces of Ks,
but the corresponding cohomology classes have already been killed by the d-images
of the compositions u3 o; 3, i = 1,2,3. We showed that there are four linearly
independent edge paths of length 8 that, together with the three squares, generate all
edge paths of even length in K5. The generators u;, u%, ug, /“51 correspond to these
paths.

Also for a > 6 the 1-dimensional d-cycles in T"(u2, u3, ,u;, ug, ug, ug)(a)l are
given by closed edge paths of even length in the associahedron K, but one can show
that they are all generated by the squares and the images of the paths as in Fig. 5 under
the face inclusions K5 < K. Therefore (I" (w2, 13, u;, M%, ,ug, M‘S‘), d) is acyclic in
degree 1, so u;, ug, ug, u§ are the only degree two generators of the minimal model

of Ass.
The construction extends to a minimal model (I"(M), 9) of the operad Ass whose
differential is not quadratic. It is simple to show that there does not exist a minimal
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algebra (I'(M"), '), isomorphic to (I'(M), ), with a quadratic differential. Therefore
Ass does not admit a quadratic minimal model and its non-Koszulness follows not
only from the Ginzburg—Kapranov criterion, but also from Fact 9.

From the above description of the minimal model of Ass one easily gets the relevant
part

(AA)—)C (AA)—)C (AA)—>C (AA)

of the complex defining the deformation cohomology of an anti-associative algebra
A = (V, n). One has

- CL,(A A) = Hom(V, V)

- CL, (A; A) = Hom(V®2, V)

- c%g(A A) = Hom(V®3, V), and

- C474§ (A; A) = Hom(V®3, V)@&Hom(V®3, V)@Hom(V®>, V) Hom(VE3, V).

Observe that C’iv(A A)g = CL/(A A)forp=1,2,3, whlleC (A; A)

consists of 5- hnear maps. The d1fferent1al 87 agrees with 8% for p = 1, 2 whlle, for
g€ C (A A), one has

8(8) = (57(8). 83(8). 83(2). 83(2)),

where

5‘?(g)(a, b,c,d,e) :==ag(b,c,de) — g(a, b, c(de)) + (ab)g(c,d, e) — g(ab, cd, e)
+g(ab, c,d)e — g((ab)c,d, e) + g(a, b, c)(de) — g(a, bc, de),
SS(g)(a, b,c,d,e) = g((ab)c,d,e) — g(ab,c,d)e + g(a, b, cd)e — g(a, b(cd), e)
+ag(b,cd,e) —g(a, b, (cd)e) + (ab)g(c,d, e) — g(ab, c, de),
8§(g)(a, b,c,d,e) == g(a,bc,de) —ag(bc,d, e) + g(a, (bc)d, e) —a(g(b, c,d)e)
+g(a, b, cd)e — g(ab, c,d)e + (g(a, b, c)d)e — g(a(bc),d, e), and
82(g)(a, b,c,d,e) == glab,cd,e) — g(a, b, (cd)e) +ag(b,cd,e) — g(a, b(cd), e)
+(ag(b,c,d))e — g(a, bc,d)e + (g(a, b, c)d)e — g(ab, c, d)e,

fora, b, c,d, e € V. The following proposition follows from [16, Section 4].

*

Proposition 25 The cohomology H (A' A) governs deformations of anti-asso-

ciative algebras. This means that H I (A A) parametrizes isomorphism classes of
ss

infinitesimal deformations and H>—_ e (A; A) contains obstructions to extensions of
A}

partial deformations.
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7 Free partially associative n-algebras

In [10], A.V. Gnedbaye described free degree d partially associative n-algebras in
the situations when d = 0 and n was even. In this section we extend Gnedbaye’s
description of free p.Ass)j-algebras to all cases when d and n have the same parity.

Let pAss’; (V) be the free p.Ass’j-algebra generated by a graded vector space V.
It obviously decomposes as

pAssy(V) = @D pAssj(V),,

>0

where pAss;(V), C pAssy(V) is the subspace generated by elements obtained by
applying the structure n-ary multiplication u to elements of V [-times. For instance,
pAssi(V), =V and pAssly(V), = V&

Denote by 7,", 1 > 1, the set of planar directed (=rooted) trees with [(n — 1) + 1
leaves whose vertices have precisely n incoming edges (see [20, Section 4] or [24,
I1.1.5] for terminology). We extend the definition to / = 0 by putting 7' := {l}, the
one-point set consisting of the exceptional tree with one leg and no internal vertex.
Clearly, each tree in 7" has exactly [ vertices. For each [ there is a natural epimorphism

w: T x VEITDEL L Asst(V), (24)

given by interpreting the trees in 7" as the ‘pasting schemes’ for the iterated multi-
plication . More precisely, if T € 7, and vy, ..., vi(s—1)+1 € V, then

w(T x (v, ..., vl(n—l)+l)) € pASSZ(V)[

is obtained by decorating the vertices of T by w, the leaves of T by elements
U1, ..., Vu—-1)+1, and performing the indicated composition, observing the Koszul
sign rule in the nontrivially graded cases.

Let §' C 7, be the subset consisting of trees having the property that the leftmost
incoming edge of each vertex is a leaf. In other words, trees in S;' have no internal
edge as in (16). Since these trees correspond to the generators of partially associative
algebras considered by Gnedbaye in [10], we call them Gnedbaye’s trees. Therefore
Sy = Ty' = {I}, S} is the one-point set consisting of the n-corolla

and &) has n — 1 elements
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ithleaf’Zgién.

As we already mentioned at the beginning of this section, Gnedbaye described, in
[10, Proposition 12], free degree d partially associative n-algebras for d = 0 and n
even. We extend his result to the cases where n and d are of the same parity:

Theorem 26 Assume that n and d are of the same parity. Then the restriction (denoted
by the same symbol)

SRR L — pAssiy(V), (25)

of the epimorphism (24) is an isomorphism, for each | > 0.

Observe that, if the parities of d and n are as in the statement, the operad p.Ass?; is
Koszul by Theorem 15.

Proof [Proof of Theorem 26] Hoffbeck described in [13, Theorem 5.5] an explicit rule
that, from a PBW basis of a quadratic operad PP, produces a PBW basis of P*. We apply
Hoftbeck’s theorem to P = tAss}_,_,, in which case P = t Ass’; by Proposition
14. Under our assumptions, n —d — 2 is even so the PBW basis of tAss)_, , is
described in Remark 18. It is simple to apply Hoffbeck’s rule to show that|_|;., S} is
the corresponding PBW basis for p.Ass’;. This clearly implies our result. A detailed
self-contained proof of Theorem 26 independent of [13] can be found in a preprint
version [21] of the present paper. O

Theorem 26 gives a realization of free p.Ass’j-algebras in the Koszul case (n = d
mod 2) by putting

pAssh (V) = @gln « Y@ln=D+1
10

We leave as an exercise to describe the structure n-ary multiplication of p.Ass’ (V) in
this language, see [10].

Proposition 27 The Poincaré series of the operad p Ass’y is, in the Koszul case (with
n and d of the same parity), given by

8oy (1) = D (=DM A =D (26)
>0

where the coefficients (A} };>0 are defined recursively by Ay := 1 and

AT = Z A} Al forl > 1. (27)

0<ly .+ Ip<I—1
I+t 1 =I-1
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Proof One can easily check that the recursive definition (27) of the coefficients of
f@) =g pAss" () is equivalent to the functional equation

fo=r(1+En" o)
which in turn immediately implies that f (¢) is the unique formal solution of

gtAss'id+n72(_f(_t)) =1,

where the Poincaré series g; 4,5 P (#) is as in the first line of (17) because —d +n—2
is even. Since we are in the Koszul case, the above display means, by Theorem 8, that
f(¢) is the Poincaré series of (t.Ass" ; +n72)! = pAss’. This proves the proposition.

O

The description of the Poincaré series of p.Ass’; for n and d of the same parity

given in Proposition 27 implies that the Poincaré series of p/f—t\v?z for d odd equals

o _ _ 1\ pgn dn—=1)+1
8,7 =2 (=D Al :
=0

with {A?}lzo having the meaning as in (26).

Example 28 Using Matematica, we calculated initial values of the series {A? }i=0
as Aj =1, A} =1, A3 =2, A3 =5, A] = 14, A} = 42, A} = 132, A3 = 429,
A3 = 1,430, A] = 4,862, A3, = 16,796, &c.

Remark 29 1If n and d are of different parities, the map (25) of Theorem 26, while
always being an epimorphism, need not be a monomorphism. This means that there
may be “unexpected relations” in the free algebra p.Ass’; (V). Consequently, the vector
space

@Sln x V®l(n—1)+l
=1

associated to Gnedbaye’s trees cannot be equipped with a structure of partially asso-
ciative algebra generated by V = S} x V. For instance, while the dimension of S;’
equals 5, the dimension of pAss8(7) equals 7! - 4, so pAssg(V)3 has one copy of
V@7 less than S; x V®7. More concretely, it turns out that

V1 (1203(V4V506)) V7 + V1V2 (V3 (V4V5VE)VT) + V1V2(V3V4(V5VEVT)) = 0,
fOI‘Ul,...,U7 (S V,

in the free algebra p.Assg(V) and therefore also in every degree-0 partially associative
3-algebra. In terms of Gnedbaye’s trees,
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- + = 0. (28)

This relation can be read off the corresponding galgal in (12). To do so, decorate
the vertices of G> by + or — as

(29)

and take the sum of the corresponding elementary relations, with the above choice of
signs. Notice that endpoints of all edges in (29) differ by sign, except for the edges

(2]—3], 2]—6] and [5]6].

The sum of the elements of the free algebra corresponding to these edges must be
zero. It is is represented by Gnedbaye’s trees at the left hand side of (28).

We conclude that the map (25) has, forn = 3,d = 0 and / = 3, a nontrivial kernel.
The Poincaré series of p.AssS was calculated in [11] as

8 p s (D) =1+ 420 +47 +5° + 6! 485

The same phenomenon takes place also for n = 5. By choosing appropriate deco-
rations of the vertices of the 5th galgal G° depicted in Fig. 2, one can verify that the
equation

0 = v1(v2V3V4V5(V6V7V8VYV10)) V11 V12013 + V1V2(V3V4V5(V6VT7V8VIV10) V1 1) V12V13
+v1v2(V3V4V5V6(V7V8V9V10V1 1)) V12013 + V1 V203 (V405 (VeU7V8VIV10) VI 1 V12) V13
+v10203 (V40506 (V7V8 VI VIOV 1)V12) V13 + V1203 (V4V5V6V7 (V8 VOVIOV1V12)) V13
+v1v203v4 (V5 (VeV7V8VIV10) V11V12V13) + V120304 (V506 (V7USVOVIOV11)VI2V13)
+v1v203v4(V5V6V7 (V8 V9 V10V11V12)V13) + V1 V203V4(V5V6U7V8 (V9 V10V11V12V13))

holds for elements vy, ..., vi3 of any degree-0 partially associative 5-ary algebra. In
terms of Gnedbaye’s trees, the right hand side is represented by the sum
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We believe that the same explicit calculations can be performed for degree O partially
associative n-algebras with an arbitrary odd n.

8 Open problems

The first question which our paper leaves open is the Koszulness of the operads 7.Ass”
with d odd and n > 8. The method used in the proof of Proposition 23 does not apply
to these cases and indeed, our numerical tests mentioned in Remark 24 suggest that it
may happen that all coefficients in the formal inverse of  — " +12"~! are non-negative.
More about numerical tests related to n-ary algebras can be found in [22].

Even if this happens, it would not necessarily mean that the operad ¢ Ass?; is Koszul,
only that subtler methods must be applied to that case. For instance, one may try to
compare the coefficients of this formal inverse to the dimensions of the components
of the dual operad (tAssZ)!.

Understanding these components is, of course, equivalent to finding a basis for the
free partially associative algebras in the non-Koszul cases. This problem was solved,
in [11], for free pAssS—algebras; for n > 4 it remains open.

The last problem we want to formulate here is to find more about the minimal model
of the anti-associative operads .//4;; or even to describe it completely. As far as we
know, beyond the ‘obvious’ cases, no complete description of the minimal model of a
non-Koszul operad is known. Since Ass is one of the simplest non-Koszul operads, it
is the first obvious candidate to attack. A related task is to find as much as information
about minimal models of the remaining non-Koszul n-ary operads as possible.
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