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Abstract It is known that, for an infinite field F, the indecomposable part of K3(F')
and the third homology of SL,(F) are closely related. In fact, there is a canoni-
cal map o : H3(SLo(F),Z)p+ — K3 (F)™, Suslin has raised the question: Is «
an isomorphism? Recently Hutchinson and Tao have shown that this map is sur-
jective. In this article, we show that « is bijective if and only if the natural maps
H3(GLyo(F),Z) — H3(GL3(F),Z) and H3(SLy(F), Z)F+ — H3(GL2(F), Z) are
injective.

1 Introduction
For an infinite field F, Suslin has proved that the Hurewicz homomorphism

h3 : K3(F) = m3(BSL(F)") — H3(BSL(F)",Z) ~ H3(SL(F), Z)

is surjective with 2-torsion kernel. In fact, he has shown that A3 sits in the exact
sequence

K2 (F) “=Y K3(F) — Hy(SL(F).Z) —> 0,

where the homomorphism /(—1) : K>(F)— K3(F) coincides with multiplication by
I(—1) € K1(Z) [10, Lemma 5.2, Corollary 5.2]. Let
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674 B. Mirzaii

a : Ho(F*, Hy(SLo(F), 7)) — K3(F)™
be the composition of the following sequence of homomorphisms
. iy
Ho(F*, H3(SLy(F), Z)) “=% H3(SL(F).Z) —> K3(F)/I(~1)K2(F)
> K3(F)™ = K3(F)/ KM (F),
where inc, is induced by the inclusion inc : SL>(F) — SL(F), and p is induced
by the inclusion /(—1)K7(F) < im(KéVI(F) — K3(F)). For algebraically closed

fields, it was known that « is an isomorphism [1,9]. Following this, Suslin raised the
following question:

Question (Suslin). Is it true that Hy(F*, H3(SLa2(F), Z)) coincides with K3(F)™4?
(See [9, Question 4.4]).

In other words, is « bijective for an arbitrary infinite field F'? This question is true
after killing 2-power torsion elements (i.e. after tensoring the both sides of this map
with Z[1/2]) or when F* = F** = {d%|a € F*} [6, Proposition 6.4].

Recently Hutchinson and Tao have proved that « is surjective [4, Lemma 5.1]. The
following theorem is our main result, which improves an argument of Hutchinson and
Tao in [4].

Theorem Let F be an infinite field. The following conditions are equivalent.

(i) The homomorphism o : Hy(F*, Hy(SLy(F), Z)) — K3(F)™ is bijective.
(ii) The natural homomorphisms H3(GLy(F),7Z) — H3(GL3(F),Z) and Ho(F*,
H3(SLy2(F), Z)) — H3z(GLy(F), Z) are injective.

In the mean time we also establish that the kernel of the homomorphism

Hs(inc) : H3(GLo(F), Z) — H3(GL3(F), Z)

is equal to
im(H3(SLa(F), Z) — H3(GLa(F), Z)) N F* U Hy(GL{(F), 7)),
where the cup product is induced by the natural diagonal inclusion inc : F* x

GL1(F) — GLy(F). It seems that, for an arbitrary field, not much is known about
the kernel of

Ho (F*, H3(SLa2(F), Z)) — H3(GLa(F), Z),

except that it is a 2-power torsion group (see proof of Theorem 6.1 in [6]).

Notation

In this article by H; (G) we mean the homology of group G with integral coefficients,
namely H; (G, Z). By GL, (resp. SL,,) we mean the general (resp. special) linear group
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Third homology of SL, and the indecomposable K3 675

GL, (F) (resp. SL,,(F)), where F is an infinite field. If A — A’ is a homomorphism
of abelian groups, by A’/A we mean coker(A — A’) and we take other liberties of
this kind. Here by X, we mean the symmetric group of rank .

2 The group H; (F*, H,(SL3))

We start this section by looking at the corresponding Lyndon/Hochschild-Serre spec-
tral sequence of the commutative diagram of extensions

1 —>SL2—>GL2E>F* — 1

Lo

] —>SL3—>GL3- 24 F* 5 1.

So we get a morphism of spectral sequences

5[274 = HI’(F*’ Hq (SLZ)):>Hp+q (GL»),

l |

EIZMI = HP(F*’ H,(SL3))== H)14(GL3).

By an easy analysis of this spectral sequence we obtain the following commutative
diagram with exact rows

H3(SLy) p+—> H3(GLy)/H3(GL)—%> Hy(F*, Hy(SLy)) —> 0
0 —>H3(SL3)F*—>H3(GL3)/H3(GL1)i>H1(F*, H>(SL3)) — 0.

The following theorem is due to Hutchinson and Tao [4, Theorem 3.2], which is
very fundamental in their proof of the surjectivity of «.

Theorem 2.1 The inclusion SLy —> SL3 induces a short exact sequence
0 — Hy (F*, Hy(SLp)) —> H, (F*, Hy(SL3)) — k¥ (F) — 0,

where K} (F) := K (F)/2.

Since the action of F* on H»(SL3) is trivial,
Hy (F*, Hy(SL3)) ~ F* ® K3 (F).

So we consider H{(F*, H»(SLy)) as a subgroup of F* ® Ké"I(F). It is easy to see
that the map

Hi (F*, Hy(SL3)) — K3/ (F)
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is induced by the natural product map F* ® KM (F) — K (F). Since the n-th
Milnor K -group, K ,1,” (F), is naturally isomorphic to the n-th tensor of F* modulo the
two families of relations

A Qan1® (1 —an_1), a€F* an#1,
a1 ®-a; a1 Qay+a1Q---aiy1 Qa; - ®ay, a;i € F*,

it easily follows that the kernel of the product map F* ® KM (F) — K (F) is
generated by elements a ® {b, ¢} + b ® {a, c}. This proves the following lemma.

Lemma 2.2 As a subgroup of Hi (F*, Hy(SL3)) = F*® Ké"(F), the group Hy(F*,
H>(SLy)) is generated by elements a @ {b, c} + b ® {a, c} and 2d ® {e, f}.

To go further, we need to introduce some notations. Let G be a group and set

(81,82, -, &) 1= D sign(0)[go 1)l - 8o m] € Ha(G),

€S,

where g; € G pairwise commute and S, is the symmetric group of degree n. Here we
use the bar resolution of G [2, Chapter I, Section 5] to define the homology of G.

Lemma 2.3 Let G and G’ be two groups.

(1) If h1 € G commutes with all the elements g1, ..., g, € G, then
c(glhlng, -"7g}’l) = c(glng, "-7gn) +c(h15 g27 ‘-'5gl’l)‘
(ii) Forevery o € Sy, €(8o(1), - --» 8o(n)) = sign(o)e(gr, ..., gn)-

(iii) The cup product of ¢(g1,...,8p) € Hy(G) and c(g}, ..., g;) € H,(G") is
C((gl, 1)5 LR (gpv 1)7 (17 g/l)ﬂ R (17 g;)) € Hp+q(G X G/)

Proof The proof follows from direct computations, so we leave it to the interested
readers. O

3 The kernel of H3(GL,) — H3(GL3)
For simplicity, in the rest of this article, we use the following notation
ka.p.c := c(diag(a, 1), diag(1, b), diag(1, ¢)) € H3(GL3).

The following theorem has been proved in [7, Theorem 3.1].

Theorem 3.1 The kernel of incy, : H3(GLy) — H3(GL3) consists of elements of
the form > kq p.c + kp.q.c sSuch that

> a®{b,cl+b®fa,c} =0e F*® Ky (F).
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In particular ker(incy,) € F* U Hy(GL;) € H3(GL;), where the cup product is
induced by the natural diagonal inclusion F* x GL; —> GLj. Moreover ker(incy )
is a 2-torsion group.

Let W and @ be the following compositions,
F* @ KM (F) "5 F* @ Hy(GLy) —> Hs (F* x GLy) 5 Hy(GLs),
id g %
F* @ KM (F) "5 F* ® Hy(GLy) —> Hs (F* x GLy) 25 Hs(GLy).,
respectively, where ¢ : K é” (F) >~ Hy(SLy)p+ —> H»(GLy) is the natural inclusion

given by the formula {a, b} — c(diag(a, 1), diag(h, b~")) [3, Proposition A.11] and
B : F* x GLy — GL, is given by (a, A) > aA. Itis easy to see that

Wb, c}) =c (diag(a, 1, 1), diag(1, b, 1), diag (1, ¢, c*‘)),
da®{b,c}) =c (diag(a, a), diag(b, 1), diag (c, c_l)).
Lemma 3.2 Let © be the composition
H3(GL2)/H3(GL1) —%> H\(F*, Hy(SLy)) = F* ® K} (F).

Then

(i) Oka,p,c +kpae) =a®{b,c}+b®{a,c),
(i) ®©(c(diag(a, a), diag(b, 1), diag(c, c_l))) =2a ®{b,c},
(iil)) OCkeap) =b®@{a,c} —a® {b,c}.

Proof (i) It is easy to see that the exact sequence
0 —> H3(SL3)p+ —> H3(GL3)/H3(GLy) — Hy (F*, Hy(SL3)) —> 0
splits canonically by the map
F*® K3!(F) = Hy (F*, Hy(SL3)) —> H3(GLa)/H;(GL1)
defined by W. Now consider the commutative diagram

H3(GL,)/H3(GL|)—%> Hj (F*, Hy(SL2))

| !

Hy(GL3)/H3(GL1)—2> Hy (F*, Hy(SL3)) .
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We have

incy (kg p.c) = c(diag(a, 1, 1), diag(l, b, 1), diag(1, c, 1))
—c (diag(a, 1, 1), diag(1, b, 1), diag (1, e, c_l)
te(diag(a, 1, 1), diag(1, b, 1), diag(1, 1, ¢))

—c (diag(a, 1, 1), diag(1, b, 1), diag (1, c, c_l))
—c(diag(b, 1, 1), diag(1, a, 1), diag(1, 1, ¢))
—c (diag(a, 1, 1), diag(1, b, 1), diag (1, e, c*l))

—c (diag(b, 1, 1), diag(1, a, 1), diag (1, o c))
—c(diag(b, 1, 1), diag(1, a, 1), diag(1, ¢, 1))
=V (@a@a®{b,c}+b®{a,c}) —inci(kpa.c).

Hence inci4(ky.p.c + kp.ac) = Y(a @ {b, c} + b ® {a, c}). Therefore

®(ka,b,c + kb,u,c) =1%o incl*(ka,b,c + kb,u,t')
=y oW (a®{b,c}+b®f{a,c}
=a®{b,c)+b®{a,c}.

(i1) Consider the composition

F*® K} (F) %> H(GLy)/H3(GLy) ~> F* @ K} (F).

The image of ®(a ® {b, c}) = c(diag(a, a), diag(b, 1), diag(c, ¢~ 1) in the group
H3(GL3)/H3(GL|) = H3(SL3)p+ @ F* ® K%’I(F) is equal to

inci, 0 (@ ® (b, c}) = ¢ (diag(a, a, 1), diag(b, 1, 1), diag (c, e 1))
—c (diag(a, a,a™?), diag(b, 1, 1), diag (c, = 1))
+e (diag(l, 1,a%), diag(b, 1, 1), diag (c, — 1))
—c (diag(a, 1,a7"), diag(b, 1,b"), diag (c, e 1))
+e (diag(az, 1, 1), diag(1, b, 1), diag (1, , c*‘)).

Therefore ® o ®(a ® {b, c}) = Y oincy, 0 P(a ® {b, c}) =2a R {b, c}.
(ii1) First note that

D@ b, c)) =c (diag(a, a), diag(b, 1), diag (c, c*‘))
= c(diag(a, 1), diag(b, 1), diag(c, 1))
_kc,a,b + ka,b,c + kb,a,c~
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Third homology of SL, and the indecomposable K3 679

Therefore

®(kc,a,b) = ®(ka,h,c + kb,a,c) - ®(<D(a & {b9 C}))
=b®{a,c} —a®{b,c}.

O

Proposition 3.3 Letincy,, : H3(SLy) p+ —> H3(GLy) be induced by the natural map
incy : SLy, — GL,. Then

im(inca,) N (F* U HZ(GLl)) — ker(incy,).

Proof By Theorem 3.1, the kernel of incy, : H3(GL,) —> H3(GL3) consists of
elements of the form D" k4. p.c + kb 4. such that

Za@{b,c}+b®{a,c} =0¢e F*® KM (F).
By Lemma 3.2, we see that
® (Zka,b,c + kb,a,c) =>a® b} +b®fa,c}=0.
Since the sequence
H3(SLy) p ey H3(GL2)/H3(GL1) —> Hy (F*, Hy(SLy)) — 0,
is exact, D kq.p.c + kp.a.c € im(incay,). Therefore
ker(inc;,) C im(incy,) N (F* U HQ(GLl)).
Now let x € im(incy,) N (F* U Hy(GL1)). Then x is of the following form
X = Zc(diag(ai, 1), diag(1, b;), diag(1, ¢;)).
Thus det,(x) = >_¢(a;, b;, ¢;) = 0, where det, : H3(GLy) —> H3(F*) is induced

by the determinant. By the inclusion /\% F* — H3(F*), we have a Ab A ¢
c(a, b, c) (see for example [10, Lemma 5.5]). Thus

Zai ®bi ® ¢; :Za/®a/®b/—}—Za”®b”®a”+2b”’®a”’®a”’.
Under the composition F *®3 __, F* @ Hy(F*) —> H3(GL,) defined by
a®@b®cr a®cb,c)— c(diag(a, 1), diag(l, b), diag(1, ¢)) = ka.p.c,
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we see that x has the following form

x =Y c(diag(a, 1), diag(1, a). diag(1, b)).

For simplicity, we assume that x = c(diag(a, 1), diag(1, a), diag(1l, b)). By Lemma
32,0(x)=a®{a,b} —b®{a,a} = 0. Thus

c (diag(a, 1, 1), diag(1, a, 1), diag (1, b, b—l))
=V (@®{a,b}) =¥ (bdR{a,a})
—c (diag(b, 1,1), diag(1, a, 1), diag (1, a, a_l)),

and so

+c(diag(a, 1, 1), diag(1, a, 1), diag(1, b, 1))
—c(diag(a, 1, 1), diag(1, a, 1), diag(1, 1, b))

—c(diag(b, 1, 1), diag(1, a, 1), diag(1, 1, a)).
Hence in H3(GL3) we have

incy,(x) = c(diag(a, 1, 1), diag(1, a, 1), diag(1, b, 1))
= c(diag(a, 1, 1), diag(1, a, 1), diag(1, 1, b))
—c(diag(b, 1, 1), diag(1, a, 1), diag(1, 1, a))
=0

Therefore x € ker(incy,) and this completes the proof of the proposition. O

4 The indecomposable part of the third K-group

Define the pre-Bloch group p(F) of F as the quotient of the free abelian group Q(F)
generated by symbols [a], a € F* — {1}, by the subgroup generated by elements of

the form
a1+ 2] - [ ] [
a4 a - b1 1—b|

where a, b € F* — {1}, a # b. Define

N:iQ(F)— F*®F* [al— a® (1l —a).

By a direct computation, we have

o[- [ D) oo (55) + (55) o
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Let (F*Q F*)y = F*Q F*/{(a®b+b®a : a,b € F*). We denote the elements of
p(F)and (F*® F*), represented by [a] and a ® b again by [a] and a ® b, respectively.
Thus we have a well-defined map

Aip(F) — (F*®F*),, lal—>a® (1 —a).

The kernel of A is called the Bloch group of F and is denoted by B(F). Therefore we
obtain the exact sequence

0 —> B(F) — p(F) — (F*® F*) — K3!(F) — 0.

The following remarkable theorem is due to Suslin [10, Theorem 5.2].

Theorem 4.1 Let F be an infinite field. Then we have the exact sequence
0— Torlz(M(F), w(F)~ — K3(F)ind —> B(F) — 0,

where T()rlZ (W(F), w(F))~ is the unique nontrivial extension of the group TorlZ (u(F),
Ww(F)) by Z/2 if char(F) # 2 and is equal to Torlz(,u(F), Ww(F)) ifchar(F) = 2.

The following theorem has been proved in [8, Theorem 4.4].

Theorem 4.2 Let F be an infinite field. Then we have the exact sequence
0 — Torf((F), u(F))™ —> H3(SLa(F)) —> B(F) —> 0,

where H3(SLy(F)) := H3(GL»)/(H3(GL;) + F* U Hy(GL1)).

These two theorems suggest that K3(F yind and Hz(SL,(F)) should be isomor-
phism. But there is no natural homomorphism from one of these groups to the other
one! But there is a natural map from H3(SLy) p+ to both of them. Hutchinson and Tao
have proved that H3(SLy)p+ —> K3(F yind g surjective [4, Lemma 5.1]. The next
lemma claims that this is also true for the other map.

Lemma 4.3 The map ¢ : H3(SLy)px —> I:Ig(SLz), induced by the natural map
SLy — GLy, is surjective.

Proof Consider the exact sequence
H3(SLy) p+ —> H3(GL2)/H3(GLy) — H\(F*, Hy(SLp)) —> 0.
By Lemma 3.2, we have

®(ka,b,c + kb,a,c) =a®{b,c}+b®{a,c},
®(c(diag(a, a), diag(b, 1), diag(c, c_l))) =2a ® {b, c}.
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Since Hi(F*, H>(SL»)) as a subgroup of Hi(F*, H>(SL3)) = F* ® K (F) is
generated by elements a ® {b,c} + b ® {a, c} and 2d ® {e, f} and since the ele-
ments a U ¢(b, ¢) = ky.p, vanish in FI3(SL2), H3(SLy) pr —> ﬁ3(SL2) must be
surjective. O

Now we are ready to prove our main theorem.

Theorem 4.4 Let F be an infinite field. The following conditions are equivalent.

(i) The homomorphism o : H3(SLy) p+ —> K3 (F)ind is bijective.
(i) The natural homomorphisms inci, : H3(GL,) —> H3(GL3) and incy, :
H3(SLy) p+ —> H3(GLy) are injective.

Proof (i1) = (i) Consider the surjective map ¢ : H3(SLy)px —> I:Ig(SLz) from
Lemma 4.3. Let ¢(x) = 0. Then incy,(x) € im(incy,) N F* U H3(GL}). But by
Proposition 3.3 and the assumptions

im(incy,) N F* U H3(GL;) = ker(inc;,) = 0.

From this we have incy, (x) = 0 and hence x = 0. Therefore ¢ is an isomorphism.
Now the claim follows by comparing the exact sequence of Theorem 4.2 and Suslin’s
Bloch-Wigner exact sequence in Theorem 4.1.

(i) = (ii) Let F be the algebraic closure of F. By a theorem of Merkurjev and Suslin,
K3(F)Md s Ky (F)ind jg injective [5, Proposition 11.3]. Thus from the commutative
diagram

H3(SLy) p» — H3 (SLa(F))
K3(F)m™ —— Ky (F)™,

and the injectivity of «, we deduce the injectivity of the map H3(SLz)p+ —>
H3(SLy(F)). Now_the injectivity of Hj (SLy) px —> H3(GL>) follows from the injec-
tivity of H3(SLy(F)) —> H3(GLy(F)) [6, Theorem 6.1] and commutativity of the
diagram

H3(SLy) p» — Hi (SL, (F))

! |

H3(GL;) — H3 (GL; (F)).

On the other hand, by Proposition 3.3, ker(inc;,) € H3(SLy)r+ € H3(GL3). Let
incy,(x) = 0. It easily follows from the commutative diagram

H3(SLy)p+ ——  H3(GL;) ——  H3(GL3)

| l I

Hj (SLy (F)) —— H3 (GL, (F)) —— H3 (GL3 (F)).
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that x € ker(H3(GLy(F)) —> H3(GL3(F))) = 0. Therefore x = 0 [6, Theorem
5.4(iii)]. O

Remark 4.5 (i) From the spectral sequence £2

1.g> One gets the exact sequence

2

0
Hy(GLy)/H4(GL1) — Hy (F*, Hy(SLy)) 3 Hy(SLo)
— H3(GLy)/H3(GL1) — H; (F*, H»(SLp)) — 0.

Thus the injectivity of incy, is equivalent to triviality of the differential 02 5

(ii) Theorem 3.1 gives a clear description of elements of the kernel of incq,. But
there is no such information about the kernel of incy,. It is easy to see that s, . 1=
c(diag(a, a™ b, diag(b, b b, diag(c, ¢~ 1)) is in the kernel of inc,, and is 2-torsion:

Sabe =€ (diag (a, a*l), diag (b, b*‘), diag (c, c*‘))
c (w.diag (a, a_l) .w_l, w.diag (b, b_l) .w_l, w.diag (c, c_l) .w_l)
c (diag (a‘l, a), diag (b_l, b), diag (c_l, c))

= —Sa,b,cs

where w := ((1) (;1 ) But it is not clear to us why it should be zero. It is not difficult

to see that ker(inc..) is a 2-power torsion group (see for example the proof of Theorem
6.1 in [6]).
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