

Algebraic *K*-theory of the infinite place

Jakob Scholbach

Received: 8 April 2013 / Accepted: 5 June 2014 / Published online: 8 July 2014 © Tbilisi Centre for Mathematical Sciences 2014

Abstract We show that the algebraic *K*-theory of generalized archimedean valuation rings occurring in Durov's compactification of the spectrum of a number ring is given by stable homotopy groups of certain classifying spaces. We also show that the "residue field at infinity" is badly behaved from a *K*-theoretic point of view.

Keywords Algebraic K-theory · Complexes of groups · Infinite place

1 Introduction

In number theory, it is a universal principle that the spectrum of \mathbb{Z} should be completed with an infinite prime. This is corroborated, for example, by Ostrowski's theorem, the product formula

$$\prod_{p \le \infty} |x|_p = 1, \ x \in \mathbb{Q}^{\times},$$

the Hasse principle, Artin–Verdier duality, and functional equations of L-functions.

This "compactification" $\operatorname{Spec} \widehat{\mathbb{Z}} := \operatorname{Spec} \mathbb{Z} \cup \{\infty\}$ was just a philosophical device until recently: Durov has proposed a rigorous framework which allows for a discussion of, say, $\mathbb{Z}_{(\infty)}$, the local ring of $\operatorname{Spec} \widehat{\mathbb{Z}}$ at $p = \infty$ [1]. The purpose of this work is to study the *K*-theory of the so-called generalized rings intervening at the infinite place.

Algebraic *K*-theory is a well-established, if difficult, invariant of arithmetical schemes. For example, the pole orders of the Dedekind ζ -function $\zeta_F(s)$ of a number

Communicated by Chuck Weibel.

J. Scholbach (\boxtimes)

Mathematisches Institut, Universität Münster, Einsteinstr. 62, 48149 Münster, Germany e-mail: Jakob.Scholbach@uni-muenster.de

field *F* are expressible by the ranks of the *K*-theory groups of \mathcal{O}_F , the ring of integers. By definition, *K*-theory only depends on the category of projective modules over a ring. Therefore, this interacts nicely with Durov's theory of *generalized rings* which describes (actually: defines) such a ring *R* by defining its free modules. For example, the free $\mathbb{Z}_{(\infty)}$ -module of rank *n* is defined as the *n*-dimensional octahedron, i.e.,

$$\mathbb{Z}_{(\infty)}(n) := \left\{ (x_1, \ldots, x_n) \in \mathbb{Q}^n, \sum_i |x_i| \le 1 \right\}.$$

The abstract theory of such modules is a priori more complicated than in the classical case since $\mathbb{Z}_{(\infty)}$ -modules fail to build an abelian category. Nonetheless, using Waldhausen's *S*_•-construction it is possible to study the *algebraic K-theory* of $\mathbb{Z}_{(\infty)}$ and similar rings occurring for other number fields (Theorem 3.10, Definition 3.12).

Theorem 3.14. The K-groups of $\mathbb{Z}_{(\infty)}$ are given by

$$K_i(\mathbb{Z}_{(\infty)}) = \pi_i^{s}(B\mu_2 \sqcup \{*\}, *) = \begin{cases} \mathbb{Z} & i = 0 \ (Durov[Dur, 10.4.19]) \\ \mathbb{Z}/2 \oplus \mu_2 & i = 1 \\ a \text{ finite group } i > 1. \end{cases}$$

The $\mathbb{Z}/2$ -part in K_1 stems from the first stable homotopy group π_1^s , while $\mu_2 = \{\pm 1\}$ arises as the subgroup of $\mathbb{Z}_{(\infty)}$ of elements of norm 1, i.e., the subgroup of (multiplicative) units of $\mathbb{Z}_{(\infty)}$. The finite K-group for i > 1 is the abutment of an Atiyah–Hirzebruch spectral sequence.

This theorem is proven for more general generalized valuation rings including $\mathcal{O}_{F(\sigma)}$, the ring corresponding to an infinite place σ of a number field F. In this case the group μ_2 above is replaced by the group $\{x \in F, |\sigma(x)| = 1\}$. The basic point is this: the only admissible monomorphisms (i.e., the ones occurring in the S_{\bullet} -construction of K-theory)

$$\mathbb{Z}_{(\infty)}(1) = [-1, 1] \cap \mathbb{Q} \to \mathbb{Z}_{(\infty)}(2)$$

are given by mapping the interval to one of the two diagonals of the lozenge. Thereby, the Waldhausen category structure on free $\mathbb{Z}_{(\infty)}$ -modules turns out to be equivalent to the one of finitely generated pointed $\{\pm 1\}$ -sets, whose *K*-theory is well-known. In the course of the proof we also show that other plausible definitions, such as the *S*⁻¹ *S*-construction, the *Q*-construction, and the +-construction yield the same *K*-groups.

We finish this note by pointing out two *K*-theoretic differences of the infinite place: we show that $K_0(\mathbb{F}_{\infty}) = 0$ (Proposition 4.2), as opposed to $K_0(\mathbb{F}_p) = \mathbb{Z}$. Also, the completions at infinity are not well-behaved from a *K*-theoretic viewpoint. These remarks raise the question whether the "local" ring $\mathbb{Z}_{(\infty)}$ should be considered regular or, more precisely, whether

$$K_0(\mathbb{Z}_{(\infty)}) \to K'_0(\mathbb{Z}_{(\infty)}) := \mathbb{Z}[\text{finitely presented } \mathbb{Z}_{(\infty)} - \mathbf{Mod}]/\text{short exact sequences}$$

is an isomorphism. Unlike in the classical case, there does not seem to be an easy resolution argument in the context of Waldhausen categories. Another natural question is whether there is a Mayer–Vietoris sequence of the form

$$K_i(\widehat{\mathbb{Z}}) \to K_i(\mathbb{Z}) \oplus K_i(\mathbb{Z}_{(\infty)}) \to K_i(\mathbb{Q}) \to K_{i-1}(\widehat{\mathbb{Z}}),$$

where $\widehat{\mathbb{Z}}$ is a generalized scheme obtained by glueing Spec \mathbb{Z} and Spec $\mathbb{Z}_{(\infty)}$ along Spec \mathbb{Q} . The usual proof of this sequence proceeds by the localization sequence, which is not available in our context.

Throughout the paper, we use the following *notation*: *F* is a number field with ring of integers \mathcal{O}_F . Finite primes of \mathcal{O}_F are denoted by \mathfrak{p} . We write Σ_F for the set of real and pairs of complex embeddings of *F*. The letter σ usually denotes an element of Σ_F . It is referred to as an infinite prime of \mathcal{O}_F .

2 Generalized rings

In a few brushstrokes, we recall the definition of generalized rings and their modules and some basic properties. Everything in this section is due to Durov. All references in brackets refer to [1], where a much more detailed discussion is found.

A monad in the category of sets is a functor $R : \mathbf{Sets} \to \mathbf{Sets}$ together with natural transformations $\mu : R \circ R \to R$ and $\epsilon : \mathrm{Id} \to R$ required to satisfy an associativity and unitality axiom akin to the case of monoids. We will write $R(n) := R(\{1, \ldots, n\})$. An *R*-module is a set *X* together with a morphism of monads $R \to \mathrm{End}(X)$, where the endomorphism monad $\mathrm{End}(X)$ satisfies $\mathrm{End}(X)(n) = \mathrm{Hom}_{\mathbf{Sets}}(X^n, X)$. In other words, *X* is endowed with an action

$$R(n) \times X^n \to X$$

satisfying the usual associativity conditions. Thus, R(n) can be thought of as the *n*-ary operations (acting on any *R*-module).

Definition 2.1 (*Durov* [5.1.6]) A *generalized ring* is a monad *R* in the category of sets satisfying two additional properties:

- *R* is *algebraic*, i.e., it commutes with filtered colimits. Since every set is the filtered colimit of its finite subsets, this implies that *R* is determined by R(n) for $n \ge 0$ [4.1.3].
- *R* is *commutative*, i.e., for any $t \in R(n)$, $t' \in R(n')$, any *R*-module *X* (it suffices to take $X = R(n \times n')$) and $A \in X^{n \times n'}$, we have

$$t(t'(A)) = t'(t(A)),$$

where on the left hand side $t'(A) \in X^n$ is obtained by letting act t' on all rows of A and similarly (with columns) on the right hand side.

For a unital associative ring R (in the sense of usual abstract algebra), let

$$R(S) := \bigoplus_{s \in S} R$$

be the free *R*-module of rank $\sharp S$, where *S* is any set. The addition and multiplication on *R* turn this into an (algebraic) monad which is commutative iff R = R(1) is [3.4.8]. Indeed, the required map

$$R(1) \times R(1) \to R(1) \tag{1}$$

is just the multiplication in R, while the addition is reformulated as

$$R(2) \times (R(1) \times R(1)) \to R(1), ((x_1, x_2), (y_1, y_2)) \mapsto \sum x_i y_i.$$

Note that (1) is required to exist for any monad, so multiplication is in a sense more fundamental than addition, which requires the particular element $(1, 1) \in R(2)$ [3.4.9].

Reinterpreting a ring as a monad in this way defines a functor from commutative rings to generalized rings, which is easily seen to be fully faithful: given two classical rings R, R', and a map of monads, i.e., a collection of maps $R(n) = R^n \rightarrow R'(n) = R'^n$, one checks that the maps for $n \ge 2$ are determined by $R \rightarrow R'$. In the same vein, *R*-modules in the classical sense are equivalent to *R*-modules (in the generalized sense). Henceforth, we will therefore not distinguish between classical commutative rings and their associated generalized rings.

The initial generalized ring is the monad \mathbb{F}_0 : **Sets** \rightarrow **Sets**, $M \mapsto M$. Its modules are just the same as sets. The monad **Sets** $\ni M \mapsto M \sqcup \{*\}$ is denoted \mathbb{F}_1 . Neither of these two generalized rings is induced by a classical ring. See Definition 3.2 for our main example of a non-classical ring.

Given a morphism $\phi : R \to S$ of generalized rings, the forgetful functor $\mathbf{Mod}(S) \to \mathbf{Mod}(R)$ between the module categories has a left adjoint ϕ^* : $\mathbf{Mod}(R) \to \mathbf{Mod}(S)$ called *base change*. We also denote it by $-\otimes_R S$. Being a left adjoint, this functor preserves colimits [4.6.19]. For example, for a generalized ring *R*, the unique map $\mathbb{F}_0 \to R$ of generalized rings induces an adjunction

$$\mathbf{Sets} = \mathbf{Mod}(\mathbb{F}_0) \leftrightarrows \mathbf{Mod}(R)$$
: forget

Its left adjoint is explicitly given by $X \mapsto R(X)$, the so-called *free R-module* on some set X. That is,

$$\operatorname{Hom}_{\operatorname{Mod}(R)}(R(X), M) = \operatorname{Hom}_{\operatorname{Sets}}(X, M)$$

as in the classical case.

Coequalizers and arbitrary coproducts exist in Mod(R), for any generalized ring R [4.6.17]. Therefore, arbitrary colimits exist. Base change functors ϕ^* commute with coequalizers. Moreover, arbitrary limits exist in Mod(R), and commute with the forgetful functor $Mod(R) \rightarrow Sets$ [4.6.1].

An *R*-module *M* is called *finitely generated* if there is a surjection $R(n) \rightarrow M$ for some $0 \le n < \infty$ [4.6.9]. Unless the contrary is explicitly mentioned, all our modules are supposed to be finitely generated over the ground generalized ring in question. An *R*-module *M* is *projective* iff it is a retract of a free module, i.e., if there

are maps $M \xrightarrow{i} R(n) \xrightarrow{p} M$ with $pi = id_M$. As in the classical case this is equivalent to the property that for any surjection of *R*-modules $N \rightarrow N'$, $\operatorname{Hom}_{\operatorname{Mod}(R)}(M, N)$ maps onto $\operatorname{Hom}_{\operatorname{Mod}(R)}(M, N')$ [4.6.23]. The categories of (finitely generated) free and projective *R*-modules are denoted **Free**(*R*) and **Proj**(*R*), respectively.

As usual, an *ideal I* of *R* is a submodule of R(1). A proper ideal $I \subsetneq R(1)$ is called *prime* if $R(1) \setminus I$ is multiplicatively closed [6.2.2].

3 Archimedean valuation rings

3.1 Definitions

Let *K* be an integral domain equipped with a norm $|-|: K \to \mathbb{R}^{\geq 0}$. We will write *Q* for the quotient field of *K*. We put $E := \{x \in K, |x| = 1\}$. We also write |x| for the L^1 -norm on K^n , i.e., $|x| = \sum_i |x_i|$. Throughout, we assume:

Assumption 3.1 (A) $|K^{\times}| = \{|k|, k \in K^{\times}\} \subset \mathbb{R}^{\geq 0}$ is dense. (B) $E \subset K^{\times}$.

Definition 3.2 The (*generalized*) valuation ring associated to (K, |-|) is the submonad \mathcal{O} of K given by

$$\mathcal{O}(S) := \left\{ x = (x_s) \in \bigoplus_{s \in S} K, |x| := \sum_{s \in S} |x_s| \le 1 \right\}.$$

This is clearly algebraic. Moreover, the multiplication of the monad, i.e., $\mathcal{O} \circ \mathcal{O} \rightarrow \mathcal{O}$ is well-defined by restricting the one of *K* (and is therefore commutative):

$$\mathcal{O}(\mathcal{O}(n)) = \left\{ (y_x) \in \bigoplus_{x \in \mathcal{O}(n)} K, \sum_x |y_x| \le 1 \right\} \to \mathcal{O}(n)$$

sends (y_x) to (the finite sum) $\sum_x y_x \cdot x$. A priori, this expression is an element of K^n , only, but is actually contained in $\mathcal{O}(n)$ since

$$\left|\sum_{x} y_{x} \cdot x\right| \leq \left(\sum_{x} |y_{x}|\right) \cdot \sup|x| \leq 1.$$

In the case of an archimedean valuation, this definition of \mathcal{O} is the one of Durov [1, 5.7.13]. For non-archimedean valuations, Durov's original definition gives back the (generalized ring corresponding to the) ordinary ring $\{x \in K, |x| \le 1\}$ which is different from Definition 3.2 (see Example 3.4).

By definition, an \mathcal{O} -module M is therefore a set such that an expression $\sum_{i=1}^{n} \lambda_i m_i$ is defined for $n \ge 0$, $m_i \in M$, $\lambda_i \in K$ such that $\sum |\lambda_i| \le 1$, obeying the usual laws of commutativity, associativity and distributivity. Maps $f : M \to N$ of \mathcal{O} -modules are described similarly: they satisfy $f(\sum_i \lambda_i m_i) = \sum_i \lambda_i f(m_i)$. The set {0}, with its

obvious \mathcal{O} -module structure is both an initial and terminal \mathcal{O} -module. Given a map $f: M' \to M$ of \mathcal{O} -modules, the (co)kernel is defined to be the (co)equalizer of the two morphisms f and $M' \to 0 \to M$. As was noted above, the forgetful functor $\mathcal{O} - \mathbf{Mod} \to \mathbf{Sets}$ preserves limits, so the kernel ker f is just $f^{-1}(0)$. The cokernel is described by the following proposition. Also see Remark 3.11 for an explicit example of a cokernel computation.

Proposition 3.3 Given a map $f: M' \to M$ of \mathcal{O} -modules, the cokernel is given by

$$coker(f) = M/\sim,$$
 (2)

where \sim is the equivalence relation generated by $\sum_{i \in I} \lambda_i m_i \sim \sum_{i \in I} \lambda_i \tilde{m}_i$, where I is any finite set, $\lambda = (\lambda_i) \in \mathcal{O}(\sharp I)$ and $m_i, \tilde{m}_i \in M$ are such that either $m_i = \tilde{m}_i$ or both $m_i, \tilde{m}_i \in f(M') \subset M$. This set is endowed with the \mathcal{O} -action via the natural projection $\pi : M \to \operatorname{coker}(f)$.

Proof This follows from the description of cokernels given in [1, 4.6.13]. It is also easy to check the universal property directly: we clearly have $\pi \circ f = 0$. Given a map $t: M \to T$ of \mathcal{O} -modules such that tf = 0, we need to see that t factors uniquely through coker f. The unicity of the factorization is clear since $M \to \operatorname{coker} f$ is onto. The existence is equivalent to $t(m_1) = t(m_2)$ whenever $\pi(m_1) = \pi(m_2)$. This is obvious from the definition of the equivalence relation \sim above.

The base change functor resulting from the monomorphism $\mathcal{O} \subset K$ of generalized rings is denoted

$$(-)_K : \mathbf{Mod}(\mathcal{O}) \to \mathbf{Mod}(K).$$

Actually, using Assumption 3.1, we may pick $t \in K^{\times}$ such that |t| < 1. Then, K is the unary localization $K = \mathcal{O}[1/t]$. This is shown in [1, 6.1.23] for $K = \mathbb{R}$. The proof for a general domain is the same. Therefore K is flat over \mathcal{O} , so $(-)_K$ preserves finite limits, in particular kernels [1, 6.1.2, 6.1.8]. Recall from p. 4 that $(-)_K$ also preserves colimits, such as cokernels.

Let $E(n) := \{x \in K(n) = K^n, |x| = 1\}$ be the "boundary" of $\mathcal{O}(n)$. (This is merely a collection of sets, not a monad.) We write \mathcal{O} for $\mathcal{O}(1)$ and E for E(1), if no confusion arises. In particular, $x \in \mathcal{O}$ means $x \in \mathcal{O}(1)$. The *i*-th standard coordinate vector $e_i = (0, ..., 1, ..., 0)$ is called a *basis vector* of $\mathcal{O}(n)$ $(1 \le i \le n)$.

Example 3.4 Let *F* be a number field with ring of integers \mathcal{O}_F . We fix a complex embedding $\sigma : F \to \mathbb{C}$ and take the norm |-| induced by σ . Let *K* be either $\mathcal{O}_F[1/N]$ where $N \in \mathbb{Z}$ has at least two distinct prime divisors, or *F*, or \widehat{F}^{σ} , the completion of *F* with respect to σ . The respective generalized valuation rings will be denoted $\mathcal{O}_{F,1/N,(\sigma)}, \mathcal{O}_{F,(\sigma)}$, and $\mathcal{O}_{F,\sigma}$, respectively. For example, $\mathcal{O}_{F,(\sigma)} = \mathcal{O}_{F,(\overline{\sigma})}$. Assumption 3.1(A) is satisfied: for $\mathcal{O}_F[1/N]$, pick two distinct prime divisors $p_1 \neq p_2$ of *N*. The elements $p_1^{n_1} p_2^{n_2} \in K$ are invertible for any $n_1, n_2 \in \mathbb{Z}$. The subgroup $\{\log(|p_1^{n_1}p_2^{n_2}|), n_i \in \mathbb{Z}\} \subset \mathbb{R}$ is dense: otherwise it was cyclic, in contradiction to the \mathbb{Q} -linear independence of log p_1 and log p_2 (Gelfand's theorem).

As for Assumption 3.1(B), let $x \in K$ with |x| = 1. If σ is a real embedding, $x = \pm |x| = \pm 1$. If σ is a complex embedding, let $\overline{\sigma}$ be its complex conjugate and $\overline{x} \in K$ be such that $\sigma(\overline{x}) = \overline{\sigma}(x)$. Then $\sigma(x)\sigma(\overline{x}) = \sigma(x)\overline{\sigma(x)} = |\sigma(x)|^2 = 1$ implies $x \in K^{\times}$.

According to Durov, $\mathcal{O}_{F,(\sigma)}$ is the replacement for infinite places of the local rings $\mathcal{O}_{F(\mathfrak{p})}$ at finite places. However, the analogy is relatively loose, as is shown by the following two remarks: first, for $p < \infty$, let $|x|_p := p^{-v_p(x)}$ for $x \in \mathbb{Q}^{\times}$. Then the generalized ring $\mathbb{Z}_{|-|_p}$ (in the sense of Definition 3.2) maps injectively to the localization $\mathbb{Z}_{(p)}$ of \mathbb{Z} at the prime ideal p, but the map is a bijection only in degrees $\leq p$. (Less importantly, Assumption 3.1(A) is not satisfied for $\mathbb{Z}_{|-|_p}$.)

Secondly, recall that the semilocalization $\mathcal{O}_{F(\mathfrak{p}_1,\mathfrak{p}_2)} = \mathcal{O}_{F(\mathfrak{p}_1)} \cap \mathcal{O}_{F(\mathfrak{p}_2)}$ at two finite primes is one-dimensional. In analogy, pick two $\sigma_1, \sigma_2 \in \Sigma_F$ and consider $\mathcal{O} := \mathcal{O}_{(\sigma_1)} \cap \mathcal{O}_{(\sigma_2)} \subset F$, i.e.,

$$\mathcal{O}(n) := \left\{ (x_1, \dots, x_n) \in F^n, \sum_k |\sigma_i(x_k)| \le 1 \quad \text{for } i = 1, 2 \right\}.$$

Let $\mathfrak{p}_i = \{x \in \mathcal{O}, |\sigma_i(x)| < 1\}$ and $\mathfrak{p} := \{x \in \mathcal{O}, |\sigma_1(x)\sigma_2(x)| < 1\}$. These are ideals: for example, for $x = (x_j) \in \mathcal{O}(n), s_1, \dots, s_n \in \mathfrak{p}$, we need to check $\sum s_j x_j \in \mathfrak{p}$: if, say, $|\sigma_1(s_1)| < 1$ then

$$\left|\sigma_1\left(\sum_j s_j x_j\right)\right| \le \sum |\sigma_1(s_j)| |\sigma_1(x_j)| < \sum |\sigma_1(x_j)| \le 1.$$

The complement $\mathcal{O} \setminus \mathfrak{p} = \{x, |\sigma_1(x)| = |\sigma_2(x)| = 1\}$ is multiplicatively closed (and contains 1). We get a chain of prime ideals

$$0 \subsetneq \mathfrak{p}_1 \subset \mathfrak{p} \subsetneq \mathcal{O}.$$

The middle inclusion is, in general, strict, namely when $F = \mathbb{Q}[t]/p(t)$ with some irreducible polynomial p(t) having zeros $a_1, a_2 \in \mathbb{C}$ with $|a_1| = 1$, $|a_2| < 1$. That is, Spec \mathcal{O} is not one-dimensional.

3.2 Projective and free O-modules

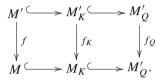
In this section we gather a few facts about projective and free \mathcal{O} -modules. We begin with a handy criterion for monomorphisms of certain \mathcal{O} -modules (Lemma 3.5). Lemma 3.6 concerns a particular unicity property of the basis vectors $e_i = (0, \ldots, 0, 1, 0, \ldots, 0) \in \mathcal{O}(n)$. This is used to prove Theorem 3.7: every projective \mathcal{O} -module is free, provided that the norm is archimedean. This improves a result of Durov which treats only the cases where \mathcal{O} is either the "unclompeted local ring" of a number ring at an infinite place σ , $\mathcal{O}_{F,(\sigma)}$, in the case where σ is a real embedding or the "completed local ring" $\mathcal{O}_{F,\sigma}$ for both real and complex places. Therefore, we only study the *K*-theory of free \mathcal{O} -modules in this paper (but see Remark 3.18). We also

use Lemma 3.6 to establish a highly combinatorial flavor of automorphisms of free \mathcal{O} -modules (Proposition 3.9), which will later give rise to the computation of higher *K*-theory of \mathcal{O} .

Lemma 3.5 (compare [1, 2.8.3.]) Let $f : M' \to M$ be a map of \mathcal{O} -modules. We suppose both M' and M are submodules of free \mathcal{O} -modules. (For example, they might be projective.) Then the following are equivalent:

- a) $f_Q: M'_Q \to M_Q$ is injective, where Q is the quotient field of K,
- b) $f_K: M'_K \to M_K$ is injective,
- c) f is injective (as a map of sets),
- d) f is a monomorphism of \mathcal{O} -modules,

Proof Consider the diagram



Its horizontal maps are injective since both modules are submodules of free modules and, for these, $\mathcal{O}(n) \subset K(n) = K^n \subset Q(n) = Q^n$. This shows (a) \Rightarrow (b) \Rightarrow (c). (c) implies (d) since the forgetful functor $\mathbf{Mod}(\mathcal{O}) \rightarrow \mathbf{Sets}$ is faithful. (d) \Rightarrow (b): by Assumption 3.1, we may pick $t \in K^{\times}$ with |t| < 1. Any two element of M'_K are of the form m'_1/t^n , m'_2/t^n , where $m'_1, m'_2 \in M'$ and $n \ge 0$. Suppose that $f_K(m'_1/t^n) = f(m'_1)/t^n$ agrees with $f_K(m'_2/t^n)$. The multiplication with t^{-n} is injective on M'_K , since $M'(M'_K)$ is a submodule of a free \mathcal{O} - (K-, respectively) module. Thus $f(m'_1) = f(m'_2)$ so the assumption (d) implies our claim. Finally (b) \Rightarrow (a) follows from the flatness of Q over K.

The following lemma can be paraphrased by saying that the basis vectors $e_i = (0, ..., 1, ..., 0) \in \mathcal{O}(n)$ cannot be generated as a nontrivial \mathcal{O} -linear combination of other elements of $\mathcal{O}(n)$.

Lemma 3.6 Suppose that K is a field (as opposed to a domain). Suppose further that

$$e_i = \sum_{j=1}^m \lambda_j f_j \tag{3}$$

with $f_j \in \mathcal{O}(n)$ and $(\lambda_j)_j \in \mathcal{O}(m)$, $\lambda_j \neq 0$. Then for each j, $f_j = \mu_j \cdot e_i$ with $\mu_j \in E$.

Proof The proof proceeds by induction on m, the case m = 1 being trivial.

Each f_j can be written as $f_j = \sum_{l=1}^n \kappa_{jl} e_l$ with $(\kappa_{jl})_l \in \mathcal{O}(n)$. We get

$$1 = |e_i| \stackrel{(3)}{=} |\sum \lambda_j f_j| \le \sum |\lambda_j| |f_j| \le \sum |\lambda_j| \le 1.$$
(4)

Therefore equality holds throughout. We have $e_i = \sum_{j,l} \lambda_j \kappa_{jl} e_l$. This *K*-linear relation between the basis vectors of K^n yields $1 = \sum_j \lambda_j \kappa_{jl}$. Hence

$$1 \le \sum_{j} |\lambda_{j} \kappa_{ji}| \le \underbrace{\left(\sum_{\substack{i \le j \\ (\stackrel{4}{\Longrightarrow})}} |\lambda_{j}|\right)}_{\stackrel{(4)}{=} 1} \cdot \max_{j} |\kappa_{ji}|.$$

On the other hand, $|\kappa_{ji}| \le 1$, so there is some j_0 such that $|\kappa_{j_0i}| = 1$. Using $\sum_l |\kappa_{j_0l}| \le 1$ we see $\kappa_{j_0l} = 0$ for all $l \ne i$, thus $f_{j_0} = \kappa_{j_0i}e_i$. Put $\mu_{j_0} := \kappa_{j_0i}(\in E)$, so

$$(1 - \lambda_{j_0} \mu_{j_0}) e_i = \sum_{j \neq j_0} \lambda_j f_j$$

holds. If $|\lambda_{j_0}\mu_{j_0}| = 1$, we are done since all other λ_j , $j \neq j_0$ must vanish in this case. If $|\lambda_{j_0}\mu_{j_0}| < 1$, then

$$e_i = \sum_{j \neq j_0} \frac{\lambda_j}{1 - \lambda_{j_0} \mu_{j_0}} f_j.$$

This finishes the induction step since the right hand side is actually an O-linear combination of the f_i , for

$$\sum_{j \neq j_0} |\lambda_j| \stackrel{(4)}{=} 1 - |\lambda_{j_0}| = 1 - |\lambda_{j_0} \mu_{j_0}| \le |1 - \lambda_{j_0} \mu_{j_0}|.$$

Theorem 3.7 Suppose that the norm |-| giving rise to the generalized valuation ring O is archimedean. Then every projective O-module M is free.

Proof Let K' be the completion (with respect to the norm |-|) of Q, the quotient field of K. By Ostrowski's theorem, we have either $K' = \mathbb{R}$ or $K' = \mathbb{C}$ (with their usual norms). Let us write $-' := - \bigotimes_{\mathcal{O}} \mathcal{O}'$, where $\mathcal{O}' := \mathcal{O}_{K'}$ is the generalized valuation ring belonging to K'. We consider the following maps of \mathcal{O}' -modules, where O_i are certain free \mathcal{O} -modules that are defined in the course of the proof:

$$O'_3 \to O'_2 \to O'_1 \stackrel{p'}{\longrightarrow} M' \stackrel{\phi,\cong}{\longrightarrow} O'_0.$$

First, M' is a projective \mathcal{O}' -module: given a projector $p: O_1 := \mathcal{O}(n_1) \to \mathcal{O}(n_1)$ with $M = \operatorname{im} p$, we get $M' = \operatorname{im} p'$. By the afore-mentioned result of Durov [1, 10.4.2], there is an isomorphism of \mathcal{O}' -modules, $\phi: M' \xrightarrow{\cong} O'_0 := \mathcal{O}'(n_0)$. The composition $\phi \circ p'$ is surjective, so for any basis vector $e_i \in O'_0$ ($1 \le i \le n_0$), there is some \mathcal{O}' -linear combination $\sum_{j \le n_1} \lambda_{ij} e_j$ mapping to e_i under $\phi p'$. Thus, $\sum_j \lambda_{ij} \phi p'(e_j) = e_i$. Therefore, by Lemma 3.6, $\phi p'(e_j) \in E' \cdot e_i$ for each j. Here $E' = \{x \in \mathcal{O}', |x| = 1\}$ (which is $S^1 \subset \mathbb{C}$ or $\{\pm 1\} \subset \mathbb{R}$ depending on K'). We put $O_2 := \sqcup_{j_2 \in J_2} e_{j_2} \mathcal{O} = \mathcal{O}(J_2)$, where the coproduct runs over

$$J_2 := \{1 \le j_2 \le n_1, \phi p'(e_{j_2}) \in E'e_i \text{ for some } i \le n_0\}.$$

The inclusion $J_2 \subset \{1, \ldots, n_1\}$ induces a $(\mathcal{O}\text{-linear!})$ injection $f_{21} : O_2 \to O_1$. According to the previous remark, $O'_2 \stackrel{\phi p' f'_{21}}{\to} O'_1$ is surjective. Consider the map $J_2 \to \{1, \ldots, n_0\}$ which maps j_2 to the (unique) i with $e_i \in E'\phi p'(e_{j_2})$. This map is onto. By Assumption 3.1, we may pick some $J_3 \subset J_2$ on which it is a bijection. Let $f_{32} : O_3 := \bigsqcup_{j_3 \in J_3} e_{j_3} \mathcal{O} = \mathcal{O}(J_3) \to O_2 = \mathcal{O}(J_2)$ be the map induced by $J_3 \subset J_2$. Set $f_{31} = f_{21} \circ f_{32}$. Then the composition $O'_3 \stackrel{f'_{31}}{\to} O'_1 \stackrel{p'}{\to} M' \stackrel{\phi,\cong}{\to} O'_0$ is an isomorphism of \mathcal{O}' -modules. Note that f_{31} and p are \mathcal{O} -linear maps, but ϕ is defined over \mathcal{O}' , only. Writing $v := p \circ f_{31}$, we must show the implication

v' isomorphism $\Rightarrow v$ isomorphism.

The elements $m_j := p(e_j) \in M$, $j \leq n_1$, generate M. The map $v' \otimes_{\mathcal{O}'} K' = v_Q \otimes_{\mathcal{Q}} K'$ is an isomorphism of K'-vector spaces. The inclusion of the quotient field $Q \to K'$ is fully faithful, so that v_Q is also an isomorphism. Hence there is some $k_j = a_j/b_j \in Q \setminus \{0\}$ such that $k_j m_j \in \text{inv}$. According to Assumption 3.1, we can pick some $N \in K^{\times}$ such that $|a_j/N|, |b_j/N| \leq 1$ for all j. Then $m_j a_j/N \in \text{inv}$. Similarly, pick some $t \in \mathcal{O}$ with $0 < |t| \leq \min_j |a_j/N|$. Then $tM \subset \text{inv}$.

To show the surjectivity of v, we fix $m \in M$ and pick some $o_3 \in O_3$ with $tm = v(o_3)$. Since $M \subset M'$ and v' is an isomorphism, there is a unique $\tilde{o}'_3 \in O'_3$ with $v'(\tilde{o}'_3) = m$. Hence $v(o_3) = v'(o_3) = v'(t\tilde{o}'_3)$, so that $t\tilde{o}'_3 = o_3$. In other words, $o'_3 = t^{-1}o_3 \in O'_3 \cap (O_3)_K = O_3$. This shows the surjectivity of v. The injectivity of v is clear, since $O_3 \subset O'_3$ and v' is injective. Consequently, v is an isomorphism. \Box

Definition 3.8 Recall that **Free**(\mathcal{O}) is the category of (finitely generated) free \mathcal{O} -modules. In **Free**(\mathcal{O}) let *cofibrations* (\rightarrow) be the monomorphisms whose cokernel (in the category of all \mathcal{O} -modules) lies in **Free**(\mathcal{O}). Morphisms which are obtained as cokernels of cofibrations are called *fibrations* and denoted \rightarrow . Let *weak equivalences* $\xrightarrow{\sim}$ be the isomorphisms.

Proposition 3.9 Let $f : M' \to M$ be a monomorphism of free \mathcal{O} -modules with projective cokernel M'' (for example, a cofibration). Then there is a unique isomorphism $\phi : M \cong M' \sqcup M''$ such that the following diagram is commutative

Proof Let $M' = \mathcal{O}(n')$, $M = \mathcal{O}(n)$ and let $f_i := f(e_i) \in M$, $1 \le i \le n'$ be the images of the basis vectors.

We claim that f factors through $\sqcup_{i \le n, e_i \in f(M')} e_i \mathcal{O} = \mathcal{O}(\tilde{n}') \subset M = \mathcal{O}(n)$, where $\tilde{n}' := \sharp \{i \le n, e_i \in f(M')\}$. To show this, write $f(M') \ni m' = \sum_{i \in I} \lambda_i e_i$, where all $\lambda_i \neq 0$ and the e_i are the basis vectors of M. Put

$$m' = \underbrace{\sum_{\substack{e_i \notin f(M') \\ =: m'_1}} \lambda_i e_i}_{=: m'_2} + \underbrace{\sum_{\substack{e_i \in f(M') \\ =: m'_2}} \lambda_i e_i}_{=: m'_2}.$$

By Assumption 3.1, we can pick some $t \in K^{\times}$ such that $|t| \leq 1/2$. Then $tm'_1 = tm' - tm'_2 \in f(M')$. Let *i* be such that $e_i \notin f(M')$. We need to see $\lambda_i = 0$.

We write $(-)_Q$ for the functor $-\otimes_{\mathcal{O}} \mathcal{O}_Q$, where \mathcal{O}_Q is the generalized valuation ring associated to the unique extension of the norm |-| in K to the quotient field Qof K. The functor $(-)_Q$ preserves colimits, in particular coker $(f_Q) = (\operatorname{coker} f)_Q$. In addition, f_Q is a monomorphism by Lemma 3.5. The assumption $e_i \notin f(M')$ implies $e_i \notin f_Q(M'_Q)$: suppose that $e_i = \sum_{i' \leq n'} \kappa_{i'} f_{i'}$ where $(\kappa_{i'}) \in \mathcal{O}_Q(n')$ and $f_{i'} := f(e_{i'})$ are the images of the basis vectors of M'. By Lemma 3.6, we have $f_{i'} = \epsilon_{i'}e_i$ for all i', with some $\epsilon_{i'} \in \mathcal{O}_Q$, $|\epsilon_{i'}| = 1$. But $f_{i'}$ also lies in M (as opposed to M_Q). Thus, $\epsilon_{i'}$ must lie in \mathcal{O} , that is, $e_i \in f(M')$. Therefore, to prove the claim we may assume K is a field.

Now, by Lemma 3.6, e_i is not a non-trivial \mathcal{O} -linear combination of other elements of M. As $e_i \notin f(M')$, Proposition 3.3 implies

$$\pi^{-1}(\pi(e_i)) = \{e_i\}.$$
(6)

Fix a section $\sigma : M'' \to M$ of π , which exists by the assumption that M'' be projective. We obtain $\sigma(\pi(e_i)) = e_i$. Hence,

$$0 = \sigma(0_{M''}) = \sigma(\pi(tm'_1)) = \sum_{e_i \notin f(M')} t\lambda_i \sigma(\pi(e_i)) = \sum_{e_i \notin f(M')} t\lambda_i e_i$$

so that $\lambda_i = 0$. The claim is shown.

By the claim, f induces a bijection $\tilde{f}: M' = \mathcal{O}(n') \to \mathcal{O}(\tilde{n}')$, which gives rise to a bijection $K^{n'} \to K^{\tilde{n}'}$. This shows $\tilde{n}' = n'$. We conclude that the basis vectors $e_i \in M'$ get mapped under f to $\epsilon_i e_{J(i)}$ where $\epsilon_i \in E$ and $J: \{1, \ldots, n'\} \to \{1, \ldots, n\}$ is an injective set map. In fact, suppose $\tilde{f}^{-1}(e_i) = \sum_{j \in J} \lambda_{ij} e_j$ with $(\lambda_{ij}) \in \mathcal{O}(J)$ with all $\lambda_{ij} \neq 0$. Equivalently, $\sum \lambda_{ij} \tilde{f}(e_j) = e_i$. Therefore, by Lemma 3.6 (applied with Q instead of K), $\tilde{f}_Q(e_j) \in E_Q \cdot e_i$ for all j, where $E_Q = \{q \in Q, |q| = 1\}$. Since \tilde{f} and therefore, by Lemma 3.5, \tilde{f}_Q is injective, this implies that only one summand appears in this sum, i.e., $\tilde{f}(e_j) = \lambda_{ij}^{-1} e_i$ for some $j \in J$. A priori, λ_{ij}^{-1} only lies in Q, but $\tilde{f}(e_j) \in \mathcal{O}(n')$ shows that $\epsilon_i := \lambda_{ij}^{-1} \in \mathcal{O}$, hence in E.

By Assumption 3.1, $\epsilon_i \in E$ is a unit in *K*. We can therefore define $\phi' : \mathcal{O}(n') \to M'$ by mapping the basis vectors e_i of $\mathcal{O}(n')$ (which correspond, in the above notation, to the basis vectors $e_{J(i)}$ of *M*) to $\epsilon_i^{-1}e_i$. Also, let $\phi'' : \mathcal{O}(n - n') \subset M \to M''$ be the map which sends the remaining basis vectors $e_{j'}$ for $j' \notin \operatorname{im} J$ to $\pi(e_{j'})$. Put

$$\phi := \phi' \sqcup \phi'' : M = \mathcal{O}(n) = \mathcal{O}(n') \sqcup \mathcal{O}(n-n') \to M' \sqcup M''.$$

Both ϕ' and ϕ'' are onto, hence so is ϕ . This follows from the construction of coproducts of modules over generalized rings [1, 4.6.15]. (Also see [1, 10.4.7] for an explicit description of the coproduct for modules over archimedean valuation rings.) Alternatively, the surjective maps ϕ' and ϕ'' are epimorphisms of \mathcal{O} -modules. Hence their coproduct ϕ is an epimorphism. As $M' \sqcup M''$ is projective, ϕ has a section, so it is also surjective. The map ϕ is injective, as can be seen by checking the definition or using Lemma 3.5(b) \Rightarrow (c). Hence ϕ is an isomorphism.

We finally show the unicity of ϕ or, in other words, that there are no non-trivial automorphism of cofiber sequences

$$0 \to M' \rightarrowtail M \twoheadrightarrow M'' \to 0.$$

Suppose $\tilde{\phi}$ is another isomorphism fitting into (5). We replace ϕ by $\tilde{\phi}\phi^{-1}$ and $\tilde{\phi}$ by id_M and assume f is the standard inclusion $M' \to M = M' \sqcup M''$ and π is the standard projection onto M''. Applying the base change functor $(-)_Q$ (see above), we may assume that K is a field. Then M''_K is a free K-module, so the endomorphism $\phi_K : M_K \to M_K$ is given by a matrix

$$B = \begin{pmatrix} \mathrm{Id}_{M'} & A \\ 0 & \mathrm{Id}_{M''} \end{pmatrix},$$

where *A* is the matrix corresponding to the map $M''_K \to M'_K$ (of free *K*-modules). On the other hand, ϕ is a map of free \mathcal{O} -modules, so every column in *B* is in $\mathcal{O}(n)$. This forces A = 0, so that $\phi = id_M$.

Theorem 3.10 The category (**Free**(\mathcal{O}), \rightarrow , \rightarrow) defined in 3.8 is a Waldhausen category.

Proof The only non-trivial thing to show is the stability of cofibrations under cobasechange. By Proposition 3.9, a cofibration sequence $M' \xrightarrow{\iota} M \xrightarrow{\pi} M''$ in **Free**(\mathcal{O}) is isomorphic to $M' \rightarrow M' \sqcup M'' \twoheadrightarrow M''$. Hence, given any map $f : M' \rightarrow \tilde{M}'$, the pushout of ι along $f, \tilde{M}' \rightarrow \tilde{M}' \sqcup_{M'} M$ is isomorphic to $\tilde{M}' \rightarrow \tilde{M}' \sqcup M''$ which is a monomorphism with cokernel M''.

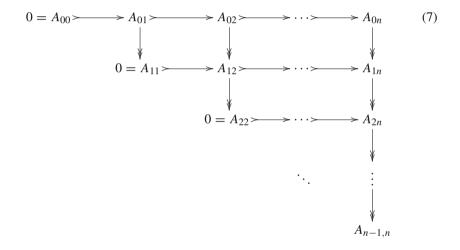
Remark 3.11 Mahanta uses split monomorphisms as cofibrations in the category of finitely generated modules over a fixed \mathbb{F}_1 -algebra (i.e., pointed monoid) to define *G*-(a.k.a. *K'*-)theory of such algebras [3]. In **Free**(\mathcal{O}), we have seen that all cofibrations are split, but not conversely: the cokernel of the split monomorphism $\varphi : \mathbb{Z}_{\infty}(1) \rightarrow \mathbb{Z}_{\infty}(2), e_1 \mapsto \frac{e_1}{2} + \frac{e_2}{2}$ is not free. This follows either from Proposition 3.9 or by an explicit computation, using Proposition 3.3. Indeed, two elements $x_ie_1 + y_ie_2 \in \mathbb{Z}_{\infty}(2)$ (i = 1, 2) are identified in coker φ iff $|y_1 - x_1| = |y_2 - x_2| < 1$. On coker φ , multiplication with 1/2 is therefore not injective. Thus coker φ is not a submodule of a free \mathbb{Z}_{∞} -module, in particular it is not projective.

3.3 K-theory

In this subsection, we compute the *K*-theory of the generalized valuation ring \mathcal{O} (Definition 3.2) or, more precisely, of the category of free \mathcal{O} -modules. By Theorem 3.7, every projective \mathcal{O} -module is free, provided that the norm is archimedean.

We define the *K*-theory using Waldhausen's S_{\bullet} -construction, which has the advantage of being immediately applicable (Theorem 3.10). Other constructions, such as Quillen's *Q*-construction can also be applied (slightly modified, since \mathcal{O} -modules do not form an exact category). The resulting *K*-groups do not depend on the choice of the construction.

Recall the definition of *K*-theory of a Waldhausen category C (see e.g. [7, Section IV.8] for more details). We always assume that the weak equivalences of C are its isomorphisms. The category S_nC consists of diagrams



such that $A_{i,j} \rightarrow A_{i,k} \rightarrow A_{j,k}$ is a cofibration sequence. Varying *n* yields a simplicial category $S_{\bullet}C$. The subcategory of isomorphisms is denoted $wS_{\bullet}C$. Applying the classifying space construction of a category yields a pointed bisimplicial set $S(C)_{n,m} := B_m w S_n C$. For example, $S(C)_{n,0} = \text{Obj}(S_n C)$. The *K*-theory of *C* is defined as

$$K_i(\mathcal{C}) := \pi_{i+1} d(B_* w S_{\bullet} \mathcal{C}),$$

where d(-) is the diagonal of a bisimplical set.

By Theorem 3.10, we are ready to define the *algebraic K-theory* of \mathcal{O} . More precisely, we consider the Waldhausen category of (finitely generated) free \mathcal{O} -modules, which is the same as projective \mathcal{O} -modules in all cases of interest by Theorem 3.7.

Definition 3.12

$$K_i(\mathcal{O}) := K_i(\operatorname{Free}(\mathcal{O})) = \pi_{i+1}(dBwS_{\bullet}\operatorname{Free}(\mathcal{O})), i \ge 0.$$

🖉 Springer

Lemma 3.13 Given two normed domains and a ring homomorphism $f : K \to K'$ between them satisfying |f(x)| = |x| (so that f restricts to a map $f : \mathcal{O} \to \mathcal{O}'$), the functor $f^* : \mathbf{Free}(\mathcal{O}) \to \mathbf{Free}(\mathcal{O}')$, $M \mapsto M \otimes_{\mathcal{O}} \mathcal{O}'$ is (Waldhausen-)exact and therefore induces a functorial map

$$f^*: K_i(\mathcal{O}) \to K_i(\mathcal{O}').$$

Proof As pointed out at p. 4, f^* : $\mathbf{Mod}(\mathcal{O}) \to \mathbf{Mod}(\mathcal{O}')$ preserves cokernels. Secondly, tensoring with \mathcal{O}' preserves cofibrations since a map $M \to M'$ of free (or projective) \mathcal{O} -modules is a monomorphism iff $M_Q \to M'_Q$ is one (where Q is the quotient field of K, Lemma 3.5) and the statement is true for Q-modules: the map $Q \to Q'$ is injective since |f(1)| = |1| = 1 and therefore flat.

The group $K_0(\mathcal{O})$ is the free abelian group generated by the isomorphisms classes of free \mathcal{O} -modules modulo the relations

$$[\mathcal{O}(n') \sqcup \mathcal{O}(n'')] = [\mathcal{O}(n')] + [\mathcal{O}(n'')].$$

Indeed, any cofiber sequence satisfies additivity of the ranks of the involved free modules, as one sees by tensoring the sequence with the quotient field Q of K. Therefore, $K_0(\mathcal{O}) = \mathbb{Z}$.

We now turn to higher *K*-theory of \mathcal{O} . Recall that $E := \{x \in \mathcal{O}, |x| = 1\}$ is the subgroup of norm one elements. Let us write $GL_n(\mathcal{O}) := Aut_{\mathcal{O}}(\mathcal{O}(n))$. According to Proposition 3.9,

$$\operatorname{GL}_n(\mathcal{O}) = E \wr S_n = E^n \rtimes S_n, \tag{8}$$

where the symmetric group S_n acts on E^n by permutations. For $E = \mu_2 = \{\pm 1\}$, this group is known as the *hyperoctahedral group*. As usual, we write

$$\operatorname{GL}(\mathcal{O}) := \lim_{\stackrel{\longrightarrow}{n}} \operatorname{GL}_n(\mathcal{O})$$

for the infinite linear group, where the transition maps are induced by $GL_n(\mathcal{O}(n) \ni f \mapsto f \sqcup id_{\mathcal{O}}$. For any group *G*, let $G_{ab} = G/[G, G]$ be its abelianization. We write $\pi_i^s(-)$ for the stable homotopy groups of a space and abbreviate $\pi_i^s := \pi_i^s(S^0)$.

Theorem 3.14 Let O be a generalized valuation ring as defined in 3.2. Then for $i \ge 0$, there is an isomorphism

$$K_i(\mathcal{O}) \cong \pi_i^{\mathrm{s}}(BE_+, *),$$

where the right hand side denotes the *i*-th stable homotopy group of the classifying space of *E* (viewed as a discrete group), with a disjoint base point *. For a map *f* as in Lemma 3.13, this isomorphism identifies f^* in *K*-theory with the map on stable homotopy groups induced by $E(\mathcal{O}) \to E(\mathcal{O}')$. For i = 1, 2 we get

$$K_1(\mathcal{O}) = \operatorname{GL}(\mathcal{O})_{ab} = E \times \mathbb{Z}/2$$

$$K_2(\mathcal{O}) = \lim_{n \to \infty} \operatorname{H}_2([\operatorname{GL}_n(\mathcal{O}), \operatorname{GL}_n(\mathcal{O})], \mathbb{Z})$$
(9)

where the right hand side in (9) is group homology with \mathbb{Z} -coefficients.

Before proving the theorem, we first discuss our main example, when O comes from an infinite place of a number field, as in Example 3.4. Then, we prove a preliminary lemma.

Example 3.15 Let us consider a number field F with the norm induced by some complex embedding $\sigma \in \Sigma_F$ (see p. 3 for notation). The torsion subgroup E_{tor} of $E := \{x \in F^{\times}, |x| = 1\}$ agrees with the finite group μ_F of roots of unity. The exact localization sequence involving all finite primes of \mathcal{O}_F ,

$$1 \to \mathcal{O}_F^{\times} \to F^{\times} \to L := \ker(\oplus_{\mathfrak{p} < \infty} \mathbb{Z} \to \mathrm{cl}(F)) \to 0,$$

shows $F^{\times}/\mu_F \cong \mathcal{O}_F^{\times}/\mu_F \oplus L$. Hence it is free abelian by Dirichlet's unit theorem. Thus

$$E \subset \mu_F \oplus \mathbb{Z}^{r_1+r_2-1} \oplus L,$$

where r_1 and r_2 are the numbers of real and pairs of complex embeddings. Therefore, $E = \mu_F \oplus \mathbb{Z}^S$, where $S := \operatorname{rk} E$ is at most countably infinite. Of course, $E = \{\pm 1\}$ whenever σ is a real embedding, but also, for example, for any complex embedding of $F = \mathbb{Q}[\sqrt[3]{2}]$. For $F = \mathbb{Q}[\sqrt{-1}]$, E is the (countably) infinitely generated group of pythagorean triples [2] (see also [8] for a description of the group structure of pythagorean triples in more general number fields).

The group μ_F is cyclic of order w, so the long exact sequence of group homology,

$$\mathrm{H}_{i}(\mu_{F},\mathbb{Z}) \xrightarrow{\cdot n} \mathrm{H}_{i}(\mu_{F},\mathbb{Z}) \to \mathrm{H}_{i}(\mu_{F},\mathbb{Z}/n) \to \mathrm{H}_{i-1}(\mu_{F},\mathbb{Z}),$$

together with the Atiyah-Hirzebruch spectral sequence

$$\mathrm{H}_{p}(\mu_{F}, \pi_{q}^{\mathrm{s}}) = \mathrm{H}_{p}(B\mu_{F}, \pi_{q}^{\mathrm{s}}) \Rightarrow \pi_{p+q}^{\mathrm{s}}(B\mu_{F}) = \pi_{p+q}^{\mathrm{s}}((B\mu_{F})_{+}, *)$$

yield at least for small p and q explicit bounds on $\pi_{p+q}^{s}((B\mu_{F})_{+},*)$: the E²-page reads

$$\begin{array}{c|c} q \uparrow \\ 2 & \pi_2^{\rm s} = \mathbb{Z}/2 \quad \mathbb{Z}/w' & \mathbb{Z}/w' \\ 1 & \pi_1^{\rm s} = \mathbb{Z}/2 & \mu_F/2 = \mathbb{Z}/w' \quad \mathbb{Z}/w' \\ 0 & \mathbb{Z} & \mu_F = \mathbb{Z}/w & 0 \\ \hline & 0 & 1 & 2 & p \rightarrow \end{array}$$

Deringer

where w' = (2, w). In general, $\pi_{p+q}^{s}((B\mu_F)_+, *)$ is finite for p+q > 0. For i > 0,

$$K_{i}(\mathcal{O}_{F\sigma}) = K_{i}(\mathcal{O}_{F(\sigma)})$$

= $\pi_{i}^{s}(B(\mu_{F} \oplus \mathbb{Z}^{\oplus S})_{+}, *)$
= $\pi_{i}^{s}\left((B\mu_{F})_{+} \lor \bigvee_{S} S^{1}, *\right)$
= $\pi_{i}^{s}(B\mu_{F}) \oplus \bigoplus_{S} \pi_{i-1}^{s}.$

In particular

$$K_1(\mathcal{O}_{F(\sigma)}) = \mathbb{Z}/2 \oplus \mu_F \oplus \mathbb{Z}^{\oplus S},$$

$$K_2(\mathcal{O}_{F(\sigma)}) = G \oplus (\mathbb{Z}/2)^{\oplus S},$$

where G is a finite (abelian) group which is filtered by a filtration whose graded pieces are subquotients of $\mathbb{Z}/2$ and \mathbb{Z}/w' . (Determining G would require studying the differentials of the spectral sequence).

Lemma 3.16 The map

$$\operatorname{GL}(\mathcal{O})_{\operatorname{ab}} \to E \times \mathbb{Z}/2, (\epsilon, \sigma) \mapsto \left(\prod_{i=1}^{\infty} \epsilon_i, parity(\sigma)\right)$$

is an isomorphism. Here the representation of elements of $GL(\mathcal{O})$ is as in (8). The group $[GL(\mathcal{O}), GL(\mathcal{O})]$ is perfect.

Proof For $i \ge 1$ and $\epsilon \in E$, let $\epsilon_i = (1, ..., 1, \epsilon, 1, ...) \in E \times E \times ...$ be the vector with ϵ at the *i*-th spot. Let $\sigma_i = (i, i + 1) \in S_n$ be the permutation swapping the *i*-th and *i*+1-st letter. The ϵ_i and σ_i , for $i \ge 1$ and $\epsilon \in E$, generate $G := GL(\mathcal{O})$ as we have seen in the proof of Proposition 3.9. In *G*, we have relations $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$, which implies $\sigma_i = \sigma_{i+1}$ in G_{ab} . Moreover, in *G* we have the relation $\epsilon_i \sigma_i = \sigma_{i+1} \epsilon_{i+1}$, so that we get $\epsilon_i = \epsilon_{i+1}$ in G_{ab} . This shows the first claim.

The perfectness of $[GL(\mathcal{O}), GL(\mathcal{O})]$ is a special case of [6, Prop. 3], for example. Alternatively, the above implies that $H := [Aut(\mathcal{O}(n)), Aut(\mathcal{O}(n))]$ is given by $H = L \rtimes A_n$, where the alternating group A_n acts on $L := \ker(\prod_{i=1}^n E \to E, (\epsilon^1, \ldots, \epsilon^n) \mapsto \prod \epsilon^i) (\cong E^{n-1})$ by restricting the S_n -action on E^n . Now, the perfectness of A_n for $n \ge 5$ and a simple explicit computation shows $H_{ab} = 1$ for $n \ge 5$.

We now prove Theorem 3.14. This theorem is actually an immediate consequence of Proposition 3.9, together with well-known facts about *K*-theory of *G*-sets, where *G* is some group [7, Ex. IV.8.9]. For example, the *K*-theory of the Waldhausen category of finite pointed sets (which would correspond to the impossible case E = 1) is

 $K_i(\mathbb{F}_1) := K_i((\text{finite pointed sets, injections, bijections})) = \pi_i^s$

the stable homotopy groups of spheres. More generally, for some (discrete) group G, the *K*-theory of the category **Free**(G) of finitely generated (i.e., only finitely many orbits) pointed G-sets on which the G-action is fixed-point free, together with bijections as weak equivalences and injections as cofibrations, is known to be the stable homotopy group of $(BG)_+$. By Proposition 3.9, the canonical functor

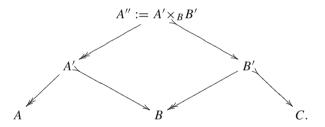
$$\mathbf{Free}(E) \to \mathbf{Free}(\mathcal{O}), (E^X) \sqcup \{*\} \mapsto \mathcal{O}(X)$$

induces an equivalence of the categories of cofibrations and therefore an isomorphism of K-theory. For the convenience of the reader, we recall the necessary arguments, which also includes showing that other definitions of higher K-theory (of free \mathcal{O} -modules) yield the same K-groups.

Proof Let $QFree(\mathcal{O})$ be Quillen's *Q*-construction, i.e., the category whose objects are the ones of $Free(\mathcal{O})$ and

$$\operatorname{Hom}_{OFree}(\mathcal{O})(A, B) := \{A \twoheadleftarrow A' \rightarrowtail B\} / \sim,$$

where two such roofs are identified if there is an isomorphism between them which is the identity on A and B. It forms a category whose composition is given by the composite roof defined by the cartesian diagram



Here, we use that A'' exists (in **Free**(\mathcal{O})) since it is the kernel of the composite $B' \rightarrow B \rightarrow B/A'$, which is split by Proposition 3.9. The subcategory $S := \text{Iso}(\text{Free}(\mathcal{O}))$ of **Free**(\mathcal{O}) consisting of isomorphisms only is a monoidal category under the coproduct. Hence $S^{-1}S$ is defined. We claim

$$\Omega B Q \mathbf{Free}(\mathcal{O}) = B(S^{-1}S).$$

Indeed, the proof of [7, Theorem IV.7.1] carries over: the extension category $\mathcal{E}\mathbf{Free}(\mathcal{O})$ is defined as in *loc. cit.* and comes with a functor $t : \mathcal{E}\mathbf{Free}(\mathcal{O}) \to Q\mathbf{Free}(\mathcal{O}), (A \to B \to C) \mapsto C$. The fiber $\mathcal{E}_C := t^{-1}C$ ($C \in \mathbf{Free}(\mathcal{O})$) consists of sequences $A \to B \to C$. The functor

$$\phi: S \to \mathcal{E}_C, \ A \mapsto A \rightarrowtail A \sqcup C \twoheadrightarrow C$$

induces a homotopy equivalence $B(S^{-1}S) \rightarrow B(S^{-1}\mathcal{E}_C)$ in the classical case of an exact category (instead of **Free**(\mathcal{O})). In our situation, ϕ is an equivalence of categories

since any extension in Free(O) splits *uniquely* (Proposition 3.9). Thus [7, Theorem IV.4.10] gives

$$BQFree(\mathcal{O}) = K_0(S) \times BGL(\mathcal{O})^+,$$

where the right hand side is the +-construction with respect to the perfect normal subgroup [GL(\mathcal{O}), GL(\mathcal{O})] (Lemma 3.16). In the same vein, Waldhausen's comparison of the *Q*-construction and his *S*_•-construction carries over: $d(BwS_{\bullet}Free(\mathcal{O}))$ is weakly equivalent to $BQFree(\mathcal{O})$.

Finally, by the Barratt–Priddy theorem (see e.g. [5, Th. 3.6])

$$\pi_i(BGL(\mathcal{O})^+) \cong \pi_i^{s}(BE_+, *).$$

The identification of the low-degree *K*-groups is the standard calculation of the S^{-1} *S*-construction [7, IV.4.8.1, IV.4.10].

Remark 3.17 The calculation of $K_1(\mathcal{O})$ could also be done using the description of K_1 of a Waldhausen category due to Muro and Tonks [4].

Remark 3.18 Recall that for an (ordinary) ring *R* the following two properties of an *R*-module *M* are equivalent: (i) it is projective, (ii) there is another projective module M' such that $M \sqcup M'$ is free. I have not been able to show the corresponding statement for projective \mathcal{O} -modules. For example, for a projector $p : \mathcal{O}(n) \to \mathcal{O}(n)$ with $M = \operatorname{im} p$, it is *not* true that the canonical map

$$\phi: M \sqcup \ker p \to \mathcal{O}(n)$$

is an isomorphism of \mathcal{O} -modules: for n = 2 and the projector p given by the matrix

$$\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix},$$

ker *p* is the free \mathcal{O} -module of rank 1, generated by $(e_1 - e_2)/2 \in \mathcal{O}(2)$. In this case, ϕ induces an isomorphism of $M \sqcup \ker p$ with the free \mathcal{O} -module of rank 2 generated by $(e_1 \pm e_2)/2$, but not with $\mathcal{O}(2) = (e_1, e_2)$. The analogous statement of Proposition 3.9 for cofibrations of projective \mathcal{O} -modules, as well as the computation of $K_i(\operatorname{Proj}(\mathcal{O}))$ for i > 0 (using Waldhausen's cofinality theorem) would carry over verbatim if the above statement about projective \mathcal{O} -modules holds. However, the distinction between projective and free modules is only relevant for non-archimedean valuations, by Theorem 3.7.

4 The residue field at infinity

We finish this work by noting two differences (as far as *K*-theory is concerned) to the case of classical rings, namely the *K*-theory of the residue "field" at infinity, and the

behavior with respect to completion. For simplicity, we restrict our attention to the case $F = \mathbb{Q}$.

Let $p < \infty$ be a (rational) prime with residue field \mathbb{F}_p . There is a long exact sequence

$$K_n(\mathbb{F}_p) \to K_n(\mathbb{Z}_{(p)}) \to K_n(\mathbb{Q}) \stackrel{\delta}{\to} K_{n-1}(\mathbb{F}_p)$$

which stems from the fact that $\mathbb{Z}_{(p)}$ (the localization of \mathbb{Z} at the prime ideal (p)) is a Noetherian regular local ring of dimension one. Moreover, for n = 1 the map δ is the *p*-adic valuation $v_p : \mathbb{Q}^{\times} \to \mathbb{Z}$. The situation is less formidable at the infinite places, as we will now see. The (generalized) valuation ring $\mathbb{Z}_{(\infty)}$ (Definition 3.2) is *not* Noetherian: ascending chains of ideals need not terminate. Indeed, consider a finitely generated ideal $I = (m_1, \ldots, m_n) \subset \mathbb{Z}_{(\infty)}$. Then $|I| = \{|m|, m \in I\} =$ $[0, \max_i |m_i|] \cap |\mathbb{Z}_{(\infty)}|$. In particular, an ideal of the form $\{x \in \mathbb{Z}_{(\infty)}, |x| < \lambda\}, \lambda \leq 1$ is not finitely generated, since $|\mathbb{Z}_{(\infty)}|$ is dense in [0, 1]. This should be compared with the well-known fact that the valuation ring of a non-archimedian field is noetherian iff the field is trivially or discretely valued.

Definition 4.1 [1, 4.8.13] Put $\mathbb{F}_{\infty} := \mathbb{Z}_{(\infty)} / \widetilde{\mathbb{Z}_{(\infty)}}$, where $\widetilde{\mathbb{Z}_{(\infty)}}$ is the submonad given by

$$\widetilde{\mathbb{Z}}_{(\infty)}(n) = \{ x \in \mathbb{Q}^n, |x| < 1 \}.$$

We refer to *loc. cit.* for the general definition of strict quotients of generalized rings by appropriate relations. For us, it is enough to note that every element of $\mathbb{Z}_{(\infty)}(n)$ is uniquely represented by $z = \sum_{i \in I} \lambda_i \epsilon_i e_i$, where $I \subset \{1, \ldots, n\}, 0 < \lambda_i \leq 1$, $\sum \lambda_i \leq 1, \epsilon_i \in E_{\mathbb{Z}_{(\infty)}} = \{\pm 1\}$, and e_i is the standard basis vector. Two elements $z, z' \in \mathbb{Z}_{(\infty)}(n)$ get identified in $\mathbb{F}_{\infty}(n)$ (Notation: $z \equiv z'$) iff

$$|z| < 1$$
 and $|z'| < 1$ (10)

or

$$|z| = |z'| = 1, \ I_z = I_{z'}, \quad \text{and} \quad \epsilon_{i,z} = \epsilon_{i,z'} \quad \text{for all } i \in I_z.$$
(11)

That is, as a set $\mathbb{F}_{\infty}(n)$ consists of the faces of the *n*-dimensional octahedron. Again, 0 is the initial and terminal \mathbb{F}_{∞} -module, so we can speak about (co)kernels.

As usual, we put

$$K_0(\mathbb{F}_{\infty}) := \left(\bigoplus_{M \in \mathbf{Free}(\mathbb{F}_{\infty})/Iso} \mathbb{Z}\right) / [M] = [M'] + [M''],$$

with a relation for each monomorphism $M' \to M$ in $\mathbf{Free}(\mathbb{F}_{\infty})$ such that its cokernel M'' (computed in $\mathbf{Mod}(\mathbb{F}_{\infty})$) lies in $\mathbf{Free}(\mathbb{F}_{\infty})$. Similarly, we define $K_0^{\mathbf{Proj}}(\mathbb{F}_{\infty})$ using projective \mathbb{F}_{∞} -modules. Using the above, one sees that \mathbb{F}_{∞} is not finitely presented as

a $\mathbb{Z}_{(\infty)}$ -module. Thus, one should not expect a natural map $i_* : K_0(\mathbb{F}_{\infty}) \to K_0(\mathbb{Z}_{(\infty)})$. Actually, *K*-theory of \mathbb{F}_{∞} -modules behaves badly in the sense of the following proposition:

Proposition 4.2 $K_0^{\text{Proj}}(\mathbb{F}_{\infty}) = 0$, $K_0(\mathbb{F}_{\infty}) = \mathbb{Z}$. In particular, there is no exact localization sequence (regardless of the maps involved)

$$K_1(\mathbb{Z}_{(\infty)}) = \mathbb{Z}/2 \times \{\pm 1\} \to K_1(\mathbb{Q}) = \mathbb{Q}^{\times} \to K_0(\mathbb{F}_{\infty}) \to K_0(\mathbb{Z}_{(\infty)})$$
$$= \mathbb{Z} \to K_0(\mathbb{Q}) = \mathbb{Z},$$

or similarly with $K_0^{\operatorname{Proj}}(\mathbb{F}_\infty)$ instead.

Proof We first show that any projective \mathbb{F}_{∞} -module M which is generated by n elements contains \mathbb{F}_{∞} as a submodule, such that the cokernel is a projective \mathbb{F}_{∞} -module generated by n-1 elements. This implies that $K_0^{\operatorname{Proj}}(\mathbb{F}_{\infty})$ is generated by $[\mathbb{F}_{\infty}]$ (which is obvious for $K_0(\mathbb{F}_{\infty})$).

The projective module M is specified by a projector $\pi : \mathbb{F}_{\infty}(n) \to \mathbb{F}_{\infty}(n)$ with $M = \pi(\mathbb{F}_{\infty}(n))$. Let $a_i := \pi(e_i) \in \mathbb{F}_{\infty}(n)$. We pick $a_{ij} \in [-1, 1] \subset \mathbb{R}$ such that $a_i \equiv \sum_{j \in J_i} a_{ij} e_j$ with $a_{ij} \neq 0$ for all $j \in J_i$. Set $A := (a_{ij}) \in \mathbb{R}^{n \times n}$. We may assume that the number n of generators of M is minimal, i.e., there is no surjection $p' : \mathbb{F}_{\infty}(n') \to M$ with n' < n. Indeed, if there is such a surjection, it has a section σ' since M is projective, and $\pi' := \sigma' p'$ would again be a projector.

The minimality of *n* implies that $a_i \neq a_j$ for all $i \neq j$. Otherwise, the restriction of π to $\mathbb{F}_{\infty}(n \setminus \{i\}) \subset \mathbb{F}_{\infty}(n)$ would be surjective. Similarly, the minimality implies $a_i \neq 0 \in \mathbb{F}_{\infty}(n)$ for all *i*. Also, put $B = (b_{ij}) := A^2 \in \mathbb{R}^{n \times n}$. Using $(b_{ij})_j \equiv \pi(a_i) \equiv a_i \neq 0 \in \mathbb{F}_{\infty}(n)$, we obtain $\sum_j |b_{ij}| = 1$ and $\sum_j |a_{ij}| = 1$ by (10).

The minimality of *n* implies $i \in J_i$ or equivalently, $a_{ii} \neq 0$: otherwise $a_i \equiv \pi(a_i) \equiv \sum_{j \in J_i \setminus \{i\}} a_{ij}a_j$ would be an \mathbb{F}_{∞} -linear combination of the remaining columns of *A*. For every $i \leq n$,

$$1 = \sum_{j} |b_{ij}| = \sum_{j} |\sum_{k} a_{ik} a_{kj}|$$
$$\leq \sum_{j} \sum_{k} |a_{ik}| |a_{kj}| = \sum_{k} |a_{ik}| \underbrace{\left(\sum_{j} |a_{kj}|\right)}_{=1}$$
$$= 1.$$

so equality holds. In particular, the terms $sgn(a_{ik}a_{kj})$ are either all (for arbitrary $i, j, k \le n$) non-negative or non-positive. Picking k = j := i, we see that they are non-negative, since $sgn(a_{ij}^2) > 0$, for $a_{ii} \ne 0$.

Let $I^> := \{i, a_{ii} > 0\}$ and likewise with $I^<$. Then $I^> \sqcup I^- = \{1, \ldots, n\}$. Moreover, for $i \in I^>$ and $j \in I^<$, $a_{ii}a_{ij} \ge 0$ and $a_{ij}a_{jj} \ge 0$ imply $a_{ij} = 0$. In other words, the matrix A decomposes as a direct sum matrix $A^> \sqcup A^<$, where $A^>$ and $A^<$ are the submatrices of A consisting of the rows and columns with indices in $I^>$ and

 $I^{<}$, respectively. We may therefore assume $A = A^{>}$, say. For $i (\in I^{>})$, and any j, $a_{ii}a_{ij} \ge 0$ implies $a_{ij} \ge 0$, i.e., the entries of A are all non-negative.

Fix some $i \leq n$. As π is a projector, $a_i \equiv \pi(a_i)$, i.e.,

$$a_i \equiv \sum_{j \in J_i} a_{ij} e_j \equiv \sum a_{ij} \pi(e_j) \equiv \sum_{j \in J_i, k \in J_j} a_{ij} a_{jk} e_k \in \mathbb{F}_{\infty}(n).$$

By (10), (11), this implies $sgn(a_{ik}) = sgn(\sum_j a_{ij}a_{jk})$, which gives

$$J_i = \bigcup_{j \in J_i} J_j. \tag{12}$$

Indeed, " \subset " is easy to see without using the non-negativity of the entries. Conversely, for $k \notin J_i$, $\sum_j a_{ij}a_{jk} = 0$. Since all $a_{**} \ge 0$, this implies $a_{jk} = 0$ for all $j \in J_i$, i.e., $k \notin \bigcup_{j \in J_i} J_j$.

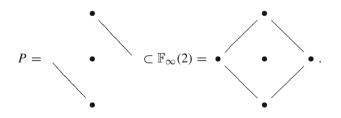
Now, pick some $i \le n$ such that J_i is maximal, i.e., not contained in any other J_j , $i \ne j$. Then $i \notin J_j$ for any $i \ne j$ by (12). In other words, the *i*-th row only contains a single non-zero entry. For simplicity of notation, we may suppose i = 1.

Consider the diagram



where ρ is the projection onto the last n-1 coordinates, ι is the injection in the first coordinate. The lower left-hand map is a monomorphism since the first row of A is nonzero. Its cokernel M' is the projective module determined by the matrix $(a_{ij})_{2 \le i,j \le n}$. This exact sequence shows that $K_0^{\operatorname{Proj}}(\mathbb{F}_{\infty})$ is generated by $[\mathbb{F}_{\infty}]$.

On the other hand, consider the projective \mathbb{F}_{∞} -module *P* defined by the projector $\begin{pmatrix} 1/2 & 0 \\ 1/2 & 1 \end{pmatrix}$ [1, 10.4.20]. It consists of 5 elements and can be visualized as



The composition $\mathbb{F}_{\infty} \xrightarrow{(1/2,1/2)} \mathbb{F}_{\infty}(2) \twoheadrightarrow P$ is a monomorphism with cokernel \mathbb{F}_{∞} . The pictured inclusion $P \to \mathbb{F}_{\infty}(2)$ has cokernel \mathbb{F}_{∞} , spanned by e_1 . This shows that $[\mathbb{F}_{\infty}(2)] = 2[\mathbb{F}_{\infty}] = [P] + [\mathbb{F}_{\infty}] = 3[\mathbb{F}_{\infty}]$. Hence $K_0^{\operatorname{Proj}}(\mathbb{F}_{\infty}) = 0$.

🖄 Springer

Finally, we have to show $K_0(\mathbb{F}_{\infty}) = \mathbb{Z}$. For this, consider a cofiber sequence

$$\mathbb{F}_{\infty}(n') \xrightarrow{i} \mathbb{F}_{\infty}(n) \xrightarrow{p} \mathbb{F}_{\infty}(n'').$$

We have to show n = n' + n''. Pick a section σ of p. The natural map $i \sqcup \sigma : \mathbb{F}_{\infty}(n') \sqcup \mathbb{F}_{\infty}(n'') \to \mathbb{F}_{\infty}(n)$ is injective, as one easily shows. Thus $n' + n'' \leq n$ for cardinality reasons. Conversely, for any basis vector $e_i \in \mathbb{F}_{\infty}(n) \setminus \text{im}i$, $p^{-1}(p(e_i)) = \{e_i\}$, as one shows in the same way as for \mathbb{Z}_{∞} -modules, cf. (6). Thus $\sigma(p(e_i)) = e_i$, so there are at most n'' such basis vectors by the injectivity of σ . Moreover, at most n' of the basis vectors e_i of $\mathbb{F}_{\infty}(n)$ are in imi by the injectivity of i. This shows $n' + n'' \geq n$.

Remark 4.3 For $p \leq \infty$, let *Fib* be the homotopy fiber of $\Omega K(\mathbb{Z}_{(p)}) \to \Omega K(\mathbb{Q})$ and \widehat{Fib} the one of $\Omega K(\mathbb{Z}_p) \to \Omega K(\mathbb{Q}_p)$. The localization sequence for *K*-theory shows in case $p < \infty$ that *Fib* and \widehat{Fib} are homotopy equivalent (and given by $K(\mathbb{F}_p)$). Here Ω is the loop space and K(-) is a space (or spectrum) computing *K*-theory, for example the S_{\bullet} -construction. However, for $p = \infty$, we have

so that $\pi_0(Fib) \subsetneq \pi_0(\widehat{Fib})$.

Acknowledgments I would like to thank Fabian Hebestreit for a few helpful discussions. I also thank the referee for suggesting a number of improvements.

References

- 1. Durov, N.: New Approach to Arakelov Geometry. Preprint. http://arxiv.org/abs/0704.2030
- 2. Eckert, E.J.: The group of primitive Pythagorean triangles. Math. Mag. 57(1), 22-27 (1984)
- Mahanta, S.: G-Theory of F₁-Algebras I: the Equivariant Nishida Problem (2011). http://arxiv.org/abs/ 1110.6001
- 4. Muro, F., Tonks, A.: The 1-type of a Waldhausen K-theory spectrum. Adv. Math. **216**(1), 178–211 (2007)
- 5. Segal, G.: Categories and cohomology theories. Topology 13, 293–312 (1974)
- 6. Weibel, C.A.: K-theory of Azumaya algebras. Proc. Am. Math. Soc. 81(1), 1–7 (1981)
- Weibel, C.A.: The K-book. An introduction to algebraic K-theory. Graduate Studies in Mathematics, vol. 145. American Mathematical Society, Providence (2013)
- Zanardo, P., Zannier, U.: The group of Pythagorean triples in number fields. Ann. Mat. Pura Appl. 4(159), 81–88 (1991)