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Abstract We show that the classifying space functor B : Mon — Top™* from the
category of topological monoids to the category of based spaces is left adjoint to the
Moore loop space functor Q' : Top™ — Mon after we have localized Mon with
respect to all homomorphisms whose underlying maps are homotopy equivalences
and Top™ with respect to all based maps which are (not necessarily based) homotopy
equivalences. It is well-known that this localization of Zop™ exists, and we show that
the localization of Mon is the category of monoids and homotopy classes of homotopy
homomorphisms. To make this statement precise we have to modify the classical
definition of a homotopy homomorphism, and we discuss the necessary changes. The
adjunction is induced by an adjunction up to homotopy B : HMon" = Top™ : Q'
between the category of well-pointed monoids and homotopy homomorphisms and
the category of well-pointed spaces. This adjunction is shown to lift to diagrams.
As a consequence, the well-known derived adjunction between the homotopy colimit
and the constant diagram functor can also be seen to be induced by an adjunction
up to homotopy before taking homotopy classes. As applications we among other
things deduce a more algebraic version of the group completion theorem and show
that the classifying space functor preserves homotopy colimits up to natural homotopy
equivalences.
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1 Introduction

Let Top denote the category of k-spaces, 7op™ the category of based k-spaces, and
Top® the category of well-pointed k-spaces. Recall that a space X is a k-space if
A C X is closed iff p~!(A) is closed in C for each map p : C — X where C is a
compact Hausdorff space, and that a space is called well-pointed if the inclusion of
the base point is a closed cofibration.

Let Mon denote the category of topological monoids and continuous homomor-
phisms, and Mon"™ and C.Mon the full subcategories of well-pointed, respectively,
commutative monoids. A monoid is canonically based by its unit.

We are interested in the relationship between Milgram’s classifying space functor
B : Mon — Top™ and the Moore loop space functor Q" : Zop™ — Mon (for explicit
definitions see Sect. 4).

The related question for commutative monoids is easily answered: it is well-known
that the classifying space BM of a commutative monoid is a commutative monoid
[16], so that we have a functor B : CMon — CMon. The usual loop space functor
induces a functor Q : CMon — CMon by defining the multiplication in QM by
point-wise multiplication in M. The category CMon is enriched over Zop™ in an
obvious way, and it is tensored and cotensored (for definitions see [6] or Sect. 3). The
cotensor MX of M € CMon and K € Top* is the function space with point-wise
multiplication. It is well-known that B(M) = M X § ! the tensor of M and S!. Since
— K K is left adjoint to (—)X we obtain:

Proposition 1.1 The functors
B :CMon = CMon : Q

form a Top™*-enriched adjoint pair.

In the non-commutative case there is no hope for a similar result. A candidate for
a right adjoint of the classifying functor

B : Mon — Top*

is the Moore loop space functor
Q' Top* — Mon,

but Q' does not preserve products. In fact, there is no product preserving functor
F : Top™ — Mon

such that F(X) >~ Q(X) for all X [5, Prop. 6.1].
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Homotopy homomorphisms 877

Remark 1.2 In [8] Fiedorowicz showed that the Moore loop space functor into a
different target category is right adjoint to what he called the Moore suspension functor:
let 7op*[R4] be the category whose objects are based spaces X together with a
continuous map p : X — R, (the non-negative real numbers) such that p~!(0) =
and whose morphisms are maps over R . Then

Q' : Top* — Top*[Ry], X (X'X,]),

where [ is the length function, has this Moore suspension functor as left adjoint.

The Moore loop space funtor Q' : Top* — Mon preserves products up to natural
homotopy. So one might expect it to be a right adjoint of B after formally inverting
homotopy equivalences. We will prove this in this paper.

We will have to localize our categories C, and it is a priori not clear that these
localizations exist. A common procedure is to define a Quillen model structure on
C such that the morphisms we want to invert are the weak equivalences in these
structures. The localization then is the homotopy category HoC associated with this
model structure.

There are two standard model structures on Zop: the structure due to Quillen [19]
whose weak equivalences are weak homotopy equivalences and whose fibrations are
Serre fibrations, and the structure due to Strgm [23] whose weak equivalences are
homotopy equivalences, whose fibrations are Hurewicz fibrations, and whose cofibra-
tions are closed cofibrations.

Although mainstream homotopy theory usually works with the Quillen model struc-
ture and the proofs of our results would be considerably shorter in this context (because
we could use the rich literature, in particular, the results of Fiedorowicz [8]), we choose
the Strgm setting because we share Puppe’s [18] point of view: “frequently a weak
homotopy equivalence is considered as good as a genuine one, because for spaces
having the homotopy type of a C W-complex there is no difference and most inter-
esting spaces in algebraic topology are of that kind. I am not going to argue against
this because I agree with it, but I do think that the methods by which we establish
the genuine homotopy equivalences give some new insight into homotopy theory”.
Moreover, there are spaces of interest which rarely have the homotopy type of a CW
complex such as function spaces and spaces of foliations, which account for a growing
interest in results in the Strgm setting.

So we call a based map in 7op* a weak equivalence if it is a not necessarily based
homotopy equivalence, and a homomorphism in Mon a weak equivalence if the
underlying map of spaces is a weak equivalence in Zop*. Let HoZop™ and HoMon
be the categories obtained from Zop™ respectively Mon by formally inverting weak
equivalences.

Theorem 1.3 The categories HoTop* and HoMon exist and the classifying space
functor and the Moore loop space functor induce a derived adjoint pair

HoB : HoMon = HoTop* : HoQ'
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378 R. M. Vogt

Remark 1.4 This contrasts the situation in the simplicial category: the loop group
functor G : SSets — SGroups from simplicial sets to simplicial groups is left
adjoint to the simplicial classifying space functor W : SGroups — SSets (e.g. see
[11, Lemma V.5.3]).

With our choice of weak equivalences the Strgm model structure on Zop lifts to
Top™* so that HoZop™ exists, but in contrast to the Quillen model structure, it is not
known that the Strgm model structure lifts to Mon (there is a model structure on Mon
whose weak equivalences are homotopy equivalences in Mon rather than homotopy
equivalences of underlying spaces; this follows from work of Cole [7] and Barthel and
Riel [1]).

In the construction of HoMon in the Strgm setting homotopy homomorphisms
between monoids come into play: a topological monoid can be considered as an
algebra over the operad Ass of monoid structures or as a topologically enriched
category with one object. The homotopy homomorphisms of this paper are based
on the enriched category aspect and describe “functors up to coherent homotopies”.
They were introduced for monoids by Sugawara [24] and extensively studied by Fuchs
[9]. Homotopy homomophisms of Ass-algebras were introduced in [4], and we will
indicate their relation to the ones considered in this paper in Sect. 2. An extension of
our results to arbitrary category objects in Zop may be of separate interest.

If we define a semigroup to be a topological space with a continuous associative
multiplication, an inspection of the definition shows that a homotopy homomorphism
f : M — N of monoids is nothing but a semigroup homomorphism WM — N
where W is a variant of the Boardman and Vogt [4] W-construction (not to be confused
with the functor W of Remark 1.4). If Sgp denotes the category of semigroups and
continuous homomorphisms then W : Sgp — Sgpis a functor equipped with a natural
transformation € : W — Id. The Boardman—Vogt W-construction W : Mon —
Mon and its associated natural transformation ¢ : W — Id are obtained from (W, &)
by factoring out a unit relation. In particular, for any monoid M there is a natural
projection &' (M) : WM — WM of semigroups such that (M) o &/(M) = g(M).

The lack of conditions for the unit is an indication that Sugawara’s notion of a
homotopy homomorphism is not quite the correct one. So we define unitary homotopy
homomorphisms from M to N to be monoid homomorphisms WM — N; those were
studied by Brinkmeier [3].

Composition of homotopy homomorphisms and their unitary versions is only asso-
ciative up to homotopy. To obtain genuine categories of monoids and (unitary) homo-
topy homomorphisms we modify both notions: a homotopy homomorphisms from M
to N will be a semigroup homomorphism WM — W N and a unitary one a monoid
homomorphism WM — W N. From a homotopy theoretical point of view this mod-
ification is not significant:

Proposition 1.5 If M, N are monoids and M is well-pointed and G, H are semigroups
then the maps

e(N)y : Mon(WM,WN) - Mon(WM, N)

8(N)s : Sgp(WG, WH) — Sgp(WG, H)
are homotopy equivalences.
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Homotopy homomorphisms 879

It is well-known that WM — M has the flavor of a cofibrant replacement of M
as known from model category theory provided M is well-pointed (e.g. see [2,26]).
So it is no surprise that the category of well-pointed monoids and homotopy classes
of unitary homotopy homomorphisms is the localization of Mon™ with respect to
its weak equivalences. If we want to construct HoMon we have to relax unitary
homotopy homomorphisms to homotopy unitary homotopy homomorphisms and the
corresponding statement holds. We will study these various notions of homotopy
homomorphisms in Sect. 2 in detail.

The lack of the appropriate Quillen model structure in some of our categories is
made up for by their topological enrichment with nice properties. This topological
enrichment allows us to prove stronger results. E.g. the restriction of Theorem 1.3 to
the well-pointed case is the path-component version of the following result.

Theorem 1.6 Let HMon" be the category of well-pointed monoids and unitary
homotopy homomorphisms. Then the classifying space functor and the Moore loop
space functor induce an adjunction up to homotopy

HMon" = Top"”.

In Sect. 3 we will introduce the necessary notions to make this precise. There we
will also recall basic facts from enriched category theory and show that topologi-
cally enriched categories with a class of weak equivalences which admit a cofibrant
replacement functor can be localized. We believe that these results are of separate
interest.

In Sect. 4 we prove Theorem 1.6 and related results and hence Theorem 1.3. In Sect.
5 we draw some immediate consequences of Theorem 1.3 and of the intermediate steps
in the proof of Theorem 1.6.

E.g. we obtain yet another but considerably shorter proof of a strong version of the
James construction.

Definition 1.7 A Dold space is a topological space admitting a numerable cover
{Uy; y € I'} such that each inclusion U,, C X is nullhomotopic.

A space of the homotopy type of a C W-complex is a Dold space. For more details
on Dold spaces see [20].

Proposition 1.8 1. If X is a well-pointed space and J X is the based free topological
monoid on X (the James construction), then BJX >~ X X.
2. If X is a well-pointed path-connected Dold space, then J X ~ QX X.

Part (2) was first proven in [25], shorter proofs can be found in [18,20].
We also obtain a new interpretation of the group completion theorem of a monoid
without any additional assumptions on the multiplication.

Definition 1.9 A topological monoid is called grouplike if it admits a continuous
homotopy inversion.

A standard example of a grouplike monoid is the Moore loop space €’ X of a space
X.
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880 R. M. Vogt

Theorem 1.10 Let M be a well-pointed topological monoid. Then there is a uni-
tary homotopy homomorphism juy : M — Q'BM, natural up to homotopy, hav-
ing the following universal property: given any unitary homotopy homomorphism
f : M — N into a grouplike monoid N there is a unitary homotopy homomorphism
f : QBM — N, unique up to homotopy, such that f o uy =~ f. (Here homotopy
means homotopy in the category, i.e. homotopy through unitary homotopy homomor-
phisms.)

From the intermediate steps of the proof of Theorem 1.6 we obtain the following
extension and strengthening of a theorem of Fuchs [9, Satz 7.7]

Proposition 1.11 /. If M and N are well-pointed monoids and N is grouplike then
B: Mon(WM,WN) — Top*(BWM, BWN)

is a homotopy equivalence.
2. If X is a well-pointed path-connected Dold space then W' : Top“(X,Y) —
Mon® (WQ'X, WQ'Y) is a homotopy equivalence.

The reader may object that Fuchs considers homotopy homomorphisms while
Proposition 1.11 addresses unitary homotopy homomorphisms. Since Fuchs only con-
siders well-pointed grouplike monoids and all his spaces are of the homotopy type of
CW-complexes the two notions are linked by

Proposition 1.12 Let M and N be well-pointed monoids and N be grouplike. Then
()" : Mon(WM, N) — Sgp(WM, N)

is a homotopy equivalence,

Section 6 deals with diagrams in topologically enriched categories M with weak
equivalences and a “good” cofibrant replacement functor. We first show that their
localizations with respect to maps of diagrams which are objectwise weak equiva-
lences exist. We then show that the well-known derived adjunction induced by the
colimit functor and the constant diagram functor is the path-component version of an
adjunction up to homotopy between the homotopy colimit functor and the constant
diagram functor. We believe that this is of separate interest, too. We then show that
the homotopy adjunction of Theorem 1.6 lifts to a homotopy adjunction between the
corresponding categories of diagrams. In contrast to strict adjunctions this is a priori
not clear, because the associated unit is natural only up to homotopy and hence does
not lift to diagrams. We apply this result to prove

Theorem 1.13 The classifying space functor B : Mon — Top™ preserves homotopy
colimits up to natural homotopy equivalences.

The path-component versions of most of our main results are more or less known if
we restrict to grouplike monoids. The paper extends these results to general monoids
and shows that they arise from stronger statements. Moreover, we show that a topo-
logical enrichment with good properties can make up for the non-existence of Quillen
model structures.
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Homotopy homomorphisms 881

2 Homotopy homomorphisms revisited
Sugawara [24] introduced the notion of a strongly homotopy multiplicative map
between monoids, which we will call a homotopy homomorphism or z-morphism,

for short.

Definition 2.1 A homotopy homomorphism, or h-morphism f : M — N between
two monoids is a sequence of maps

fo M xI" — N neN

such that (x; e M, t; € I)

fn(x07tl7xl’t25"'7tl‘l5xl1)
| fam1Gost, - X Xy e By Xp) ift; =0
ficixo, t1, oo xi—1) - fumi (X i1, .., X)) i =1

We call fy : M — N the underlying map of f.
If in addition fy(epy) = ey and

fﬂ('x07 tlv-xl’ t25 DR t}‘Z’xn)
fn—l(x17t27"-7xn) ifx0=€M
= f)’l*l(x()""7xi71’max(tiati+1)’xi+19""-xn) lf-xi =€eém
Su—1(x0, 1, .., Xp—1) ifx, =epy

whereey, € M andey € N arethe units, we call f aunitary homotopy homomorphism
or uh-morphism, for short.

Since an A-morphism does not pay tribute to the unit it does not seem to be the right
notion for maps between monoids. E.g. if we require fy to be a based map so that it
preserves the unit we would like the path

Sfi(xo,t,x1)

Solxo - x1) So(xo) - fo(x1)

to be the constant one, if x¢ or x is the unit. Unitary s-morphisms have this property.
Nevertheless, in the past one usually considered #-morphisms because the additional
conditions for uh-morphisms make it harder to work with them.

We will later find it more convenient to work with homotopy unitary homotopy
homomorphisms which preserve the unit only up to homotopy. We will introduce
those at the end of this section.

The most extensive study of ~-morphisms and their induced maps on classifying
spaces was done by Fuchs [9], who constructed composites of #-morphisms, proved
that composition is homotopy associative and stated that an A-morphism f : M — N
whose underlying map is ahomotopy equivalence has a homotopy inverse #-morphism
g : N — M.Infact, he constructed g¢, g1 and the homotopies go f ~ idand fog ~ id
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882 R. M. Vogt

in dimensions 0 and 1 in [9, p. 205—p. 208], but left the rest to the reader. He produced
a complete proof in [10].

We handle these problems by interpreting homotopy homomorphisms as genuine
homomorphisms of a “cofibrant” replacement of M.

By a semigroup we will mean a k-space with a continuous associative multiplication.
Let Sgp denote the category of semigroups and continuous homomorphisms.

Constructions 2.2 We will construct continuous functors
W :Sgp — Sgp and W : Mon — Mon
and natural transformations
§:W-—1d and ¢ : W — Id
as follows:

WM = (]_[ M x 1")/ ~

n=0

with the relation

]' (x05t15x17t27-”7tn7xn)N(x()?tla-"’xi*l "xi""5tn7'xn) lf‘tl =0

2. and WM is the quotient of WM by imposing the additional relations

(x1,12, ..., Xn) ifxo=e
(x0, 11, X1, 12, ..., In, Xp) ~ 1 (X0, -+, Xj—1, Max(f, G41), Xy 15 .-, %n) X =e
(X0, 11, .., Xp—1) ifxn:e

The multiplications of WM and W M are given on representatives by
(X0, 115« ooy Xk) - (Yo, ULy o ooy V1) = (X0s 1y o« Xks Ly YO, ULy < ooy V1)
The natural transformations € and € are defined by
eM), e(M) : (x0,t1,...,Xn) —> X0 - X[ * ... Xp.
Their underlying maps have natural sections
(M), t(M) : x —> (x)
which are not homomorphisms, and there is a homotopy over M
Ry @ (X0, 1y Xy v ey By Xp) > (X0, S - 11, X1y ooy S = By, Xpy)

from (M) o €(M) respectively t(M) o e(M) to the identity. In particular, €(M) and
&e(M) are shrinkable as maps.
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Homotopy homomorphisms 883

If M is a monoid the projection
gM): WM - WM
is a homomorphism of semigroups satisfying
M) =¢e(M)oe' (M) and & (M)ot(M)=1(M).

By inspection we see

Observation 2.3 1. h-morphisms (f,) : M — N correspond bijectively to homo-
morphisms f : WM — N of semigroups, and fo = f o i(M).

2. uh-morphisms (f,) : M — N correspond bijectively to homomorphisms f :
WM — N of monoids, and fy = f o t(M).

Observation 2.4 Algebraically, WM is a free semigroup and W M is a free monoid.
The indecomposables are precisely those elements which have a representative
(x0, t1, X1, - .., Xn) where no t; equals 1.

2.5. The formal relation between W and W: The forgetful functor i : Mon — Sgp
has a left adjoint

()4 :Sgp — Mon, G+ Gy,

where G4+ = G U {x} with % as unit. It follows from the definitions that the diagram

Sgp —¥—> Sgp

(—)+l \L(_)‘F
w

Mon —— Mon

commutes up to natural isomorphisms in Mon.

Both constructions have a universal property, which is a consequence of the fol-
lowing result. We give Top*™(X, Y) and Zop(X, Y) the k-function space topology,
obtained by turning the space of all maps from X to ¥ with the compact-open topol-
ogy into a k-space. We give Mon(M, N) and Sgp(M, N) the subspace topologies of
the corresponding function spaces in Zop™ respectively Zop.

Definition 2.6 We call a homomorphism f : M — N in Mon or Sgp a weak
equivalence if its underlying map of spaces is a homotopy equivalence in 7op. (Recall
that a weak equivalence in Mon is a homotopy equivalence of underlying spaces in
Top* if M and N are well-pointed.)

Proposition 2.7 [. Let M be a well-pointed monoid and p : X — Y a homomor-
phism of monoids. Let

ps - Mon(WM, X) — Mon(WM,Y)
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884 R. M. Vogt

be the induced map. If p is a fibration of underlying spaces, so is py. If p is a weak
equivalence, py is a homotopy equivalence.
2. The same holds for W and an arbitrary object M in the category Sgp.

Proof Let p : X — Y be a weak equivalence. By the HELP-Lemma [27] in Top with
the Strgm model structure [22] we have to show: given a diagram of spaces

(A)

A Mon(WM, X)

L

B~ Mon(WM,Y)

which commutes up to ahomotopy /1 4 180l X pyo fa, wherei is aclosed cofibration,
there are extensions f : B — Mon(WM, X) of fs and h; : B — Mon(WM,Y)
ofﬁA,t such that A, : g pyo f

Passing to adjoints we obtain a diagram

WMXAAX

i l

WM xB—S>y

commuting up to a homotopy %4 ;, such that each f, = fa|WM x {a}, each g, =
glWM x {b}, and each h,; = hy WM x {a} is a homomorphism. We have to
construct extensions f : WM x B — Xandh; : WM x B — Y of f4 and h4 ; such
that h; : g >~ p o f and each hp; and fp,, b € B is a homomorphism.

We filter WM x B by closed subspaces F;,, x B, where F,, is the submonoid of

W M generated by all elements having a representative (xg, 1, .. ., tx, xx) withk < n.
We put F_; = {e}. Then f and h; are uniquely determined on F_1 x B.
Suppose that f and &, have been defined on F,,_; x B. Anelement (xo, 1, . .., t,

Xxp) represents an element in F,,_ iff one of the following conditions holds

e some x; = e (relation 2.2.2)
e somet; = (0 (relation 2.2.1)
e some t; = 1 (it represents a product in F,_).

If DM"*+! c M"*! denotes the subspace of points with some coordinate e, then f
and h;, are already defined on (DM 1 x I"UM™ 1 x 31"y x BUM" ! x I" x A. The
elements in (M1 x I'")\(DM"*! x [" U M"+1 x 9I") represent indecomposables
of filtration n, but not of lower filtration. Consider the diagram
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(B)

f
(DM x I"UM™ x Iy x BUM"H x " x A —— X

| ,

M " x B Y

(in abuse of notation we use g for the composite M"T! x [" x B — WM x B — Y).
Diagram (B) commutes up to the homotopy /; and we need an extension of f and
hy to M" T x I" x B. These extensions exist by the HELP-Lemma, because our
assumptions ensure that j is a closed cofibration. So we have defined f and h; for
indecomposable generators (xo, ?1, . . ., Iy, X, ) of F;,. We extend these maps to F;, X B
by the conditions that each f; and /5 ¢, b € B be ahomomorphism using Observation
2.4.

Now suppose that p is a fibration. By [22, Thm. 8] we need to consider a commu-
tative diagram (A), where i is a closed cofibration and a homotopy equivalence, and
we have to find an extension f : B — Mon(WM, X) of f4 such that g = p, o f.
We proceed as above. In the inductive step we have a commutative diagram (B). Since
i is a closed cofibration and a homotopy equivalence so is j by the pushout-product
theorem for cofibrations. Hence the required extension f : M"*! x I" x B — X
exists by [22, Thm. 8].

Part (2) is proved in the same way starting with F_1 M = . O

As an immediate consequence we obtain the

2.8. Lifting theorem: (1) Given homomorphisms of monoids

X

l”
WM ——Y
such that p is a weak equivalence and M is well-pointed, then there exists a homo-
morphism g : WM — X, unique up to homotopy in Mon (i.e. a homotopy through
homomorphisms), such that f >~ p o g in Mon.
If, in addition, the underlying map of p is a fibration there is a homomorphism

g : WM — X, unique up to homotopy in Mon, such that f = p o g.
(2) For W the analogous results hold in the category Sgp.

2.9. By Proposition 2.7 the second one of the maps

e(N)y : Mon(WM,WN) - Mon(WM, N)
E(N)y : 7Sgp(WM, WN) — Sgp(WM, N)

is a homotopy equivalence, and the first one is a homotopy equivalence if M is well-
pointed.
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886 R. M. Vogt

To guarantee the well-pointedness condition we introduce the whiskering functor.

2.10. The whiskering construction: We define a functor
V! Top™ — Top"

by VI(X,x0) = (X U I)/(xo ~ 1) and choose 0 € I as base-point of V'X. Then
V!X is well-pointed, and the natural map ¢(X) : V' X — X mapping I to xo is a
homotopy equivalence. Its homotopy inverse g(X) : X — V'X is the canonical map.
If X is well-pointed, ¢(X) is a based homotopy equivalence.

This functor lifts to a functor

V : Mon — Mon"
defined by V(M) = V(M) with xq replaced by ey with the multiplication

x-yeM ifx,yeM
X ifxeM, yel
y ifyeM, xel
max(x,y) ifx,yel.

Since 0 € [ is the unit of VM the monoid VM is well-pointed. The natural map
q(M) : VM — M is a weak equivalence in Mon, but observe thatg(M) : X — VM
is not a homomorphism because it does not preserve the unit.

A homomorphism f : WV M — N can be considered a homotopy unitary homo-
topy homomorphism. Strictly speaking, the underlying map of f : WVM — N
is

fo=fou(VM)og(M): M - VM — WVM — N.

We note that fj preserves the unit ej; only up to homotopy.
By 2.9 the following change of our notations of homotopy homomorphisms is
insignificant from a homotopy theoretic point of view:

Definition 2.11 From now on a homotopy unitary homotopy homomorphism, huh-
morphism for short, from M to N is a homomorphism f : WV M — WVN. Its
underlying map is g(N) o e(VN) o f o (VM) o g(M).

A unitary homotopy homomorphism, uh-morphism for short, from M to N is a
homomorphism f : WM — WN. Its underlying map is e(N) o f o t(M).

A homotopy homomorphism, h-morphism for short, from the semigroup M to
the semigroup N is a homomorphism f : WM — WN. Its underlying map is
g(N)o fot(M).

This solves the problem of composition, and from 2.7 we obtain

Proposition 2.12 If f : WM — WN is a uh-morphism from M to N whose under-
lying map is a homotopy equivalence, and M and N are well-pointed, then f is a
homotopy equivalence in the category Mon.
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If f: WVM — WVN is a huh-morphism from M to N, whose underlying map
is a homotopy equivalence, then f is a homotopy equivalence in the category Mon.
The analogous statement in Sgp holds for homomorphisms WM — W N.

Monoids are algebras over the operad .Ass of monoid structures, and there is the
notion of an “operadic” homotopy homomorphism defined by Boardman and Vogt
[4]. Klioutch [15] compared the operadic notion with the one considered in this paper
and could show.

Proposition 2.13 Let M and N be well-pointed monoids and let H(M, N) be the
space of operadic homotopy homomorphisms from M to N, then there is a natural
homotopy equivalence

H(M, N) ~ Mon(WM, N).

3 Categorical prerequisites and localizations

The functors WV : Mon — Mon and W : Sgp — Sgp resemble cofibrant replace-
ment functors as known from Quillen model category theory. Unfortunately, there is
no known model category structure on Mon with our choice of weak equivalences.
This draw-back is made up by the topological enrichment of our categories as we will
see in this section.

Our categories are enriched over Zop™ or 7op. So we have a natural notion of
homotopy. Moreover, they are tensored and cotensored. Recall that a Top™*-enriched
category M is tensored and cotensored (over Zop*) if there are functors

Top* x M —> M, (X, M)~ XXM
(Top")® x M — M, (X, M) — M¥

and natural homeomorphisms
M((X KM, N) = Top*(X, M(M, N)) = M(M, N¥).

These properties imply that for based spaces X and Y and objects M € M there are
natural isomorphisms

XAYYRKMZ=ZXKYXM).
The definition in the 7op-enriched case is similar. To distinguish between the based
and the non-based case we denote the tensor over 7op by X ® M. The natural iso-
morphism in the non-based case reads

XxVQM=ZX®(Y®M).

Forgetting base points turns a Zop*-enriched category M into a Zop-enriched one. If
M is tensored over Zop™ it is also tensored over Zop: we define
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XQM=X,KM

where X = X U {x*} with the additional point as base point.

Example 3.1 Mon is Top*-enriched, tensored and cotensored [17, Prop. 2.10]. The
cotensor M X is the k-function space with pointwise multiplication, X X M is more
complicated: as a set, it is a free product of copies M, one copy for each x € X
different from the base point. By the same argument as in [17] the category Sgp is
Top-enriched and tensored and cotensored over Zop.

If ®sgp denotes the tensor in Sgp and ® the one over 7op in Mon, then the
universal properties of the tensor and of the adjunction of 2.5 imply that there is a
natural isomorphism

(K @55p G)4 = K ® (G1)

in Mon for semigroups G.

Definition 3.2 Let M be a 7op-enriched category. Two morphisms f, g : A — X
are called homotopic if there is a path in M (A, X) joining f and g.

Clearly, the homotopy relation is an equivalence relation preserved under compo-
sition. Passing to path components we obtain the homotopy category = M.

If M is tensored over 7op it has a canonical cylinder functor M +— I ® M. The
associated homotopy notion coincides with the one of Definition 3.2.

Definition 3.3 Let M be a category and % a class of morphisms in M, which we
will call weak equivalences. The localization of M with respect to # is a category
M[# 1] with obM[# 1] = obM and a functor y : M — M[# '] such that

1. y is the identity on objects

2. y(f) is an isomorphism for all f € #

3. if F : M — D is a functor such that F(f) is an isomorphism for all f € # then
there exists a unique functor F : M[# '] — D suchthat F = F o y.

Proposition 3.4 Let M be a Top-enriched tensored category and W a class of mor-
phisms in M such that

1. W contains all homotopy equivalences,

2. there is a functor Q : M — M and a natural transformation ¢ : Q — Id or a

natural transformation n : 1d — Q taking values in # such that Qf is a homo-
topy equivalence for each f € W'
Then M[# ~"]exists. Precisely, let HM be the category withobHM = obM and
HM(My, M>) = M(QMy, QM>). Then M[# ~'] = 7' HC, the quotient cate-
gory obtained by passing to homotopy classes. The functor y : M — M[# 1]
is the identity on objects and maps a morphism f to the homotopy class of Qf.

Proof The proof'is essentially the same as in the case of a Quillen model category (e.g.
see [12, Thm 8.3.5]). We recall the construction of the localization M[# ~'] in this
case. So let M be a Quillen model category, let ¢ : C — Id respectively n; Id — R be
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a cofibrant respectively fibrant replacement functor. There are cylinder objects giving
rise to the left homotopy relation.

Step 1 Using the fact that RC (X)) is fibrant and cofibrant for each object X in M one
proves that left homotopy is an equivalence relation on M(RC(A), RC(X)) which
is preserved under composition. Let 7 M(RC(A), RC (X)) be the set of equivalence
classes. One defines

ObM[# '] =0bM and M[# (A, B) = t M(RC(A), RC(B)),

and it follows that M[# ] is a category.
Step 2 One proves that RC(f) is a homotopy equivalence if f : A — X is a weak
equivalence. Then one defines

Yy M= M#' f RC(f).

In particular, y maps weak equivalences to isomorphisms.

Step 3 One shows that a functor F : M — N, which maps weak equivalences to
isomorphisms, maps homotopic morphisms to the same morphism.

Step 4 Given a functor F : M — N, which maps weak equivalences to isomor-
phisms, then there is a unique functor F : M[# ~'] — N such that F = F o y, and
F is defined on objects by F(X) = F(X) and on morphisms [ f] € M[# ~'](A, X)
by

F(LfD) = F(e(X)) o (F(CX))) ™" o F(f) o F(n(CA)) o (F(e(A)) ™",

where [ f] is the homotopy class of f.

We now prove Proposition 3.4. We deal with the case where we have a natural
transformation ¢ : Q — Id taking values in #/.

Step 1 follows from the topological enrichment

obM[# '] =0bM and M[# (A, B) = x M(Q(A), Q(B))

which is a category.
Step 2 holds by Assumption 3.4.2, and we define

yiM— MIZTT fes Q).

y maps weak equivalences to isomorphisms.

For Step 3 we need the cylinder functor: the bottom and top inclusions ip ® id, i} ®
id: X =%x®X — I ® X into the cylinder are homotopy equivalences with the
common homotopy inverse r Qid: I @ X - x® X = X.

Step 4: given a functor F : M — N, which maps weak equivalences to isomor-
phisms, we define F : M[# ~'] — N by

F(X)=F(X) and F([f]) = F(e(X)) o F(f) o (F(e(A))™"

for [ f1 € M[#~'1(A, X). The rest follows like in [12, Thm 8.3.5]. O
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Remark 3.5 For Proposition 3.4 we do not need that the tensor X ® M exists for all
topological spaces: it suffices that M is tensored over the full subcategory of Zop
consisting of a point * and the unit interval /.

Notation 3.6 Following the standard convention we denote M[# ~'] by HoM if the
class W has been specified.

A pair (Q, ¢: Q — 1d) respectively (Q, n:1d — Q) satisfying the require-
ments of 3.4 will be called a cofibrant respectively fibrant replacement functor. Each
Top-enriched category M considered in this paper will have a continuous cofibrant
replacement functor, and we call the category HM the category of Q-morphisms
associated with M.

Definition 3.7 A functor Q : M — M together with a natural transformation ¢ :
Q — Id s called a strong cofibrant replacement functor if each e(M) : Q(M) - M
is aweak equivalence and p, : M(QA, B) - M(QA, C)isahomotopy equivalence
whenever p : B — C is a weak equivalence.

Clearly, a strong cofibrant replacement functor is a cofibrant replacement functor.

3.8. Examples:
1. Let # C Mon be the class of weak equivalences in the sense of 2.6. Then
M
WV : Mon — Mon together with WV M UMy 1M pisa strong

cofibrant replacement functor, and the Q-morphisms are the ~u/s-morphisms. This
follows from informations in 2.2, 2.7, 2.10, and 2.12.

2. Let # C Mon" be again the class of weak equivalences. Then W : Mon" —
Mon® together with ¢ : W — Id is a strong cofibrant replacement functor, and
the Q-morphisms are the uh-morphisms. The required information is obtained
from 2.2, 2.7, and 2.12.

3. Let # C Sgp be the class of weak equivalences. Then W : Sgp — Sgp together
with & : W — Id is a strong cofibrant replacement functor, and the Q-morphisms
are the A-morphisms by informations from 2.2 and 2.7.

4. Let # C Top* be the class of based maps which are (not necessarily based)
homotopy equivalences. Then V' : Top* — Top* together withg : V! — Idisa
strong cofibrant replacement functor by the lemma below, the proof of which we
leave as an exercise.

5. Let # C Top" be the class of homotopy equivalences. Then Id : Top™ — Top®
is a strong cofibrant replacement functor and each map is a Q-morphism.

Lemma 3.9 Let A be a well-pointed space and p : X — Y a map in Top™* which is
a not necessarily based homotopy equivalence. Then

P« Top* (A, X) — Top*(A,Y)
is a homotopy equivalence in Top.
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Proposition 3.10 The localizations of the categories of 3.8 with respect to their weak
equivalences exist.

Proof We apply 3.4 and 3.5. We have to show that our categories are tensored over
the full subcategory of Zop consisting of a point * and the unit interval 7, the other
assumptions of 3.4 have been verified above.

We already know that Mon and Sgp are tensored over Top. The category Zop* is
tensored over itself by the smash product and hence also tensored over Zop. For the
Examples 3.8.2 and 3.8.5 it suffices to know that for any object M in the category the
tensor I ® M is well-pointed (recall * ® M = M). This is well known for Zop™ and
holds for Mon" by [17, Prop. 7.8]. O

Definition 3.11 Let M be a category and % a class of morphisms in M such that
M[# 1] exists. Let F : M — D be a functor. A functor LF : M[#~!] > D
together with a natural transformation t : LF oy — F is called left derived functor of
F,if given any functor 7T : M[V/’l] — D and natural transformationo : Toy — F,
there is a unique natural transformation p : T — LF suchthato =t o (p * y).

Dually, a functor RF : M[#~'] — D together with a natural transformation
uw : F — RF oy is called right derived functor of F, if given any functor G :
M[# Y1 — D and natural transformation v : F — G o y, there is a unique natural
transformation & : RF — G such that (¢ * y) o u.

Remark 3.12 1. A left or right derived functor is unique up to natural isomorphism
if it exists.

2. If F : M — D maps weak equivalences to isomorphisms, then the induced
functor F : M[# ~1] — Dis the right and left derived functor of F.

Proposition 3.13 Let M be as in Proposition 3.4, and let F : M — B be a functor
which maps homotopy equivalences to isomorphisms. Then LF : M[# '] — B
exists if M has a cofibrant replacement functor, and RF : M[# '] — B exists if
M has a fibrant replacement functor. In both cases the derived functor is induced by

FoQ: M—B.
Proof The proof is the same as in the case of a model category (e.g. see [12, 8.4.]). O

Let F : M — B be afunctor between 7op-enriched categories admitting cofibrant
replacement functors Q o : M — M and Q5 : B — B. Proposition 3.13 motivates
the introduction of the functor

3.04. F" : HM — HB
defined on objects by F'{(X) = F(Q r(X) and on morphisms by

FR MO X, QYY) 2225 B(QBFOMX. QBFOMY).

If F preserves homotopy equivalences, e.g. if F is continuous, and 7 : B — 7B is
the canonical functor, then 7g o F H induces the left derived functor

HoF : HoM — HoBB
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of 7 o F. Following model category terminology, we call HoF' the fotal left derived
functor of F.

One of the objectives of this paper is to show that the classifying space functor and
the Moore loop space functor induce an adjoint derived pair (see Theorem 4.6 below).
This is the path-component version of the more general result (Theorem 4.5 below)
that

B : HMon =—— Top* : QM

are a homotopically adjoint pair. To make this last statement precise we need some
preparations.

Definition 3.15 Let A and B be topologically enriched categories. A functor F :
A — B is called continuous if

F:A(A, B) — B(FA, FB)
is continuous for all A and B in A.
If F,G : A — B are continuous functors, a collection of morphisms {«(A) :

FA — GA; A € obAj} is called a natural transformation up to homotopy if the
diagram

A(A, B) B(FA, FB)

J{G ia(B)*
a(A)*

B(GA,GB) — > - B(FA, GB)

is homotopy commutative.
A pair of continuous functors

F:ASB:G
is called a homotopy adjoint pair if there is a natural transformation up to homotopy
a(A,X): B(FA, X) - A(A,GX)

such that each «(A, X) is a homotopy equivalence. The homotopy equivalences are
called the homotopy adjunctions.

Just as the usual notion of adjunction is equivalently encoded by the concepts of unit
and counit, Proposition 3.18 below describes how a homotopy adjunction is specified
by a homotopy unit and a homotopy counit.

Observe that we have chosen a strong form of a natural transformation« : F — G
up to homotopy: for each morphism f : A — B in A we have a square
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a(A)
FA———GA

Ffi in
«(B)

FB——>GB

commuting up to a homotopy H (f) which is continuous in f.
The proofs of the following two lemmas are easy exercises.

Lemma 3.16 Let S, T, U : A — B be continuous functors of topologically enriched
categories.

1. Each natural transformation o : S — T is a natural transformation up to homo-
topy.

2. Ife: S — Tandn: T — U are natural transformations up to homotopy, then
noe:S— Uisone.

3. Lete : S — T be a natural transformation up to homotopy such that each £(A)
is a homotopy equivalence. Choose a homotopy inverse n(A) of e(A) for each A
in A. Then the n(A) form a natural transformation n : T — S up to homotopy.O

Lemma 3.17 Let S,T,U,V : A — B be continuous functors of topologically
enriched categories, and let ¢ : S — T and n : U — V be natural transforma-
tions up to homotopy.

1. Let F,G : A°® x A — Top be defined by F(A, B) = A(A, B) and G(A, B) =
B(TA, TB). Then

(A, B) : A(A, B) 5> B(TA, TB)
is a natural transformation from F to G.
2. LetF,G : A°x A — Top bedefinedby F(A, By = B(VA, SB)and G(A, B) =
B(UA, TB). Then

&(B)xon(A)*
s

a(A,B): B(VA, SB) B(UA, TB)

is a natural transformation from F to G up to homotopy. O

Proposition 3.18 Let F : A = B : G be apair of continuous functors of topologically
enriched categories. Suppose there are natural transformations up homotopy

w(A):A— GF(A) and n(X): FG(X) > X
such that

G((X)) o u(GX) ~idgx and n(FA)o (F(u(A)) ~idra.
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Then F and G are a homotopy adjoint pair. (We call n : 1d — GF the homotopy
unit and n : FG — 1d the homotopy counit of the resulting homotopy adjunction.)

Proof We define

w(A. X): B(FA.X) S AGFA.Gx) M2 A4, Gx)

and

B(A,X): A(A, GX) 5 B(FA, FGx) ™% B(Fa, X).

By 3.17 both are natural transformations up to homotopy. The following diagram
shows that 8(A, X) o (A, X) =~ id.

A *
A(GFA, GX) A A(A. GX)
¢ F 11 F
Fu(A)*
B(FA, X) I B(FGFA, FGX) — " _ B(FA, FGX)
FA)*
e n(X), 1 (X,
B(FGFA, X) (Fr) B(FA, X).

The squares II and III commute and square I commutes up to homotopy, and
(Fu(A))* on(FA)* >~ id by assumption.
The proof that (A, X) o B(A, X) >~ id is dual. m|

Definition 3.19 A homotopy adjunction F : A < B : G is called natural if there is
a natural homotopy equivalence

B(A, X): A(A,GX) - B(FA, X)
and conatural if there is a natural homotopy equivalence
a(A, X): B(FA, X) - A(A, GX)

(because in this case there is a natural homotopy unit, respectively, a natural homotopy
counit).
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4 The classifying space and the Moore loop space functor

4.1. The 2-sided bar construction: Let C be a small topologically enriched category,
X aC°P-diagram and Y a C-diagram in Zop. We define a simplicial space B (X, C, Y)
by

Bo(X,C,Y) = ]_[ X(A) x Y(A)
AeC

B,(X,C,Y) = H X(B) x C,(A, B) x Y(A) forn > 0,
A,BeC

where C, (A, B) is the space of all composable n-tuples of morphisms (f1, ..., f,)

such that source( f;;) = A andtarget(f;) = B, with boundary and degeneracy maps
given by

d'Ce fiaeo fuy) = (XUD@), foo o funy) i=0

A, fie e foo ) = (6, fla oo fi0 fixlseoos fasy) O<i<n
d'Ce fise foo ) =G fleeo st YD) i=n

S fle e f ) = (0 fis e fisid, fign o fuy) 0<d <.

Let B(X,C,Y) = |Bs(X, C, Y)| be its topological realization.
We consider a topological monoid as a topologically enriched category with one
object and define the classifying space functor

B : Mon — Top*

by BM = B(x, M, x).Since BM is well-pointed if M is, the classifying space functor
is a functor of pairs

B : (Mon, Mon™) — (Top™, Top™).
4.2. We will also work with the variant
B : Mon —> Top*

where the topological realization of B, (x, M, x) is replaced by the fat realization which
disregards degeneracies. Since the fat realization does not make use of identities the
functor B extends to Sgp; moreover, BG is well- -pointed for any semigroup G so that

B : Sgp — Top®.

By construction, there is a natural homeomorphism B(G) = B(G4) for semigroups
G, and the diagram
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B(M) = B(M.)
m M))
B(M)

commutes for monoids M, where k : M4 — M is the counit of the adjunction 2.5
and p : B — B is the natural projection.

It is well-known that p(M) : B(M) — B(M) and hence B(k(M)) : B(M;) —
B(M) are homotopy equivalences if M is well-pointed.

4.3. The Moore path and loop space: Let X be a (not necessarily based) space. The
Moore path space of X is the subspace Path(X) C X®+ x R consisting of all pairs
(w, r) such that w(r) = w(r) for all t > r. We call r the length of w and denote it by
r=1(w).

For two paths (wy, r1) and (wa, r2) with (w1)(r1) = (w2)(0) we define path addi-
tion by

(wy,r1) + (w2, r2) = (w, r1 +12)
with

wi (1), 0<t<r,

w(t) = wo(t —ry) rp <t.

If (X, *) is a based space, the Moore loop space ' (X) C Path(X) is the subspace
of all pairs (w, r) with (w)(r) = (w)(0) = *. Path addition defines a monoid structure
on 'X with (c, 0) as unit, where ¢ : R; — X is the constant map to *. The usual
loop space X is embedded in ©'(X) as a deformation retract.

It follows from [25, (11.3)] that (X)) is well-pointed if X is. Hence Q' defines a
functor of pairs

Q' : (Top™*, Top") — (Mon, Mon™).

Following 3.14 we have pairs of continuous functors

BM . HMon S HTop* : Q™M
and
BYM . HMon" = HTop® = Top” : Q.
We shall prove

Theorem 4.4 The functors
BYM . H Mon® =—— Top®™ : QWM
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are a conatural homotopically adjoint pair: there is a continuous natural map
AWM, X): Mon(WM, WQ'X) — Top*(BWM, X)

which is a homotopy equivalence.
As an immediate consequence we obtain

Theorem 4.5 The functors
BM . HMon =—= HTop* : Q"
are a conatural homotopically adjoint pair: there is a continuous natural map
AWVM,V'X): Mon(WVM, WVQV'X) — Top*(VIBWVM, V'X)

which is a homotopy equivalence.

Proof Replacing M by VM and X by V!X in Proposition 4.4 we obtain a natural
homotopy equivalence

Mon(WVM, WVQV'X) > Top*(BWVM, V' X).

Since BW V M is well-pointed the natural map g(BWVM) : VIBWVM — BWVM
is a based homotopy equivalence inducing a natural homotopy equivalence

qg(BWVM)* : Top*(BWVM, V'X) — Top*(VIBWVM, V'X).

Passing to homotopy classes (see 3.4) we obtain

Theorem 4.6 The functors
HoB : HoMon < HoTop* : HoQ'

are an adjoint pair. Moreover, HoB is the left derived of yr,,+ o B and HoQ' the left
derived of Y pon © 2.

Proof This follows from our explicit description of the localizations and the derived
functors in Sect. 3. O

The rest of this section is devoted to the proof of Theorem 4.4. By 3.18 it suffices
to construct a homotopy unit © : Idyaqenw — QWHBWH and a homotopy counit
n: BYHQwH Idy74pw - Then A(W M, X) is the composite

Mon(WM, W'X) & Top* BWM, BW'X) 2225 Top*(BWM, X).
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4.7. This means, we have to construct continuous homomorphisms
w(WM): WM — WQ'BWM

which constitute a natural transformation up to homotopy with respect to homomor-
phisms WM — W N, and a natural transformation

n(X): BWQ'X — X,

such that

1. WQ'n(X) o u(WQ'X) >~ idyg x in Mon"” and
2. n(BWM) o Bu(WM) =~ idgwy in Top"™.
(For A to be a natural transformation we need 7 to be a natural transformation.)

4.8. The homotopy counit: Let X be a based space and let
n
A" ={(to,....t) Ry D ti=1,4>0 foralli)
i=0

denote the standard n-simplex. The evaluation map

ev(X): BQX = H(Q’X)” xA"|/~— X

n>0

is defined by

n i
VOO (Wi, ..o wa)(to, . 1)) = (Wi +wa) [ Dt D L(w))
=l j=I
where [(w) is the length of w;.
The homotopy counit 7 is the natural map

, Be('X) ev(X)
n(X): BWQ'X BQ'X X.

4.9. The homotopy unit: For a monoid M let E M denote the 2-sided bar construction
B(M, M, x). Then

7 (X0, X1, -+ oy Xp) = (2+ X0, X1, -+ +» Xn)
defines a left M-action on the simplicial space B,(M, M, %) and hence on EM.
Let P(E M) denote the space of Moore paths in £ M starting at the base-point (e)

in the O-skeleton M of E M. The endpoint projection

P(EM) — EM
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is known to be a fibration. Moreover, it is a homotopy equivalence because P(EM)
and EM are contractible. Let P(EM, M) be the pullback

P(EM,M) —— > P(EM)

-

M EM

where i is the inclusion of the O-skeleton, i.e. P(EM, M) is the space of Moore paths
in EM starting at (e) and ending in M. Then (M) is a fibration and a homotopy
equivalence. We define a monoid structure & in P(EM, M) by

wi P wr =w;+x-w
where + is the usual path addition, x € M is the endpoint of wy, and x - w» is the
patht — x - wo(¢). Then (M) : P(EM, M) — M is a homomorphism and hence
a weak equivalence of monoids.
Factoring out the operation of M on EM we obtain a projection
EM — BM
inducing a homomorphism

o' (M) : (P(EM, M), ®) — (2'BM, +).

Since we do not know whether or not (P(EM, M)) is well-pointed we apply the
whiskering process to it and obtain a homomorphism

p(M) : V(P(EM, M), &) LLELD ppp my, @) 2 @ BM. ).

The homomorphism o (M) : WV (P(EM, M) — M defined by

VP(EM,M P(EM,M
wvPEM, M) —YPEM b g, vy LEEYD b e m
M

isaweak equivalence. All these constructions are functorial in M and the maps between
them are natural in M. We apply them to W M rather than to M ; in particular o (W M)
is a homotopy equivalence in Mon".

We choose a homotopy inverse of o (W M) in Mon"

v(WM) : WM — WVP(EWM, WM),
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which is a natural transformation up to homotopy with respect to homomorphisms
WM — WN by Lemma 3.16.
We define our homotopy unit by

v(WM) (WM

W,
powmy s wm — _wyvpEwm, wmy) LY warswm,

which is a natural transformation up to homotopy by Lemma 3.16.
Our verification of the conditions 4.7 depends on an explicit description of an
h-morphism M — Q' BM defined by a natural homomorphism

(M) W(M) — Q'BM

and the interplay of W (M) and WM.
We define ¢’ (M) as a composite of homomorphisms

_ (M) (M)
Wmn—————»PGMLM%——i——>Q%M.

The homomorphism ¢(M) maps the element represented by (xo, 71, ..., X,) to the
path

vo+ v+ -+ Uy
of length #; 4+ - - - + ¢, + 1 in the simplex (e, xo, X1, ..., Xp) X A" c EM, where

vk (s) = (e, x0, ..., Xp) X (ug, ..., upg1) and [(vg) = tkt1
with

A=)ty [l A —1)) r<k
Uy = S r=k+1
0 r>k+2

and the conventions that ) = 1 and #,,11 = 1.
Observe that + is the usual path addition of Moore paths in EM and not the monoid
structure of P(EM, M).

Example: (xg, t1, x1, t2, x2) is mapped to the path vg + vi + v2 of length #; + 1, + 1
given by (Fig. 1)

4.10. By construction, 7(M) o (M) = &(M). In particular, (M) : WM —
P(EM, M) is a weak equivalence of semigroups.

Remark 4.11 We will show below that p’(M) : P(EM,M) — Q'BM is a weak
equivalence if M is grouplike, so that p'(M) o ¢ (M) is an h-morphism which is a
weak equivalence if M is grouplike. It is well-known that such an z-morphism exists,
but to our knowledge there is no explicit description in the literature.
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ToL1T2

Fig. 1 The path ¢(M)(xq, 11, X1, 12, X2)

4.12. Consider the following diagram

(WWM)4

WMt c(wmnt

v(WM) o1 (WM)
WM ——— WVP(EWM,WM) ——— > P(EWM,WM)

) a(WM)
id T(WM)

WM

where oy (WM) = g(P(EM,M)) o e(VP(EM,M)) and f* : G, — M is the
adjoint of the homomorphism f : G — M from a semigroup into a monoid. By
definition of v(W M) and o (W M) the left lower triangle commutes up to homotopy
in Mon" and the right lower triangle is commutative. Since

T(WM) o t(WM) =8(WM) ~ 7(WM) 0 61 (WM) o v(WM) o 5(WM)
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Proposition 2.7 implies that
ot(WM)ov(WM) og(WM) ~¢((WM) inSgp

which in turn is equivalent to the saying that square I commutes up to homotopy in
Mon.

We are now in the position to prove
Proposition 4.13 n(BWM) o Bu(WM) >~ idgwuy in Top™.
This result is a fairly easy consequence of

Lemma 4.14 The diagram

_— B&s(M) ~
BWM BM
E;(M)l lp(M)

- Bp' - p(Q'BM) ev(BM)
BP(EM,M) —— BQ'BM —————> BQ'BM ——— BM

commutes up to homotopy.

Proof Let f = ev(BM) o p('BM) o Bp'(M) o B and let g = p(M) o B&(M).

I;eiz = (z1,...,2n) be an element in (WM)”, so that z x A" is an n-simplex in
BWM.If z; = (xjo,1j1, ...,xjrj), then f maps z x A" to the image of the path
o' (M)ol(z1)+ ...+ p (M) o ¢(z,) which lies in the simplex

o = G(Z) = (x107 R xlrl yeees Xn0s ey xnr,,) X Ar1+'“+rn+l’l

in BM, while g maps z x A" identically (modulo possible degenerations) onto the
simplex
T=7@) =10 " Xlrps--er Xn0 *« oo " Xppy) X A"

in BM, which is a face of 0. So f|z x A" is homotopic to g|z x A" by a linear
homotopy. We call a homotopy from f to g admissible if it maps z x A" to o(2)
throughout the homotopy. L

We are going to construct an admissible homotopy H : BWM x I — BM from
f to g by induction on the canonical filtration (BW M)™ of BWM.

(BWM)© is a point, which is mapped by f and g to the base-point. Now suppose
that we have constructed an admissible homotopy

H:(BWM)"V x I > BM.
Let z x A" be an n-simplex in BW M as above. We define
q(z)=qz1,...,2n) =11+ +r, €N

and we extend H over (BWM)™ x I by induction on g.

@ Springer



Homotopy homomorphisms 903

If g =0,thenz = (z1,...,2,) Withz; = (xjo) for j = 1,...,nand 0(2) =
7(z) = (x10, ..., X,0) X A". Hence the space of all n-simplices z € (WM)" with
q(z) = 0is M". By induction, we have to find a homotopy

h:M'x A" x 1 —- M"x A"

over M" which is already determined on M" x d(A" x I).If b, denotes the barycenter
of A" we map ((x1, ..., X,), by, %) to ((x1, ..., xn), by) and cone off.

If ¢ > 0 we have ¢ coordinates ¢, € I in z. So the space of all elements z with
q(z) = q is the union of spaces of the form M"*4 x [9 which may intersect on
their lower faces M4 x LI9 due to the relations, where L1¢ = {(t1,..., Iy) €
19; some f; = 0}. So possible intersections are of lower filtration. We have to find a
map

he M™% J9x A" x [ — M"T9 x A"
over M"""4 which is already defined on
M x (L19 x A" x TUT? x 9(A" x I)).
Since L1 is a strong deformation retract of /¢, the inclusion
LITx A" x TUI?T x 9(A" xTI)C 19 x A" x I
is an inclusion of a strong deformation retract. Hence 4 exists. O
Proof of Proposition 4.13 Since M is well-pointed, the projection p(M) : BM —

BM is a homotopy equivalence. If 2 : X — Y is a weak equivalence of semigroups,
then Bh : BX — BY is abased homotopy equivalence. Hence it suffices to show that

n(BWM) o BW(WM) o p(WM) o BEOWM) ~ p(WM) o BE(WM).
Now

n(BWM) o BW(WM) o p(WM) o BE(WM)
=ev(BWM) o Be(Q BWM) o BWp(WM) o BuWM) o p(WM) o BE(WM),
since n(BWM) = ev(BWM) o Be(Q'BWM) and u(WM) = Wp(WM) o v(WM),
=ev(BWM) o Be(Q BWM) o BWp(WM) o p(WVP(EWM, WM))
o Bu(WM) o BE(WM),
by naturality of p,
= ev(BWM) o Bp(WM) o p(VP(EWM, WM)) o Be(VP(EWM, WM))
o BW(WM) o BE(WM),
by naturality of &,
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=ev(BWM) o p(Q' BWM) o Bp(WM)
o Be(VP(EWM, WM)) o Bu(WM) o BE(WM),
by naturality of p again,
=ev(BWM) o p(Q'BWM) o Bp'(WM) o Bq(P(EWM, WM))
o Be(VP(EWM, WM)) o Bu(WM) o B&(WM),
by the definition of p(W M),
=ev(BWM) o p(Q'BWM) o Bp'(WM) o Bo1(WM) o Bu(WM)
o BE(WM),
by the definition of o1 (W M) from 4.12,
~ev(BWM) o p(2 BWM) o Bp'(WM) o Bt(WM),
by Diagram 4.12,
~ p(WM) o Be(WM),

by Lemma 4.14. O

Remark 4.15 If we use the Quillen model structure on 7op rather than the Strgm
structure we can construct a homotopy unit (W M) and deduce Proposition 4.13
fairly easily from [8, Thm. 7.3] and its proof.

The proof of the first part of 4.7 needs some preparation. Let 7 denote the category
of ordered sets [n] = {0 < 1 < --- < n} and order preserving injections, and let
JTopg denote the category of all diagrams

Xe: J®P — Top, [n]l— X,
such that X is a single point, i.e. an object in J7opy is a reduced simplicial space
without degeneracies. Of lately, such an object is called a reduced semisimplicial
space. The usual fat topological realization functor
JTopy — Top*, Xer—| Xe |l
has a right adjoint, the reduced singular functor
Sing) : Top* — JTopy, Sing)(Y) = Top((A", A), (Y, %))
where A( is the 0-skeleton of A”. The unit of this adjunction

To(X4) : Xo — Sing? || X, |

sends x € X, to the singular simplex

A" I T Xk x A% = X, |
k
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where i, is the inclusion of the simplex {x} x A”. The counit
&V (Y) :| Singd(Y) |— ¥

is induced by the evaluation maps Singg(Y) x A" — Y. The formula defining our
evaluation map of 4.8 defines a natural semisimplicial map

ae(Y) : NeQ'Y — Sing(.)Y

where N,Q'Y is the semisimplicial nerve of Q'Y. Let vy, ..., v, denote the vertices
of A" and let L,, C A" denote the union of the 1-simplexes [v;_1, vi],i = 1,...,n.
Then L, is a strong deformation retract of A”. The composite

aym"=NAQW)291sm§0q1>ﬁw«L“A@xx*»=(Qm{

where r is the restriction to L, is the map normalizing the loop lengths to 1. In partic-
ular, o, (Y) is a homotopy equivalence inducing a homotopy equivalence || o (Y) ||
Moreover, the diagram

4.16.
~ pQ'Y)
BQY — > BQ'Y
IO!.(Y)Ii ev(Y)
(Y
| Singd(¥) | ———y
commutes.

Proposition 4.17 1. If M is a grouplike well-pointed monoid, then p'(M)
P(EM,M) — Q'BM and hence pn(WM) : WM — WQ'BWM are weak
equivalences.

2. IfY is a well-pointed path-connected Dold space (see Definition 1.7), thenev(Y) :
BQ'Y — Y is a based homotopy equivalence, and, hence so is

Be(Q2'Y) ev(Y)
_—

n(Y): BWQ'Y By &% vy,

3. If Y is a well-pointed space, then Q'ev(Y) : Q' BQ'Y — Q'Y is a weak equiva-
lence. Hence so is Q'n(Y) : Q BWQ'Y — Q'Y.

4. If M is a well-pointed monoid, then Bu(WM) : BWM — BWQ'BWM is a
homotopy equivalence.
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Proof 1. The diagram

(N M) ~ Qp(M)
M i QBM — "~ QBM
ZOT(M)\L li(BM)
o (M)
P(EM, M) Q'BM

commutes. Here i(X) : QX — Q'X is the inclusion and i(M) : M — WM
the section (see 2.2). It is well known that 71 (N, M) is a homotopy equivalence if
M is grouplike (e.g. see [21]). Since p(M), i(BM), and ¢ o t(M) are homotopy
equivalences in Zop, so is p'(M).

2. In the commutative diagram 4.16 the map p(2'Y) is a homotopy equivalence
because Q'Y is well-pointed and év(Y) is a homotopy equivalence by [20, Prop.
5.6].

3. Consider the following commutative diagram in 7 Zopg

+(N.Q'Y ~
Ny — P20 Ging0BQY

a.(Y)l

J{Sing9|a,(Y)|

t.(Sing(.)Y) . .
Sing(.)Y E—— Slng(.) I Slng(.)Y I
” J{Sing?eAv(Y)
Sing?Y.

Restricting this diagram to degree O we obtain a commutative diagram of spaces

, 71 (No2'Y) - Qp(Q'Y) )
QY —————— QBQYY — = QBQ'Y
\LQHW-(YH lQeV(Y)

Qev(Yy
Q|| Singy | — 20 oy,

71 (SinglY)
QY

Since Q'Y is grouplike, 71 (N, R'Y) is a homotopy equivalence. Since Y and hence

Q'Y is well-pointed, Qp(R2'Y) is a homotopy equivalence. Since a1 and || ae(Y) ||

are homotopy equivalences, 71 (Sing?Y) is one. Hence so is 26v(Y') and hence also

Qev(Y), which implies the result.

4. Since BWM is a well-pointed path-connected Dold space by [20, Cor. 5.2] the
statement follows from Part (2) and Proposition 4.13.

O

Proposition 4.18 WQ'n(X) o u(WQ'X) ~ idyq x in Mon.
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Proof 1t follows from Proposition 4.13 and the homotopy naturality of u and 7 that
the following diagram commutes up to homotopy.

, HWR'X) S we/n(x) ,
wQ'X WQBWQ'X 490'¢

M(WSZ/X)i iu(WQ’BWQ’X) lu(WQ’X)

, L WBLW'X) , ) L, WBWRn(X) ) )
WQRBWQRXX —— WQBWQBWQX —— = WQRBWQ'X

\ iWQ/n(ng/X) lWQ/n(X)
1
WQ'n(X)

WQ'BWQ'X 499 €

We obtain

W (X))o u(WQ'X) o WQn(X) o u(WR'X) > WQ'n(X) o n(WR'X).
Since QX is grouplike (W' X) and WQ'n(X) are weak equivalences by Proposi-
tion 4.17. By Proposition 2.12 both homomorphisms have homotopy inverses in Mon
so that

Wn(X) o u(WR'X) ~idwax

in Mon. O

5 Immediate consequences

The James construction:

The underlying space functor U : (Mon, Mon™) — (Top*, Top™) has aleft adjoint
J : (Top*, Top"™) — (Mon, Mon"™)

commonly called the James construction, which associates with each based space X
the free based topological monoid on X.

Proposition 5.1 (James [13]) For each path-connected based space there is a weak
homotopy equivalence of spaces

JX ~Q¥X.

D. Puppe investigated the conditions which would imply for this weak homotopy
equivalence to be a genuine homotopy equivalence.

Proposition 5.2 (Puppe [25]) If X is a well-pointed path-connected Dold space then
there is a homotopy equivalence

JX ~Q¥X.
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Consider the diagram of functors

Mon? £ Top"
X‘ Q /
\ e

Top®

All functors preserve weak equivalences. Hence they induce a diagram

HoB
HoMon" : HoZop"”
Hou HO% pox
HoJ HoQ
HoZop"”

consisting of adjoint pairs. Since the Moore loop space functor is naturally homotopy
equivalent to the usual loop space functor there is a natural transformation

7(X): Uo QX)) — QX)

which is a homotopy equivalence. Hence HoS2 and HoU o Ho ' are naturally isomor-
phic. Since their left adjoints are unique up to natural isomorphisms this implies that
HoB o HoJ and HoX are naturally isomorphic. We obtain

Proposition 5.3 For each X € Top" there is a homotopy equivalence
BJ(X) ~ X(X)

natural up to homotopy. O
We obtain Puppe’s result by combining 5.3 with another well-known result:

Proposition 5.4 If M is a well-pointed monoid whose underlying space is a Dold
space and ro(M) is a group, then M is grouplike [25, (12.7)].

Proof of 5.2 If X is a path-connected Dold space, sois J X. Hence J X is grouplike and
u(WJIX): WIX — WQ'BWJX isaweak equivalence by 4.17, so that ' Be(J X) o
e(QBIX)ou(WJIX)ou(JX) : JX — Q' BJX is ahomotopy equivalence. We have
a sequence of homotopy equivalences

JX>~QBJIX~QBJX ~Q¥X.

Homotopical group completion:

Homotopical group completion is the replacement of a monoid by a grouplike one
having a universal property. We state our result for the full subcategory HoMon" of
HoMon of well-pointed monoids. Since g(M) : VM — M is a weak equivalence,
HoMon" is equivalent to Ho.Mon so that the corresponding statement for HoMon
follows.
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Proposition 5.5 Let M be a well-pointed monoid. The homotopy class of the
homomorphism w(WM) : WM — WQ'BWM, considered as a morphism in
HoMon™ (M, Q' BW M), is a group completion in the following sense: given a dia-
gram

(W M)] )
Q'BWM
7
7
le] L//m
N

in HoMon™ with N grouplike, there exists a unique morphism [g] : Q' BWM — N
making the diagram commute.

Proof Consider the homotopy commutative diagram in Mon"

w(WM) ,
WM ——— WQ'BWM

|
n(WN) ,
WN ——WQ'BWN.

iWSZ/Bg

Since N is well-pointed and grouplike (W N) is homotopy invertible in Mon™
by 4.17. We choose a homotopy inverse & : WQ'BWN — WN and define g =
hoWQ'Bg. Theng o u(WM) >~ g in Mon".

For the uniqueness of [g] suppose there is ahomomorphism g’ : WQ'BM — WN
suchthat hou(WM) ~ g.Put j; = w(WN)og'and j, = WQ'Bg. It suffices to show
that j; ~ j, in Mon®. Since Bjj o Bu(WM) ~ w(WN) o Bg ~ Bj» o Bu(WM)
and Bu(W M) is a homotopy equivalence by 4.17, we obtain Bj; ~ Bj,. Since
w(WQ'BM) and w(WSQ'BN) are homotopy equivalences in Mon® by 4.17 and
W is natural up to homotopy the following diagram is homotopy commutative and
establishes the result:

nw(WQ'BM)
WQBM ———— WQ'BWQ'BM
iWQ/Bjk

' w(WSYBN) , ,
WQ'BN — WQ'BWQ'BN.

Dold spaces and grouplike monoids

For details on Dold spaces see [20]. We restrict our attention to the well-pointed case.
Using the whiskering process it is easy to extend our results to the general case.

Let Top},,; C ZTop™ denote the full subcategory of well-pointed path-connected
Dold spaces. Since BM is in Topy, ,, for any well-pointed monoid by [20, Cor. 5.2],

@ Springer



910 R. M. Vogt

the classifying space functor restricts to a functor
. w w
B : Mon" — Topp,14-

Let Mong,,,, C Mon" denote the full subcategory of grouplike well-pointed

monoids. Then Proposition 4.17 implies

Theorem 5.6 The functors

B H Mon?

w . o/wH
group = 7_(’]—oth)ld Y

define an equivalence up to homotopy of categories, i.e. the natural transformations
up to homotopy p : Id — Q" o B and n : BYH o Q"M 5 1d take values in
homotopy equivalences. In particular,

HoB : HoMony,,,,

S HoTop}),y - HoQ'

define an equivalence of categories. O
The second part is a slight extension of a well-known result (e.g. see [3, Section

4]);Fhe following two propositions extend and strengthen results of Fuchs [9, Satz 7.7].

The diagram

WN)
Mon" (WM, WN) N Mon™ (WM, WY BWN)

\ \LA(WM,BWN)
B

Top* (BWM, BWN)
commutes up to homotopy because by 4.13,

(WM, BWN) o pe(WN),)(f) = n(BWN) o B' o t(WN),)(f)
=n(BWN)o Bu(WN) o Bf
~ Bf continuously in f

with B : Mon*” (WM, WQ'BWN) — Top” (BWM, BWQ'BWN). If N is group-
like (W N) is a homotopy equivalence in Mon", and we obtain

Proposition 5.7 If N is a well-pointed grouplike monoid then
B : Mon"(WM,WN) — Top” (BWM, BWN)
is a homotopy equivalence. m|
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Since n(X) : BWQ'X — X is a natural transformation the following diagram
commutes

Mon™ (WX, WQ'Y) <% Top”(X, Y)

\LB n(X)*i
n(Y)x

Top” (BWQX, BWQ'Y) —> Top” (BWQX, Y).

Since WQ'Y is grouplike the map B is a homotopy equivalence by 5.7. Since
n¥)x o B = MWQX,Y) the map n(Y)s : Zop”(BWQX, BWQ'Y) —
Top” (BWSQ'X, Y) is a homotopy equivalence. If X is a well-pointed path-connected
Dold space n(X) is a based homotopy equivalence by 4.17. We obtain

Proposition 5.8 If X is a well-pointed path-connected Dold space then W' :
Top™ (X, Y) - Mon¥(WQ'X, WQ'Y) is a homotopy equivalence. O

Homotopy homomorphisms and unitary homotopy homomorphisms

Proposition 5.9 Let M and N be well-pointed monoids and N be grouplike. Then
&' (M) : WM — WM induces a homotopy equivalence

Mon(WM, N) — Sgp(WM, N).

Proof By 2.7 we may replace N by WN. Since Sgp(WM, W N)) is naturally home-
omorphic to Mon(W(M,), WN) by 2.5 it suffices to show that the counit « (M) :
My — M induces a homotopy equivalence

k(M)* : Mon(WM, WN) — Mon(W (M), WN)

The diagram

Mon(WM, WN) —— 2~ Top*(BWM, BWN)
K(M)*l iBK(M)*
Mon(W(My), WN) ——E2~ Top*(BW (M), BWN)

commutes. By 5.7 the maps B are homotopy equivalences, and by 4.2 the map Bk (M)*
is a homotopy equivalence. Hence so is « (M)*. O

Remark 5.10 In general we cannot expect that &/ (M) : WM — WM induces a
homotopy equivalence. E.g. it can happen that a homomorphism WM — N does not
map (ey) into the path-component of e so that there is no chance to homotop it into
a homomorphism WM — N.
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Proposition 5.11 If M is a well-pointed monoid then Wq(M) : WVM — WM isa
homotopy equivalence in Mon™ by 2.12 inducing a homotopy equivalence

Mon(WM, N) — Mon(WVM,N).

6 Diagrams of monoids

We want to show that the homotopy adjunction of Theorem 4.5 lifts to diagram cate-
gories. This is not evident: since the unit of our homotopy adjunction is only natural
up to homotopy it does not lift to diagrams.

Let M be a cocomplete Z7op-enriched tensored category with a class # of weak
equivalences containing the homotopy equivalences. We assume that M has a strong
cofibrant replacement functor (Qys, €37). We use ® for the tensor in M and Q for
QO as long as there is no ambiguity.

Definition 6.1 Let C be a small indexing category. A morphism f : D; — D, of
C-diagrams in M is called a weak equivalence if it is objectwise a weak equivalence

in M. We denote the class of weak equivalences in MC by #/C.

Our first aim is to show that M€ admits a strong cofibrant replacement functor in
order to make additional applications of Proposition 3.4. Therefore we proceed as in
2.7 and 2.2.

We define a C x C°P-diagram B(C, C, C) in Top as follows:

B(C,C,C)(b,a) = B(C(—,b),C,C(a, —))

where the right side is the 2-sided bar construction of 4.1.
The C x CP structure on B, (C, C, C) is given by

(g,h)-(fo,...,an)=(gOf(), fla-"vfnvfn+] Oh)

Analogously we define a C°P-diagram B(x*,C,C) in 7op, where * denotes the
constant C°P-diagram on a single point.

Lemma 6.2 Let X and Y be C x CP-diagrams in Top, let p : X — Y be a map of
diagrams which is objectwise a homotopy equivalence. Then p induces a homotopy
equivalence

pe s TopS ™ (B(C,C,C), X) — Top®>"(B(C,C,C),Y)

in Top.
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Proof We apply the HELP-Lemma. So given a diagram

K —T e Tt (B(C, ¢, 0), X)

i il’*
g

L Top*C™(B(C,C,C),Y)

which commutes up to a homotopy hg, : § oi >~ p, o fx, where i is a closed
cofibration, we have to construct extensions

fiL— Top“*¢" (B, C,0), X)
h i L — Top©*C™ (B, C,C),Y)

of fx respectively hg , such that ; : g ~ py o f.
Taking adjoints the above diagram translates to the following diagram of C x C°P-
spaces

KxBC.CCO—7T o

i l

LxBCCC—F oy

which commutes up to a homotopy A} : go(i xid) =~ po f’in T opc xC® andit suffices
to construct extensions f : L x B(C,C,C) — X of f"and h; : L x B(C,C,C) - Y
of b} suchthath; : g >~ po fin TopC*C™,

We construct these extensions by induction on the natural filtration F, of L X
B(C, C, C) induced by the realization of the simplicial set B,(C, C, C). We start with
Fy= Ha,b,c L x C(c, b) x C(a, c). The diagram

K x {(id., id.)} —f,> X(c,c)

i lp

L x {(id,id.) ——* = ¥(c, ¢)

commutes up to a homotopy given by A}. Since p : X (¢, ¢) — Y (c, ¢) is a homotopy
equivalence and K — L is a closed cofibration the required extensions exist by the
HELP-Lemma. We extend f over all of Fy by f(, jo, j1) = X(jo, j1) o f(, id, id)
and analogously for &;.

Now suppose that f and /&, have been defined on F;_1. We obtain F;, from F,_;
by attaching spaces L x (jo, ..., ju+1) X A" along L X (jo, ..., jn+1) X 0A". Here
the jx are morphisms in C such that the composition
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Jjoo...jupyr1ia—>cy—>...co—> b

is defined and j, ..., j, are not identities. Hence the extension f and the homotopy
h; are already defined on

D(L X (jos s -+ Jns Jat1) X A")
=K X (o, J1s -+ Jn» Jnt1) X A" UL X (Jo, J1s -+ Ju»> Jnt1) X OA™.

We apply the HELP-Lemma to the homotopy commutative diagram

. . .. f
D(L x (id¢y, j1, ..., jn.1de,) X A") ———— X(co, ¢n)

| if’

. . .. g
L x (id¢y, jis -« -5 Jun,>1de,) X A" —————= ¥ (co, ¢n)

where f” and the commuting homotopy are given by the already defined extensions.
Since p is objectwise a homotopy equivalence and the inclusion

D(L x (idegs jiv -+ jnride,) X A" C L X (idegs jiv - - -+ jnride,) x A"

is a closed cofibration the required extensions exist. We extend our maps to maps of
diagrams as in the Fy-case. O

Let D be a C-diagram in M and X a C°P-diagram in Z7op. We define X ®¢ D to be
the coequalizer in M of

[I X (target(f)) ® D(source(f)) :a; I X(a) ® D(a)
femorC B acobC

where for f : @ — b in C the f-summand X (b) ® D(a) is mapped as follows

a=X(f)®id: X(b) ® D(a) — X(a) ® D(a)
B=1d® D(f): X(b) ® D(a) — X(b) ® D(b)

We define a functor
R:M® > MC D B(C,C,C) & QD
where B(C, C,C) ®¢ D is the C-diagram
ar> B(C(—,a),C,C) ®c D

in M.
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Proposition 6.3 Let Dy, D1, and D> be C diagrams in M, let p : Dy — Dj be a
weak equivalence in MC and q : A1 = Ay aweak equivalence in M. Then p and q
induce homotopy equivalences

ps : ME(RDy, D1) — ME(RDy, D>)
g« : M(B(*,C,C) ®c ODg, A1) = M(B(%,C,C) ®c QDy, A2)

in Top.

Proof Since M€ (RDy, D;) = Top*C* (B(C, C,C), M(QDy, D)) it follows from
Lemma 6.2 with X (b, a) = M(Q Dy(a), D1(b)) and Y (b, a) = M(Q Dg(a), D1(b))
that p, is a homotopy equivalence.

There is a sequence of natural homeomorphisms

M(B(x,C.C) ®c QDo, Aj) = Top®” (B(x,C.C), M(QDo, A)

=~ Top©” (colime B(C, C, C), M(Q Dy, A;)

~ Topcxc“p(B(C, C,C), M(QDy, constA;)
where constA; are the constant C-diagrams on A;. As in the first part, it follows that
g« 1s a homotopy equivalence. O

Let C, denote the C x C°P-diagram of simplical sets sending (b, a) to the constant
simplicial set C(a, b). The maps
n 2 Ba(C,C,C)(b,a) = B,(C(—, b),C,C(a,—)) —> C(a, D)
(o, --vs fag1) = foo...0 fuqi

define a simplicial map Bo(C,C,C) — C,.Leté : B(C,C,C) — C be its realization.

Proposition 6.4 §(D) = §®cidp : B(C,C,C) ®c D — C®c D = D is objectwise
a homotopy equivalence in M and hence a weak equivalence in ME.

The proposition is an immediate consequence of the following Lemma:
Lemma 6.5 For each object b € C the map ¢ : B(C,C,C)(—,b) — C(—,b) isa

homotopy equivalence in the category Topc "

Proof Fora € C let X, denote the category whose ob_]ects are diagrams a ﬂ) c b

and whose morphisms from this object to a ]—> ¢ 2% pare morphisms & : ¢ — ¢’ in
C making the diagram

a h b
x i
¢
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916 R. M. Vogt

commute. Let C(a, b) stand for the discrete category whose object set is C(a, b). Then

b0 Xy = Ca,b), @ c by (ooji:a—b)
defines a functor which has the section
sq :Cla,b) = X,;, j— (ai;bgb).

There is a natural transformation 7, : Idy, — s, o &, defined by the diagram

So g, induces a homotopy equivalence of the classifying spaces. Now B(X,) =
B(C,C,C(a, b)) and B(C(a, b)) = C(a, b). Moreover all data are natural with respect
to a € C°P. Hence we obtain the required result. O

When we combine 6.3 and 6.4 we obtain the following corollary.

Corollary 6.6 R : MC > MCE together with € = § @¢c ey © R — 1d is a strong
cofibrant replacement functor.

Let NV be another cocomplete Zop-enriched tensored category with a class of weak
equivalences containing the homotopy equivalences and a strong cofibrant replacement
functor (Qy, en).

Theorem 6.7 Let
F-MSN:G
be continuous functors inducing a natural homotopy equivalence
MOMA, ONX) : M(QuA, QuGONX) - N(ONFQOuA, OnX)
so that
F' i HM S HN : G
is a conatural adjunction up to homotopy. Then
(FOM™ : HME) = HWE) : (GHM
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is an adjunction up to homotopy, and hence
Ho(F€) : Ho(ME) = Ho(WC) : Ho(G€)

a genuine adjunction.

Proof For diagrams D : C —- M and Z : C — N we have a sequence of natural
maps

TopC*C™ (B(C,C,C). N(Qn FOuD. OnZ)) — > NC(RyFQuD. QnZ)

MOuD,ONZ)x \LRN F8(QuD)*
Top*C" (B(C.C,C), M(QuD, QuGONZ)) NC(RyFRyD, OnZ)
= T‘S(QNZ)*
MC(RyuD, OuGONZ) NC(RyFRyD, RyZ)
S(OMGONZ)«
ME(Ry D, RuGONZ)
RuGS(ONZ)x

MC(Ry D, RyGRNZ)

By assumption A(Q y D, Qn Z) is ahomotopy equivalence. Since § (D) is objectwise a
homotopy equivalence and since continuous functors preserve homotopy equivalences,
Ry GS(QNZ) and Ry F6(Q p D) are homotopy equivalences in MC by 6.3 so that
Ry G3(QnZ)yand Ry F§(Qpy D)* are homotopy equivalencesin Zop,and §(Q y Z) «
and §(Qm G QN Z)4 are homotopy equivalences in 7op by 6.3. O

6.8. Addendum: The last natural map in the proof of the theorem points in the wrong
direction. So we cannot conclude that (F C)H and (GC)H are a conatural homotopy
adjoint pair.

N(ONY) =A(QuGONY, ONY)(doy,cony) : ONFOMGONY — OpNY
is natural with respect to morphisms f : QnY; — QnY2 in NV, If 5 extends to a

natural map n(Y) : OnFQuGY — Y forall Y € N or at least for all Y of the form
Y = RyY’ we obtain a natural map AC(RMD, Ry Z) defined by

MC(Ry D, RyGRNZ) MC(RNFRyD, RVFRyGRyZ)

N(RnZ)
W l "

NC(RyFRyD, RyZ)
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which makes the diagram of the proof of the theorem commute so that (F C)H and
(G€)M are a conatural homotopy adjoint pair.
For use in the next proposition we note

Lemma 6.9 Let D : C — Mon" be a diagram of well-pointed monoids. Then
B(x,C,C)®c¢ D is awell-pointed space, and B(C,C,C)®¢ D and B(C,C,C)®c WD
are diagrams of well-pointed monoids.

Proof The first part holds by [17, Prop. 7.8]. The second and third statement follow
by the argument used in [17, Prop. 7.8]. O

From 6.6 and 6.9 we obtain

Proposition 6.10 With the choices of weak equivalences W as in 3.8 the functors

Mon® — Mon® D+ B(C,C,C)®c WVD
(Mon")¢ — (Mon*)¢ D+ B(C,C,C) @ WD
Sgp© — Sgp’ D+ B(C,C.C) ® WD

(Top*)C — (Top*)¢ D> B(C.C.C)4 Ac VD
(Top”)¢ — (Top”)* D+ B(C,C,C) A¢ D

together with the corresponding natural transformations € are strong cofibrant
replacement functors with respect to the weak equivalences in #C. In particular,
the localizations of these categories with respect to #C exist. (Recall that KinXis
the tensor over Top in Top*.)

Since Addendum 6.8 applies to our situation in Sect. 4 we obtain

Theorem 6.11 The homotopy adjunctions of Theorems 4.4 and 4.5 lift to conatural
homotopy adjunctions

(BSM - H(Mon™)¢ =—= (Top®)C : ()™
and
(BEYM . HMon® == Top*© : (@M.
There are natural adjunction homotopy equivalences

AMRD, QZ) : (Mon®)°(RD, R QZ) — (Top”)*(QBRD, QZ)
MRV D, OV'Z) : Mon®(RVD, RVQ QV'Z) — Top**(QV'BRV D, QV'Z)
in Top, where (R, €) and (Q, €') are the cofibrant replacement functors in (Mon™)C
respectively (Top™)C of 6.10. Hence

HoB¢ : Ho(Mon™)¢ < Ho(Top™)C : HoQ'C
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and
HoBC : Ho(Mon)¢ < Ho(Top*)© : HoQ®
are genuine adjunctions.
Theorem 6.12 Let M be as above. Then the adjoint pair of functors
colim : M® = M : const
induces a conatural adjunction up to homotopy
colim™ : HMC = HM : const™.
Hence we obtain a genuine adjunction
Hocolim : HoMC < HoM : Hoconst
Proof We have the following sequence of natural homotopy equivalences and
homeomorphisms from HME (D, const™A) = MCE(RD, R(constQA)) to HM
(colim”D, A) = M(Q(colimRD), QA):

e(constQA)y
_

1. M®(RD, R(constQA)) MCE(RD, constQA)

2. =, M(colimRD, QA)
3, EulcoimRPY A (0 (colimQ D), QA).

The first map is a homotopy equivalence by 6.3, the second one is the adjunction home-
omorphism, and the third one is a homotopy equivalence, because ¢y (colimR D) :
QcolimRD — colimR D is a homotopy equivalence in M by 6.3. O

Definition 6.13 Let M be a cocomplete 7op-enriched tensored category with a class
W of weak equivalences containing the homotopy equivalences and equipped with
a strong cofibrant replacement functor (Q, €). Then the homotopy colimit functor
hocolim : M€ — M is defined by

hocolimD = colimRD = B(*,C,C) ®¢ OD.
Remark 6.14 In the literature one often finds the homotopy colimit defined by
hocolimD = B(x,C,C) ®¢ D (e.g. see [12, 18.1.1]). This has historical reasons

because homotopy colimits were first defined in categories where all object were
cofibrant.

We apply these results to Mon and prove
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Theorem 6.15 The classifying space functor
B : (Mon, Mon™) — (Top*, Top™)

preserves homotopy colimits up to genuine homotopy equivalences. More precisely,
for any diagram D : C — Mon the natural map

hocolim??”" BD — B(hocolim™" D)

is a homotopy equivalence.

Proof By definition of the homotopy colimit functor it suffices to prove the well-
pointed case.
Consider the diagram

YiMonw)© Hocoli
(Mon")¢ —————— Ho(Mon")° o HoMon
B¢ l HoB¢ i HoB
(Topw)c Top™ Ho(Top*)c Hocolim HOTOpw

and recall that Hocolim is induced by the homotopy colimit functor. Since B preserves
weak equivalences in the well-pointed case, BC induces HoBC so that the left square
commutes up to natural equivalence. The right square commutes up to natural equiv-
alence, because the corresponding square of right adjoints commutes. Hence, for any
diagram D in Mon, the natural map

hocolim???" BD — B(hocolimM‘mw D)

becomes an isomorphism in HoZop” = w7op™. O
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