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Abstract The classical Koszul braces, sometimes also called the Koszul hierarchy,
were introduced in 1985 byKoszul (Astérisque, (NumeroHors Serie):257–271, 1985).
Their non-commutative counterparts came as a surprise much later, in 2013, in a
preprint by Börjeson (A∞-algebras derived from associative algebras with a non-
derivation differential, Preprint arXiv:1304.6231, 2013). In Part I we show that both
braces are the twistings of the trivial L∞- (resp. A∞-) algebra by a specific auto-
morphism of the underlying coalgebra. This gives an astonishingly simple proof of
their properties. Using the twisting, we construct other surprising examples of A∞-
and L∞-braces. We finish Part 1 by discussing C∞-braces related to Lie algebras.
In Part 2 we prove that in fact all natural braces are the twistings by unique auto-
morphisms. We also show that there is precisely one hierarchy of braces that leads to
a sensible notion of higher-order derivations. Thus, the notion of higher-order deriva-
tions is independent of human choices. The results of the second part follow from the
acyclicity of a certain space of natural operations.
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1 Introduction

Advice for the reader. The article can be read in four possible ways:

(1) as a tool for checking that the classical braces indeed form L∞- resp. A∞-algebras,
(2) as a machine producing explicit examples of L∞-, A∞- and possibly also other

types of strongly homotopy algebras,
(3) as a justification that the higher-order derivations are God-given, not human,

inventions existing since the beginning of time, or
(4) as a vanilla version of [4].

The reader wanting only (1) and (2) may read Part 1 and skip the rest. Item (3)
explains why higher-order derivations of commutative associative algebras appear
e.g. in the interpretation of the algebraic structure of the combined conformal field
theory of matter and ghosts given in [11]. It is natural to expect that higher-order
derivations of associative algebras based on Börjeson’s braces would play a similar
rôle for open strings.

Plan of the paper. Section 1 contains several examples of braces, including the clas-
sical Koszul L∞-hierarchy and Börjeson’s A∞-braces. We demonstrate various prop-
erties which the braces may posses, in particular those leading to a sensible definition
of higher-order derivations.

In Sect. 2 we show how to generate braces by the twisting and interpret all exam-
ples in Sect. 1 as emerging this way. This offers a very simple verification that they
indeed form L∞- resp. A∞-structures. We close this section by discussing possible
generalizations to Lie and other types of algebras.

In Sect. 3 we analyze natural operations and prove that they form an acyclic space.
Themain results are Propositions 3.3 and 3.6. Thematerial of this section is a baby ver-
sion of the analysis of the Hochschild cochains in connection to Deligne’s conjecture
as given in [4].
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Origin of higher braces and higher-order derivations 639

Section 4 formulates the consequences of Sect. 3. Theorems 4.1 and 4.9 state that
all natural braces are the twistings by unique automorphisms, Corollaries 4.2 and 4.10
then describe the moduli space of all natural braces. By Theorems 4.3 and 4.11,
Börjeson’s resp. Koszul braces are the unique ones leading to a meaningful notion of
higher-order derivations of associative resp. commutative associative algebras.

Conventions. If not stated otherwise, all algebraic objects will be considered over
a fixed field k of characteristic zero. The symbol ⊗ will denote the tensor product
over k and Span(S) the k-vector space spanned by a set S. We will denote by 11X or
simply by 11 when X is understood, the identity endomorphism of an object X (set,
vector space, algebra, &c.). We will usually write the product of elements a and b of
an associative algebra as a · b or simply as ab.

A degree of a graded object will be denoted by |w| though we will sometimes
omit the vertical bars and write e.g. (−1)a+b instead of (−1)|a|+|b| to save the
space. For a permutation σ ∈ �k and graded variables w1, . . . , wk , the Koszul sign
ε(σ ;w1, . . . , wk) ∈ {−1,+1} is defined by the equation

w1 ∧ . . . ∧ wk = ε(σ ;w1, . . . , wk) · wσ(1) ∧ . . . ∧ wσ(k)

in the free graded commutative associative algebra S(w1, . . . , wk) generated by
w1, . . . , wk . We usually write ε(σ ) instead of ε(σ ;w1, . . . , wk) when the meaning of
w1, . . . , wk is clear from the context.

Given integers a, b ≥ 0, an (a, b)-unshuffle is a permutation σ ∈ �a+b satisfying

σ(1) < · · · < σ(a) and σ(a + 1) < · · · < σ(a + b).

By braces we mean the structure operations of a strongly homotopy algebra.

Part 1. Examples and constructions

1.1 Examples in place of introduction

We start by recalling a construction attributed to Koszul [7] and sometimes referred to
as theKoszul hierarchy, see also [1–3,5,17]. It is used to define higher order derivations
of commutative associative algebras, see §1.2 below; they play a substantial rôle for
instance in the BRST approach to closed string field theory [11, Section 4].

Example 1.1 (Classical L∞-braces) Let A be a graded commutative associative alge-
bra with a degree +1 differential � which is, very crucially, not necessarily a deriva-
tion. Koszul braces are linear degree +1 maps ��

k : A⊗k → A, k ≥ 1, defined by the
formulas

��
1 (a)=�(a),

��
2 (a1, a2)=�(a1a2) − �(a1)a2 − (−1)a1a2�(a2)a1,

��
3 (a1, a2, a3)=�(a1a2a3)

−�(a1a2)a3−(−1)a1(a2+a3)�(a2a3)a1−(−1)a3(a1+a2)�(a3a1)a2
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640 M. Markl

+�(a1)a2a3+(−1)a1(a2+a3)�(a2)a3a1+(−1)a3(a1+a2)�(a3)a1a2,
...

��
k (a1, . . . , ak)=

∑

1≤i≤k

(−1)k−i
∑

σ

ε(σ )�(aσ(1) · · · aσ(i))aσ(i+1) · · · aσ(k),

for a, a1, a2, a3, . . . ∈ A. The summation in the last line runs over all (i, k − i)-
unshuffles σ and ε(σ ) = ε(σ ; a1, . . . , ak) is the Koszul sign. As proved for instance
in [3], these braces form an L∞-algebra1 and have moreover the property that

if ��
k = 0 identically on A⊗k then ��

k+1 = 0 identically on A⊗k+1. (1)

We call braces with this property hereditary.

1.2 Higher order derivations

Let A be a graded commutative associative algebra with a differential � as in Exam-
ple 1.1. One says [2] that � is an order r derivation if ��

r+1 = 0. Clearly, being an
order 1 derivation is the same as being a derivation in the usual sense. It is almost clear
that an order r -derivation is determined by its values on the products x1 . . . xs , s ≤ r ,
of generators of A; an explicit formula is given in [11, Proposition 3.4].

One may ask whether higher-order derivations are ‘God-given,’ i.e. whether the
braces that define it are unique. Let us try to find out which properties the braces
leading to a sensible notion of higher-order derivations should satisfy. First of all,
they must be ‘natural’ in that they use only the data that are available for any graded
associative commutative algebra with a differential. The exact meaning of naturality
is analyzed in Sect. 3.

Given L∞-braces (A,�, l�2 , l�3 , . . .), we may call � an order r l-derivation if and
only if l�r+1 = 0. It is clear from the axioms for L∞-algebras recalled in §2.3 that, for
arbitrary scalars α, β ∈ k, the object

(A, α�, αβ l�2 , αβ2 l�3 , αβ3 l�4 , . . .) (2)

is an L∞-algebra as well. The first property we want is that an order 1 l-derivation is
an ordinary derivation. This means that, after a suitable renormalization (2),

l�2 (a1, a2) = �(a1a2) − �(a1)a2 − (−1)|a1|a1�(a2), for each a1, a2 ∈ A. (3)

We also certainly want that an order r l-derivation is also an order r + 1 l-derivation,
that is:

the braces l�2 , l�3 , l�4 , . . . are hereditary. (4)

The following example however shows that conditions (3)–(4) still do not determine
the braces uniquely.

1 We will give a short and elegant proof of this fact in Example 2.8; L∞-algebras are recalled in Defini-
tion 2.6.
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Origin of higher braces and higher-order derivations 641

Example 1.2 (Hereditary exotic L∞-braces) Here A is a graded commutative
associative algebra with a differential � of degree +1 as in Example 1.1. For
a, a1, a2, a3, . . . ∈ A define

h�
1 (a)=�(a),

h�
2 (a1, a2)=�(a1a2) − �(a1)a2 − (−1)a1a2�(a2)a1,

h�
3 (a1, a2, a3)=2�(a1)a2a3+(−1)a1(a2+a3)2�(a2)a3a1+(−1)a3(a1+a2)2�(a3)a1a2

−�(a1a2)a3−(−1)a1(a2+a3)�(a2a3)a1−(−1)a3(a1+a2)�(a3a1)a2,
...

h�
k (a1, . . . , ak)= (−1)k+1(k−1)!

∑

τ

ε(τ )�(aτ(1))aτ(2) · · · aτ(k)

+(−1)k(k−2)!
∑

σ

ε(σ )�(aσ(1)aσ(2))aσ(3) · · · aσ(k)

where τ runs over all (1, k−1)-unshuffles and σ over all (2, k−2)-unshuffles. It is
easy to verify that the above braces satisfy the induction

h�
k+1(a1, . . . , ak+1) = −

∑

σ

ε(σ )h�
k (aσ(1), . . . , aσ(k))aσ(k+1)

with σ running over all (k, 1)-unshuffles. This implies that they are hereditary.

Next, we want the recursivity of higher-order derivations, by which we mean that
an order r l-derivation is determined by its values on the products of ≤ r generators.
Moreover, the notion of higher-order derivations and therefore the braces as well must
be defined over an arbitrary ring. The recursivity is thus equivalent to:

The braces are defined over the ringZ of integers and the coefficientCk

at the term �(a1 · · · ak) in l�k (a1, . . . , ak) is either + 1 or − 1 for any k ≥ 1. (5)

For, if p := Ck /∈ {−1, 1} for some k, then higher-order l-derivations will not be
recursive over the ring Z/pZ of integers modulo p. For the braces in Example 1.2,
Ck = 0 for all k ≥ 3, so they do not satisfy (5).

It will follow from Theorem 4.11 that assumptions (3)–(5) already imply that l�k =
��

k for each k ≥ 1. Let us start our discussion of the non-commutative case by
recalling one construction from a recent preprint [6] of Börjeson.

Example 1.3 (Börjeson’s A∞-braces) Given a graded associative (not necessarily
commutative) algebra A with a differential �, define for a, a1, a2, a3, . . . ∈ A,
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642 M. Markl

b�
1 (a) = �(a),

b�
2 (a1, a2) = �(a1a2) − �(a1)a2 − (−1)a1a1�(a2),

b�
3 (a1, a2, a3) = �(a1a2a3) − �(a1a2)a3−(−1)a1a1�(a2a3)+(−1)a1a1�(a2)a3,

b�
4 (a1, a2, a3, a4) = �(a1a2a3a4)

−�(a1a2a3)a4 − (−1)a1a1�(a2a3a4) + (−1)a1a1�(a2a3)a4,
...

b�
k (a1, . . . , ak) = �(a1 · · · ak) − �(a1 · · · ak−1)ak

−(−1)a1a1�(a2 · · · ak) + (−1)a1a1�(a2 · · · ak−1)ak .

As proved in [6], these braces form an A∞-algebra2 and are hereditary.

It is obvious that Börjeson’s braces satisfy assumptions (3)–(5), so they lead to a
sensible notion of higher-order derivations of graded associative (non-commutative)
algebras. By Theorem 4.3, they are the only A∞-braces with these properties.

Example 1.4 (Non-recursive A∞-braces) The braces below lead to recursive higher-
order derivations over Z but not over Z/5Z, the integers modulo 5. They are, up to the
obvious Koszul signs, given by

e�
1 (a)=�(a),

e�
2 (a1, a2)=�(a1a2) − �(a1)a2 − a1�(a2)

e�
3 (a1, a2, a3)=2�(a1a2a3)−�(a1)a2a3−a1a2�(a3)−�(a1a2)a3−a1�(a2a3),

e�
4 (a1, a2, a3, a4)=5�(a1a2a3a4)−�(a1a2)a3a4−a1a2�(a3a4)

−2
(
�(a1)a2a3a4+a1a2a3�(a4)+�(a1a2a3)a4+a1�(a2a3a4)

)

...

e�
k (a1, . . . , ak)=αk�(a1 · · · ak)

−
∑

1≤u≤k−1

αuαk−u
(
�(a1 · · · au)au+1 · · · ak

+ a1 · · · au�(au+1 · · · ak)
)
,

where

α1 := 1 and αk := 1

k − 1

(
2k − 2

k

)
for k ≥ 2. (6)

2 A simple proof of this fact is provided by Example 2.4; A∞-algebras are recalled in Definition 2.1.
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Origin of higher braces and higher-order derivations 643

Example 1.5 (Hereditary non-recursive A∞-braces) We define braces satisfying (3),
(4) but not (5). Namely, for elements a, a1, a2, a3, . . . of a graded associative algebra
A with a differential � we put

e�
1 (a)= �(a),

e�
2 (a1, a2)=�(a1a2) − �(a1)a2 − a1�(a2),

e�
3 (a1, a2, a3)=−�(a1a2)a3−a1�(a2a3) + �(a1)a2a3+2a1�(a2)a3+a1a2�(a3),

e�
4 (a1, a2, a3, a4)=�(a1a2)a3a4 + 2a1�(a2a3)a4 + a1a2�(a3a4)

−�(a1)a2a3a4− 3a1�(a2)a3a4− 3a1a2�(a3)a4− a1a2a3�(a4),
...

e�
k (a1, . . . , ak)= (−1)k

∑

0≤i≤k−2

(k−2
i

)
a1 · · ·�(ai+1ai+2) · · · ak

−(−1)k
∑

0≤i≤k−1

(k−1
i

)
a1 · · ·�(ai+1) · · · ak .

We omitted for clarity the obvious Koszul signs. It is easy to verify the inductive
formula

e�
k+1(a1, . . . , ak+1) = −(−1)a1a1e

�
k (a2, . . . , ak+1) − e�

k (a1, . . . , ak)ak+1, k ≥ 1,

which implies that they are hereditary. On the other hand, e�
k (a1, . . . , ak) does not

contain the term �(a1 · · · ak), so the coefficients Ck in (5) are 0 for all k ≥ 2.

Hereditarity is a very fine property; ‘randomly chosen’ braceswill not be hereditary.
A systematic method of producing non-hereditary braces, based surprisingly on a
rather deep Proposition 4.4, is described in Example 4.7.

2 Constructions of higher braces

2.1 Non-commutative algebras and A∞-braces

Recall that an A∞-algebra consists of a graded vector space V together with linear
operations μk : V⊗k → V , k ≥ 1, such that deg(μk) = 2 − k, satisfying a system of
axioms that say that μ1 is a differential, μ2 is associative up to the homotopy μ3, &c,
see e.g. [15,16].

It will be useful in the context of this paper to transfer the operationsμk :V⊗k → V
to the desuspension A := ↓ V , i.e. to define new operations mk : A⊗k → A by the
commutativity of the diagram
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644 M. Markl

where ↓: V → ↓V = A is the desuspension map. Allmk’s then are of degree +1 and
they satisfy the axioms

∑

k+l=n+1

∑

1≤i≤k

mk(11
⊗i−1
A ⊗ ml ⊗ 11⊗k−i

A ) = 0, for each n ≥ 1. (7)

We will use this version of A∞-algebras throughout the paper:

Definition 2.1 An A∞-algebra is a structure A = (A,m1,m2,m3, . . .) consisting
of a graded vector space A and degree +1 linear maps mk : A⊗k → A, k ≥ 1,
satisfying (7).

Let Tc A be the coalgebra whose underlying space is the tensor algebra TA :=⊕
n≥1 A

⊗n and the diagonal (comultiplication) is the de-concatenation. It turns out
thatTc A is a cofree conilpotent coassociative coalgebra cogenerated by A, see e.g. [13,
§II.3.7].3 Its cofreeness implies that each coderivation ϑ of Tc A is given by its com-
ponents ϑk : A⊗k → A, k ≥ 1, defined by ϑk := π ◦ ϑ ◦ ιk , where π : Tc A � A is
the projection and ιk : A⊗k ↪→ T

c A the inclusion. We write ϑ = (ϑ1, ϑ2, ϑ3, . . .).
Let m := (m1,m2,m3, . . .) be a degree 1 coderivation of Tc A determined by the

linear maps mk as in Definition 2.1. It is well-known that axiom (7) is equivalent to
m being a differential, i.e. to a single equation m2 = 0. Therefore equivalently, an
A∞-algebra is a pair (A,m) consisting of a graded vector space A and a degree +1
coderivation m of Tc A which squares to zero.

In homological algebra one usually considers A∞-algebras (A,m1,m2,m3, . . .)

as objects living in the category of differential graded (dg) vector spaces, the linear
operation (differential)m1 being part of its underlying dg-vector space, not a structure
operation. For this reason we call an A∞-algebra with mk = 0 for k ≥ 2 a trivial
A∞-algebra.

Example 2.2 (Trivial A∞-algebra) Let � : A → A be a degree +1 differential on a
graded vector space A. It is clear that A� := (A,�, 0, 0, . . .) is an A∞-algebra. The
differential � extends to a linear coderivation (�, 0, 0, . . .) of Tc A.

As coderivations, by the universal property ofTc A each endomorphismφ : Tc A →
T
c A is determined by its components φk : A⊗k → A, k ≥ 1, defined by φk :=

π ◦φ ◦ ιn , We will write φ = (φ1, φ2, φ3, . . .). The sequence (11A, 0, 0, . . .) represents
the identity automorphism. The composition ψφ of φ with another endomorphism
ψ = (ψ1, ψ2, ψ3, . . .) has components

(ψφ)k =
∑

r≥1

∑

i1+···+ir=k

ψr (φi1 ⊗ · · · ⊗ φir ). (8)

It is well-known that φ : Tc A → T
c A is an automorphism (i.e. invertible endomor-

phism) if and only if φ1 : A → A is invertible. We call φ linear if φk = 0 for k ≥ 2.
Let us recall

3 A general misconception is that Tc A is cofree in the category of all coassociative coalgebras.
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Origin of higher braces and higher-order derivations 645

Definition Two A∞-algebras A′ = (A′,m′) and A′′ = (A′,m′′) are isomorphic if
there exists an automorphism φ : Tc A′ → T

c A′′ such that φm′ = m′′φ.4 They are
strictly isomorphic if there exist a linear φ as above.

Assume that we are given an A∞-algebra A = (A,m) and an automorphism
φ : Tc A → T

c A. Then clearly (A, φ−1mφ) is an A∞-algebra isomorphic to A.

Definition 2.3 In the situation above, we denote mφ := φ−1mφ and call the A∞-
algebra Aφ := (A,mφ) the twisting of the A∞-algebra A = (A,m) by the automor-
phism φ.

The components of the twisted coderivation mφ := φ−1mφ can be expressed
explicitly as

mφ
k =

∑

r,u≥1

∑

1≤ j≤r

∑

i1+···+ir+u−1=k

(φ−1)r (11
⊗ j−1 ⊗ mu ⊗ 11⊗r− j )(φi1 ⊗ · · · ⊗ φir+u−1).

If m is the linear coderivation � as in Example 2.2, the above formula simplifies to

�
φ
k =

∑

r≥1

∑

1≤ j≤r

∑

i1+···+ir=k

(φ−1)r (11
⊗ j−1 ⊗ � ⊗ 11⊗r− j )(φi1 ⊗ · · · ⊗ φir ). (9)

2.2 Explicit formulas

Let A be graded associative algebra with the product μ : A⊗2 → A. Denote by
Aut(A) the group of automorphisms φ of Tc(A) of the form

φ := (11A, f2 μ2, f3 μ3, f4 μ4, . . .),

where μk : A⊗k → A is the multiplication μ iterated (k − 1)-times, and fk ∈ k are
scalars, k ≥ 2.5 Such an automorphism is clearly determined by its generating series

φ(t) := t + f2t
2 + f3t

3 + · · · ∈ k[[t]]. (10)

It is easy to verify using (8) that the composition of automorphisms is translated into
the composition of their generating series, i.e. (ψφ)(t) = ψ

(
φ(t)

)
.

Let φ ∈ Aut(A) be the automorphism with the generating series (10) and ψ(t) :=
φ−1(t) its inverse with the generating series

ψ(t) = t + g2t
2 + g3t

3 + · · · ∈ k[[t]].

Denote by

ψ ′(t) := 1 + g2t + g3t
2 + g4t

3 · · · ∈ k[[t]]

4 Sometimes one says that A′ and A′′ are weakly isomorphic.
5 As explained in Example 3.8, Aut(A) is a sub-monoid of the monoid of all natural automorphisms.
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the noncommutative derivative of ψ(t). It is straightforward to verify that (9) gives

�
φ
k =

∑

r+s+p=k

cr,s · f p · μr+s+1(11
⊗r ⊗ �μp ⊗ 11⊗s), (11)

with the coefficients cr,s ∈ k defined as

cr,s := ψ ′(φ(u) + φ(v)
)∣∣
urvs , (12)

where
∣∣
urvs denotes the coefficient at u

rvs of the corresponding power series in the
ring of noncommutative polynomials in u and v, i.e. the noncommutative Taylor
coefficient at urvs . Explicitly,

cr,s =
∑

k,l≥0

gk+l+1

∑

a1+···+ak=r

fa1 · · · fak
∑

b1+···+bl=s

fb1 · · · fbl , (13)

where we put, by definition, g1 = f1 := 1. Observe that the above sum makes sense
even for r or s equaling 0 provided we interpret the empty product as 1.

Exercise If � is a derivation, then �φ = �, i.e. �k = 0 in (11) for all k ≥ 2.

Example 2.4 (Börjeson’s A∞-braces continued) We describe the braces constructed
in [6] and recalled in Example 1.3 as a twisting of the trivial A∞-algebra A� =
(A,�, 0, 0, . . .). We take as φ the automorphism with the generating series

φ(t) := t + t2 + t3 + · · · = t

1 − t
,

so that

ψ(t) := φ−1(t) = t − t2 + t3 − · · · = t

1 + t
.

In this case, gk+l+1 in (13) equals (−1)k+l , therefore

cr,s =
∑

a1+···+ak=r

(−1)k f1 · · · fak
∑

b1+···+bl=s

(−1)l fb1 · · · fbl

= (
1 − ψφ(u)

)(
1 − ψφ(v)

)∣∣
urvs = (1 − u)(1 − v)|urvs .

We conclude that

cr,s =

⎧
⎪⎨

⎪⎩

1 if (r, s) ∈ {
(0, 0), (1, 1)

}
,

−1 if (r, s) ∈ {
(0, 1), (1, 0)

}
, and

0 in the remaining cases.

Since f p = 1, formula (11) obviously gives Börjeson’ braces, i.e. b�
k = �

φ
k for

each k ≥ 1.
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Example 2.5 (Non-recursive A∞-braces continued) The braces described in Exam-
ple 1.4 are the result of the twisting by the endomorphism φ with the generating
function

φ(t):=1 − √
1 − 4t

2
=t +

∑

k≥2

tk

k − 1

(
2k − 2

k

)
=t + t2 + 2t3 + 5t4 + 14t5 + · · · ,

whose inverse equals ψ(t) = t − t2. Observe that ψ ′(t) = 1 − t , therefore, in (12)

cr,s =
(
1−φ(u)−φ(v)

)∣∣
urvs =

⎧
⎪⎨

⎪⎩

−(αr + αs) if r = 0 or s = 0 but (r, s) = (0, 0),

1 if (r, s) = (0, 0), and

0 in the remaining cases,

where αi ’s are the Taylor coefficients of φ(t). It is simple to verify that formula (11)
leads to the braces of Example 1.4.

Example (Hereditary non-recursive A∞-braces continued) The braces in Example 1.5
are generated by the automorphism with the generating series φ(t) = t + t2 whose
inverse is

ψ(t) : =
√
1 + 4t − 1

2
= t −

∑

k≥2

(−t)k

k − 1

(
2k − 2

k

)

= t − t2 + 2t3 − 5t4 + 14t5 − · · ·.

We leave as an exercise to perform the calculation. Notice that φ(t) and ψ(t) are
related with those from Example 1.5 via the transformation

φ(t) �→ −ψ(−t), ψ(t) �→ −φ(−t).

2.3 Commutative algebras and L∞-braces

Lie counterparts of A∞-algebras are L∞-algebras. An L∞-algebra is a graded vector
space L with linear operations �k : L⊗k → V , k ≥ 1, deg(�k) = 2−k, that are graded
antisymmetric and satisfy axioms that say that �1 is a differential, �2 fulfills the Jacobi
identity up to the homotopy �3, &c, see e.g. [8,9].

As for A∞-algebras, we will use the version transferred to the desuspension A :=
↓ L . The transferred structure operations lk’s have degree +1, are graded symmetric,
and satisfy, for each a1, . . . , an ∈ A, the ‘master identity’

∑

i+ j=n+1

∑

σ

ε(σ )l j
(
li (aσ(1), . . . , aσ(i)), aσ(i+1), . . . , aσ(n)

) = 0, (14)

where σ runs over all (i, n−i)-unshuffles and ε(σ ) is theKoszul sign of σ .We thus use:
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Definition 2.6 An L∞-algebra is an object L = (A, l1, l2, l3, . . .) consisting of
a graded vector space A and degree +1 graded symmetric linear maps lk : A⊗k → A,
k ≥ 1, satisfying (14) for each n ≥ 1.

Let Sc A = ⊕
k≥1 S

k A be the symmetric coalgebra with the diagonal given by the
de-concatenation; it is the cofree conilpotent cocommutative coassociative coalgebra
cogenerated by A. Each coderivation ω of Sc A is thus determined by its components
ωk := π ◦ ω ◦ ιk , k ≥ 1, where π : Sc A � A is the projection and ιk : Sk A ↪→ S

c A
the inclusion of the kth symmetric power of A. We write ω = (ω1, ω2, ω3, . . .).

Let l := (l1, l2, l3, . . .) be a degree 1 coderivation of Sc A determined by the linear
maps lk of Definition 2.6. Axiom (14) is equivalent to a single equation l2 = 0 [8,
Theorem 2.3]. So an L∞-algebra is a pair (A, l) a graded vector space and a degree
+1 coderivation l of Sc A which squares to zero.

Example 2.7 (Trivial L∞-algebra) The observations of Example 2.2 apply verbatim
to the L∞-case – if � is a degree +1 differential on a graded vector space A, then
L� := (A,�, 0, 0, . . .) is an L∞-algebra.

As automorphisms of Tc A twist A∞-algebras, L∞-algebras can be twisted by
automorphisms φ : Sc A → S

c A determined by their components φk : Sk A → A,
k ≥ 1. We leave as an exercise to derive formulas for the composition and for the
twisting of L� analogous to (8) and (9).

2.4 Explicit formulas

For a graded associative commutative algebra with a multiplication μ : A⊗2 → A,
denote by Aut(A) the group of automorphisms φ of Sc(A) of the form

φ := (11A, f2 μ2, f3 μ3, f4 μ4, . . .),

where μk : A⊗k → A is the multiplication μ iterated (k − 1)-times, and fk ∈ k are
scalars, k ≥ 2. To such an automorphism we associate its generating series

φ(t) = 1 + f1t + f2
2! t

2 + f3
3! t

3 + · · · ∈ k[[t]]. (15)

It is simple to verify that the generating series of the composition of two automorphisms
is the composition of their generating series, i.e. (ψφ)(t) = ψ

(
φ(t)

)
. The situation is

analogous to the non-commutative case, only the generating series involve factorials.
Let φ ∈ Aut(A) be the automorphism with the generating series (15) and ψ(t) :=

φ−1(t) the inverse of its generating series,

ψ(t) = 1 + g1t + g2
2! t

2 + g3
3! t

3 + · · · ∈ k[[t]].

Denote by

ψ ′(t) := g1 + g2t + g3
2! t

2 + g4
3! t

3 · · · ∈ k[[t]]
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its (ordinary) derivative. It is simple to verify that the components of the twisting �φ

of � via φ are given by

�
φ
k (a1, . . . , ak)

=
∑

σ

∑

r+s=k

cr · fs · ε(σ )μr+1
(
�μs(aσ(1), . . . , aσ(s)), aσ(s+1), . . . , aσ(k)

)
(16)

where σ runs over all (r, s)-unshuffles, ε(σ ) is the Koszul sign of σ and

cr := drψ ′(φ(t)
)

dtr

∣∣∣
t=0

.

Example 2.8 (Classical L∞-braces) The classical Koszul braces recalled in Exam-
ple 1.1 are the twisting of L� by the automorphism with the generating series

φ(t) := et − 1 =
∑

k≥1

1

k! t
k = t + 1

2! t
2 + 1

3! t
3 + · · ·

whose inverse ψ(t) equals

ψ(t) = ln(t + 1) =
∑

k≥1

(−1)k+1

k
tk = t − t2

2
+ t3

3
− t4

4
+ · · ·.

Since ψ ′(t) = (1 + t)−1, ψ ′(φ(t)
) = e−t , therefore cr = (−1)r . As fs = 1 for each

s ≥ 1, formula (16) readily gives �
φ
k = ��

k for each k ≥ 1.

Example (Hereditary exotic L∞-braces continued) The braces in Example 1.2 are
given by the automorphism with the generating series φ(t) = t + t2/2 whose
inverse equals

ψ(t) = −1 + √
1 + 2t = t − 1

2
t2 + 1

2
t3 − 5

8
t4 + · · ·

= t −
∑

k≥2

(−t)k

2k−1(k − 1)

(
2k − 2

k

)
.

Problem It is clear that an automorphism φ(t) with the generating series (15) leads
to recursive braces if and only if fk ∈ {−1,+1}. Which property of the generating
function guarantees the hereditarity?

2.5 The Lie case

One may ask how the previous material translates to the Lie algebra case. One could
expect to have, for a graded Lie algebra L with a differential �, natural C∞-braces
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(L ,�, c2, c3, . . .) emerging as the twistings of the trivial C∞-algebra by automor-
phisms of the Lie coalgebra L

cL and, among these structures, a particular one that
leads to higher-order derivations of Lie algebras.

Recall that a C∞-algebra (also called, in [10, §1.4], a balanced A∞-algebra) is an
A∞-algebra as in Definition 2.1 whose structure operations vanish on decomposables
of the shuffle product. As in the A∞- or L∞-cases, C∞-algebras can equivalently be
described as square-zero coderivations of the cofree conilpotent Lie coalgebra L

cL
cogenerated by L .

We may try to proceed as in the previous two cases. We have the trivialC∞-algebra
C� = (L ,�, 0, 0, . . .), thus any natural automorphism φ : LcL → L

cL determines
a coderivation �φ := φ−1�φ that squares to 0, i.e. C∞-braces on L .

The sting lies in the notion of naturality. In constructing A∞-braces we very cru-
cially relied on the fact that the cofree conilpotent coassociative coalgebra cogenerated
by Amaterialized as the tensor algebraTA equipped with the de-concatenation diago-
nal. Therefore natural operations TA → A give rise to natural automorphisms of Tc A
and thus also to natural A∞-braces. Similarly, the cofree conilpotent coalgebra cogen-
erated by A can be realized as the symmetric algebra SV with the de-concatenation
(unshuffle) diagonal.

We were however not able to find an explicit and natural (i.e. not depending e.g. on
the choice of a basis) formula for a diagonal on the free Lie algebra LL that would
make it a cofree conilpotent coalgebra; we were able to describe the diagonal for Lie
words of length ≤3 only. It is given, for v, v1, v2, v3 ∈ L , by

D(v) = 0

D{v1, v2} = v1 ∧ v2,

D{v1, {v2, v3}} = 2v1 ∧ {v2, v3} − v2 ∧ {v3, v1} − v3 ∧ {v1, v2}.
(17)

In the above display, we denoted the bracket in LL by {−,−} to distinguish it from
the bracket of L which we will denote more traditionally by [−,−].
Remark 2.9 The lack of an explicit diagonal for the free Lie algebra LL may be
related to the problem of describing the Eulerian idempotents e(1)

k : Tk X → T
k X

[14, Corollary 1.6] in terms of iterated linearly-independent Lie braces. While, for
x, x1, x2, x3 ∈ X ,

e(1)
1 (x) = x,

e(1)
2 (x1 ⊗ x2) = 1

2! [x1, x2] and

e(1)
2 (x1 ⊗ x2 ⊗ x3) = 1

3!
([[x1, x2], x3] + [x1, [x2, x3]]

)
,

a similar formula for e(1)
k with k ≥ 4 is not known.

Let Lk L be the subspace of LL spanned by elements of the product length k. As in
the previous cases, each coalgebra automorphismφ : LcL → L

cL is determined by its

123



Origin of higher braces and higher-order derivations 651

components φk : Lk L → L , k ≥ 1. One has also the canonical maps λk : Lk L → L
given by the multiplication in L . Assume we found a natural isomorphism between
LL and L

cL such that the induced diagonal on LL agrees with (17) on elements of
length ≤3.

Let φ = (11L , f2λ2, f3λ3, . . .) be the automorphism whose kth component equals
fkλk for some scalars fk ∈ k, and ψ = (11L , g2λ2, g3λ3, . . .) another one, with
components gkλk , gk ∈ k. Using (17), one derives the following formula for the first
three components of the composition:

ψφ = (
11L , ( f2 + g2)λ2, ( f3 + 3 f2g2 + g3)λ3, . . .

)
.

With this formula, one easily verifies that the inverse of φ = (11L , λ2, λ3, . . .) is of
the form φ−1 = (11L ,−λ2,+2λ3, . . .).

The twisting of the trivial C∞-algebra C� by φ = (11L , λ2, λ3, . . .) leads to the
following formulas for c�

k = �
φ
k ; we for clarity omit the Koszul signs:

c�
1 (v) = �(v),

c�
2 {v1, v2} = �[v1, v2] − [�v1, v2] − [v1,�v2],

c�
3

{
v1, {v2, v3}

} = �[v1, [v2, v3]] − 2[v1,�[v2, v3]] + [�v2, [v3, v1]]
+[v2,�[v3, v1]] + [�v3, [v1, v2]] + [v3,�[v1, v2]]
+2

([v1, [�(v2), v3]] + [v1, [v2,�(v3)]]
)
.

It is easy to verify that

c�
3

{
v1, {v2, v3}

} = −2
[
v1, c

�
2 {v2, v3}

] − c�
2

{
v2, [v3, v1]

} − c�
2

{
v3, [v1, v2]

}
.

Therefore, if � is a derivation of the Lie algebra L , i.e. if c�
2 = 0, c�

3 vanishes as
expected.

We saw in the A∞- resp. L∞-cases that the twisting by the automorphism whose
components were the canonical maps μk : Tk A → A resp. μk : Sk A → A, lead to
the (unique) braces giving a sensible notion of higher-order derivations. This justifies:

Conjecture The twisting of C� = (L ,�, 0, 0, . . .) by φ = (11L , λ2, λ3, . . .) gives
rise to C∞-braces satisfying the analogs of conditions (3)–(5).

Verifying this conjecture of course depends on describing the isomorphism

LL ∼= L
cL .

2.6 Other cases

Let us finish this part by formulating the most general context in which our approach
may work. We will need the language of operads for which we refer for instance
to [12,13]. Let P be a quadratic Koszul operad and A a P-algebra. Denote by P !
the Koszul (quadratic) dual of P [13, Def. II.3.37] and by FP A (resp. Fc

P A) the free
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P-algebra (resp. the cofree conilpotentP-coalgebra) generated (resp. cogenerated) by
A.

A strongly homotopy P !-algebra, also called a P !∞-algebra, is determined by
a square-zero coderivation p of Fc

P A. If � is a differential on A, one has as before the
trivial P∞-algebra P� = (A,�, 0, 0, . . .) given by extending � to Fc

P A.
Under the presence of a natural identification FP A ∼= F

c
P A, one may speak about

natural automorphisms that twist P� to P !∞-braces. One has the automorphism φ :
F
c
P A → F

c
P A whose components are given by the structure map FP A → A. It

is sensible to conjecture that the related P !∞-braces lead to a reasonable notion of
higher-order derivations of P-algebras.

In this general set-up, A∞-braces related to associative algebras correspond to the
P = Ass case, L∞-braces related to commutative associative algebras to P = Com,
and C∞-braces related to Lie algebras to P = Lie, where Ass, Com and Lie denote
the operad for associative, commutative associative and Lie algebras, respectively.6

Part 2. Naturality and acyclicity

3 Naturality

This section is devoted to natural operations A⊗k → A (resp. Sk A → A), where A is
a graded associative (resp. graded commutative associative) algebra with a differential
� of degree+1. Since in the commutative associative case the symmetric group action
brings extra complications but nothing conceptually new, we analyze in detail only
the associative case.

Associative case. We are going introduce the space Nat(k) of natural operations
A⊗k → A and show that Nat(k), graded by the degrees of maps and equipped with
the differential induced by �, is acyclic for each k ≥ 2. The content of this section is
a kindergarten version of the analysis of Deligne’s conjecture given in [4].

3.1 Natural operations

Intuitively, natural operations A⊗k → A are linear maps composed from the data
available for an arbitrary graded associative algebra Awith a differential. Equivalently,
natural operations are linear combinations of compositions of ‘elementary’ operations,
which are themultiplication, the differential, permutations of the inputs andprojections
to the homogeneous parts. Our categorial definition given below is chosen so that it
excludes the projections; the reason is explained in Exercise 4.8. Our theory can,
however, easily be extended to include the projections as well, cf. Exercise 3.7. Let us
start with:

Example 3.1 The space Nat(1) of natural operations A → A is two-dimensional,
spanned by the identity 11 : A → A ∈ Nat(1)0 in degree 0 and � : A → A ∈

6 Recall that Ass! ∼= Ass, Com! ∼= Lie and Lie! ∼= Com, see e.g. [13, Example II.3.38].
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Nat(1)1 in degree 1. The space Nat(2)0 is spanned by two operations,

a ⊗ b �→ ab and a ⊗ b �→ (−1)|a||b|ba,

where ab resp. ba denotes the product in A. The space Nat(2)1 is 6-dimensional,
spanned by the operations

a ⊗ b �→ �(a)b, a ⊗ b �→ (−1)|a|a�(b), a ⊗ b �→ �(ab),

and compositions of these operations with the permutation a ⊗ b �→ (−1)|a||b|b ⊗ a,
i.e. by

a⊗b �→ (−1)|a||b|�(b)a, a ⊗ b �→ (−1)|b|(|a|+1)b�(a), a ⊗ b �→ (−1)|a||b|�(ba).

Likewise, Nat(2)2 is spanned by

a ⊗ b �→ �(a)�(b), a ⊗ b �→ (−1)|a|�
(
a�(b)

)
, a ⊗ b �→ �

(
�(a)b

)

and their permutations. Finally, Nat(2)3 is two-dimensional, spanned by

a ⊗ b �→ �
(
�(a)�(b)

)
and a ⊗ b �→ (−1)|b|(|a|+1)�

(
�(b)�(a)

)
.

There are no natural operations A⊗2 → A of degrees > 4. Observe that the Euler
characteristic of the graded space Nat(2)∗ is 2 − 6 + 6 − 2 = 0. This indicates its
acyclicity.

All operations β : A⊗2 → A ∈ Nat(2) listed in Example 3.1 share the following
property. Let (A,�A) and (B,�B) be graded associative algebras with differentials
and ϕ : A → B a linear map such that

ϕ(a′a′′) = ϕ(a′)ϕ(a′′) and ϕ�A(a) = �Bϕ(a), for each a, a′, a′′ ∈ A. (18)

Then
β
(
ϕ(a′) ⊗ ϕ(a′′)

) = ϕ
(
β(a′ ⊗ a′′)

)
for each a′, a′′ ∈ A. (19)

Let us emphasize that we do not assume the map ϕ to be homogeneous of degree 0, it
can be an arbitrary linear map A → B satisfying (18).

Example This example explains why we did not require the homogeneity of the map
ϕ in (18). Consider the operation β : A⊗2 → A defined by

β(a ⊗ b) :=
{
ab ∈ A if |a| = 2 and |b| = −13 and

0, otherwise.

It is certainly ‘natural’ in that it is defined using the data that are available for any
graded associative algebra, but we do not want to consider this type of operation.7

7 Although, as indicated in Exercise 3.7, we can extend our theory to include also operations of this type.
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What excludes β from the family of well-behaved operations is precisely the lack of
naturality (19) with respect to non-homogeneous maps.

To see why it is so, take A := T(a, b), the tensor algebra on two generators with
|a| := 2 and |b| := −13, and B := T(u, v) generated by u, v with |u| = |v| := 0.
There clearly exists a unique ‘non-homogeneous’ homomorphism ϕ : A → B such
that ϕ(a) = u and ϕ(b) = v.8 But then

0 = β(u ⊗ v) = β
(
ϕ(a) ⊗ ϕ(b)

) = ϕ
(
β(a ⊗ b)

) = ϕ(ab) = ϕ(a)ϕ(b) = uv,

so β is not natural with respect to our extended notion of a homomorphism, though it
is still natural with respect to conventional homomorphisms as can be easily checked.

Natural operations thus appear as natural transformations β : ⊗k → � from the
tensor power functor

⊗k : Algs� → Vect to the forgetful functor � : Algs� →
Vect, where Algs� is the category of graded associative algebras with a differential,
withmorphisms as in (18), andVect the category of vector spaces.We however prefer
a more explicit:

Definition 3.2 For k ≥ 1, letNat(k) be the abelian group of families of linear maps

βA : A⊗k → A

indexed by graded associative algebras A = (A,�) with a differential such that, for
any linear map ϕ : A → B satisfying (18), the diagram

(20)

commutes.

We are going to prove a structure theorem for natural operations. Denote by
Fr(x1, . . . , xk) the free graded associative algebra with a differential, generated by
degree 0 elements x1, . . . , xk (an explicit description is given in §3.2). Denote also
by Fr1,...,1(x1, . . . , xk) the subspace of Fr(x1, . . . , xk) spanned by the words that
contain each generator precisely once.

Proposition 3.3 For each k ≥ 1 one has a natural isomorphism

ξ : Nat(k) ∼= Fr1,...,1(x1, . . . , xk).

Proof Denote, for brevity, Fr := Fr(x1, . . . , xk). Let A = (A,�) be an arbitrary
algebra with a differential. Given elements a1, . . . , ak ∈ A, there exists a unique
�A

a1,...,an : Fr → A satisfying (18), specified by requiring �A
a1,...,an (xi ) := ai

for 1 ≤ i ≤ k.

8 The reason is that T(a, b) is free also in the category of ungraded associative algebras.
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Given a natural operation β ∈ Nat(k) and a1, . . . , ak ∈ A, one has the commuta-
tive diagram

(21)

by naturality (20). We will also need the particular case of (21) when A = Fr and
ai = ui xi , for some scalars ui ∈ k, 1 ≤ i ≤ k:

(22)

Recall that Fr1,...,1 := Fr1,...,1(x1, . . . , xk) denotes the subspace of elements con-
taining each generator x1, . . . , xk precisely once.We begin the actual proof by observ-
ing that each natural operation β ∈ Nat(k) determines an element ξ(β) ∈ Fr by

ξ(β) := βFr (x1 ⊗ · · · ⊗ xn) ∈ Fr. (23)

We will show that, quite miraculously, ξ(β) belongs to Fr1,...,1. Clearly, Fr decom-
poses as

Fr = ⊕
j1,..., jk≥0 Fr j1,..., jk ,

where Fr j1,..., jk ⊂ Fr is the subspace of elements having precisely ji instances
of xi for each 1 ≤ i ≤ k. The endomorphism �A

u1x1,...,uk xk : Fr → Fr acts on

Fr j1,..., jk by the multiplication with u j1
1 · · · u jk

k ; the subspace Fr j1,..., jk ⊂ Fr is,
in fact, characterized by this property. The element ξ(β) uniquely decomposes as
ξ(β) = ∑

j1,..., jk≥0 ξ(β) j1,..., jk , for some ξ(β) j1,..., jk ∈ Fr j1,..., jk .

Let us turn our attention to (22). By the definition of the map �A
u1x1,...,uk xk , one has

βFr
(
(�A

u1x1,...,uk xk )
⊗k)(x1 ⊗ · · · ⊗ xk) = βFr (u1x1 ⊗ · · · ⊗ ukxk),

while the linearity of βFr implies

βFr (u1x1 ⊗ · · · ⊗ ukxk) = u1 · · · uk · βFr (x1 ⊗ · · · ⊗ xk) = u1 · · · uk · ξ(β).

On the other hand

�A
u1x1,...,uk xk (βFr )(x1 ⊗ · · · ⊗ xk)

= �A
u1x1,...,uk xk

(
ξ(β)

) =
∑

j1,..., jk≥0

u j1
1 · · · u jk

k · ξ(β) j1,..., jk ,
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therefore the commutativity of (22) means that

u1 · · · uk · ξ(β) =
∑

j1,..., jn≥0

u j1
1 · · · u jk

k · ξ(β) j1,..., jk

for each u1, . . . , uk ∈k. We conclude that ξ(β) j1,..., jk =0 if ( j1, . . . , jk) =(1, . . . , 1),
so ξ(β) = ξ(β)1,...,1 ∈ Fr1,...,1 as claimed.

We leave as an exercise to prove that, vice versa, each element ξ ∈ Fr1,...,1 deter-
mines a natural operation β(ξ) ∈ Nat(k) by the formula

β(ξ)A(a1 ⊗ · · · ⊗ ak) = �A
a1,...,ak (ξ), for each a1, . . . , ak ∈ A, (24)

cf. the proof of [4, Proposition 2.9]. The above constructions define mutually inverse
correspondences β �→ ξ(β) and ξ �→ β(ξ) that give the isomorphism of the proposi-
tion.

Remark A crucial step of the previous proof was that ξ(β) belonged toFr1,...,1. It was
implied by the multilinearity, which is a particular feature of the monoidal structure
given by ⊗. In the cartesian situation, ξ(β) might have been an arbitrary element of
the free algebra Fr(x1, . . . , xk).

3.2 The algebra Fr(x1, . . . , xk).

Elements of the free algebra Fr = Fr(x1, . . . , xk) are results of iterated applications
of the associative multiplication and the differential on the generators x1, . . . , xk .
The subspace Fr1,...,1 = Fr1,...,1(x1, . . . , xk) is spanned by words containing each
generator precisely once. A typical element of Fr1,...,1 is thus an expression as

�
(
�(x3)x6�(x4)

)
x5�(x2x1). (25)

The algebra Fr and thus also Fr1,...,1 is graded by the number of occurrences of �;
the element in (25) therefore belongs to Fr41,...,1.

We can clearly encode elements of Fr1,...,1 by ‘flow diagrams’ that record how the
multiplication and the differential are applied. For instance, the diagram encoding (25)
is

Its underlying graph is a rooted (=oriented) planar tree with the root pointing
upwards. The labels of its leaves (=inputs) mark the position of the generators. The
vertices symbolize iterated multiplication while the bullets the application of the dif-
ferential.

We see that elements of Fr1,...,1(x1, . . . , xk) can be represented by linear combi-
nations of planar rooted trees T such that
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– each vertex of T has at least two inputs,
– all internal edges and possibly some external edges are decorated by the bullet •,
and

– the leaves of T are labelled by a permutation of (1, . . . , k).

Let us denote by T (k) the set of all trees as above. Proposition 3.3 together with
our description of Fr1,...,1(x1, . . . , xk) gives

Corollary 3.4 For each k ≥ 1 one has a natural isomorphism Nat(k) ∼= Span(
T (k)

)
.

It follows from general theory [13, Proposition II.1.27] that Nat(k) is the arity
k-th piece of the operad Nat whose algebras are couples (A,�) consisting of an
associative algebra and a differential. We will, however, not need this interpretation
in the sequel.

Example Corollary 3.4 offers the following description of Nat(2):

We leave as an exercise to relate the above description to the operations listed in
Example 3.1.

Example 3.5 It easily follows from Corollary 3.4 that Nat(k)0 is spanned by opera-
tions

β(a1, . . . , ak) = ε(σ ) · aσ(1) · · · aσ(k), σ ∈ �n,

i.e. Nat(k)0 ∼= k[�n] for k ≥ 1.

3.3 Acyclicity

There is a differential on Nat(k) induced by �. For β : A⊗k → A it is defined by

δ(β) := �β − (−1)|β| ∑

1≤i≤k

β
(
11⊗(i−1) ⊗ � ⊗ 11⊗(k−i)).

When evaluating the above formula, we shall of course take into account the Koszul
sign convention. For instance, if β ∈ Nat(2) and a, b,∈ A, then

δ(β)(a ⊗ b) = �β(a ⊗ b) − (−1)|β|β
(
�(a) ⊗ b

) − (−1)|a|+|β|β
(
a ⊗ �(b)

)
.

123



658 M. Markl

It is simple to verify that δ2 = 0, so
(
Nat(k)∗, δ

)
is a cochain complex. We leave as

an exercise to describe δ in terms of trees.

Proposition 3.6 The cochain complex

k = Nat(k)0
δ−→ Nat(k)1

δ−→ Nat(k)2
δ−→ · · · (26)

is acyclic for each k ≥ 2. In particular, the map δ : k = Nat(k)0 → Nat(k)1

is monic.

The case of k = 1 is a particular one, as the differential δ : Nat(1)0 → Nat(1)1

is the zero map Span(11)
0→ Span(�). The explanation is that the identity 11 : A → A

is the only natural operation that is ‘generically’ a chain map.

Proof of Proposition 3.6 We describe a contracting homotopy. By Corollary 3.4, each
natural operation β ∈ Nat(k) is represented by a unique linear combination of trees
from T (k). It is therefore enough to specify how the homotopy acts on operations
given by a single tree.

Let β be represented by T ∈ T (k). If the root edge of T is decorated by the bullet,
we define h(β) as the operation represented the tree T ′ obtained from T by removing
the decoration of the root.We define h(β) := 0 if the root edge of T is not decorated by
the bullet. We leave as an exercise to verify that hδ+δh = 11, so that h is a contracting
homotopy. ��

Notice that the complexNat(k) is isomorphic to the direct sum of k! copies of the
contractible subcomplex Nat(k) ⊂ Nat(k) consisting of operations represented by
trees with leaves indexed by the identity permutation (1, . . . , k).

Exercise 3.7 Let cNat(k) be the abelian group of families of linear maps βA :
A⊗k → A such that the diagram (20) commutes for all homogeneous ϕ’s.9Prove
that then

cNat(k) ∼=
⊕

d1,...,dk

cNat(d1, . . . , dk),

where cNat(d1, . . . , dk) consists of βA’s such that

βA(a1, . . . , ak) = 0 only if (|a1|, . . . , |ak |) = (d1, . . . , dk).

Prove, moreover, that cNat(d1, . . . , dk) ∼= Nat(k) for each d1, . . . , dk , and discuss
the acyclicity of cNat(k).

9 The notation cNat(k) refers to colored natural operations.
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3.4 Natural A∞-algebras

Let (A,�) be a graded associative algebra with a differential. We call an A∞-algebra
A = (A,m1,m2, . . .) natural ifmk : A⊗k → A are natural operations fromNat(k)1

for each k ≥ 1. Formally, a natural A∞-algebra should be considered as a family
{A(A,�)} of A∞-algebras indexed by algebras with a differential, such that each ϕ as
in (18) induces a strict morphism A(A,�A) → A(B,�B ). We however believe that our
simplification will not lead to confusion.

An automorphism φ : Tc A → T
c A is natural if all its components φk : A⊗k → A

are natural operations from Nat(k)0. Natural automorphisms with φ1 = 11A form
a monoid Aut(A). It is clear that the twisting of a natural A∞-algebra by a natural
automorphism is a natural A∞-algebra.

Example 3.8 It follows from Example 3.5 that natural automorphisms φ ∈ Aut(A)

are encoded by sequences (11A, ω2, ω3, . . .) of elements ωk ∈ k[�k]. One has an
important submonoid Aut(A) ⊂ Aut(A) of sequences such that all ωk’s are the
identities 11�k .

Exercise 3.9 Assume that � is a derivation. The twisting of A� = (A,�, 0, 0, . . .)
by an arbitrary natural automorphism is then strictly isomorphic toA�, i.e. �φ = �.

Commutative associative case. We are going to formulate commutative versions of
the main statements from the first part of this section. We omit the proofs which are
analogous to the non-commutative case.

Let A be a graded commutative associative algebra with a differential �. Natural
operations are, analogously to Definition 3.2, natural transformations βA : Sk A → A
from the kth symmetric power of A to A. Let us denote byNat(k) the abelian group
of all these natural operations. To see how Nat(k) differs from its non-commutative
counterpart, we give commutative versions of Examples 3.1 and 3.5.

Example 3.10 (Commutative version of Example 3.1) The spaceNat(1) is, as in the
non-commutative case, spannedby the identity 11 : A → A in degree 0 and� : A → A
in degree 1. The space Nat(2)0 is spanned by the multiplication a � b �→ ab, with
� denoting the symmetric product. The space Nat(2)1 is two-dimensional, spanned
by the operations

a � b �→ �(a)b + (−1)|a||b|�(b)a and a � b �→ �(ab).

Likewise, Nat(2)2 is spanned by

a � b �→ �(a)�(b) and a � b �→ �
(
�(a)b

) − (−1)|a||b|�
(
�(b)a

)
.

Finally, Nat(2)3 is spanned by

a � b �→ �
(
�(a)�(b)

)
.

The Euler characteristic of the graded space Nat(2)∗ is 1 − 2 + 2 − 1 = 0, so the
acyclicity can be expected as in the non-commutative case.
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Example 3.11 (Commutative version of Example 3.5) The space Nat(k)0 is one-
dimensional, spanned by the iterated multiplication μk(a1, . . . , ak) = a1 · · · ak, so
Nat(k)0 ∼= k for each k ≥ 1.

An obviousmodification of Proposition 3.3 holds, withFr(x1, . . . , xk) this time the
free commutative associative algebra. Corollary 3.4 holds as well, with T (k) replaced
by the space of all ‘abstract,’ i.e. non-planar, trees. As in the non-commutative case,
� induces a differential δ so that (Nat(k)∗, δ) is acyclic for each k ≥ 2.

The notions of a natural L∞-algebras and natural automorphisms φ : Sc(A) →
S
c(A) translate verbatim.The following example however shows that the spaceAut(A)

of natural automorphisms is much smaller than in the non-commutative case.

Example 3.12 The description ofNat(k)0 given in Example 3.11 implies that natural
automorphisms φ ∈ Aut(A) are encoded by sequences (11A, f2, f3, . . .) of scalars
fk ∈ k.

4 Main results

We are going to formulate and prove the main theorems. As in Sect. 3, we treat in
detail only the associative non-commutative case.

Associative case. Let A be a graded associative algebra with a differential �, and
A� = (A,�, 0, 0, . . .) the trivial A∞-algebra of Example 2.2. According to the
following result, each natural A∞-algebra whose linear operation m1 equals �, is
uniquely given by a twisting of A�, see §3.4 and Definition 2.3 for the meaning of
naturality and twisting. In particular, each such an A∞-algebra is (weakly) isomorphic
to A�.

Theorem 4.1 For each natural A∞-algebra A = (A,m1,m2,m3, . . .) such that

m1 = � (27)

there exist a unique natural automorphism φ = (11A, φ2, φ3, . . .) of the tensor coal-
gebra T

c A such that A equals the twisting of A� via φ. Explicitly

mk(a1, . . . , ak) = πφ−1�φ(a1, . . . , ak), for an, . . . , ak ∈ A,

where π : Tc A → A is the canonical projection.
The A∞-algebra A = (A,m1,m2,m3, . . .) satisfies also

m2(a1, a2) = �(a1a2) − (−1)|a1|a1�(a2) − �(a1)a2, a1, a2 ∈ A, (28)

if and only if the φ2-part of the automorphism φ equals the product of A, that is if
φ2(a, b) = ab for each a, b ∈ A.

Proof Let m denote the coderivation of T
c A determined by (m1,m2,m3, . . .).

Assume that we have already constructed an automorphism ϑ = (11A, ϑ2, ϑ3, . . .)

of Tc A such that
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(ϑmϑ−1)1 = � and (ϑmϑ−1)k = 0, for 1 < k ≤ n,

with some n ≥ 1. To simplify the notation, denote μ := ϑmϑ−1. The coderivation
μ determines an A∞-structure of the form (A,�, 0, . . . , 0, μn+1, . . .). Axiom (7)
for n + 1 implies that δ(μn+1) = 0. Consider any automorphism α of Tc A of the
form α = (11A, 0, . . . , 0, αn+1, . . .). Clearly, (αμα−1)1 = �, (αμα−1)k = 0 for
1 < k ≤ n and

(αμα−1)n+1 = μn+1 +
∑

1≤ j≤n+1

αn+1

(
11⊗( j−1)
A ⊗ � ⊗ 11⊗(n− j+1)

A

)
− �αn+1

= μn+1 − δ(αn+1).

Since δ(μn+1) = 0, by Proposition 3.6 one finds αn+1 such that μn+1 = δ(αn+1).
With this choice, (αμα−1)n+1 = 0, thus φ′ := αφ satisfies

(φ′mφ′−1)1 = � and (φ′mφ′−1)k = 0, for 1 < k ≤ n + 1.

This shows that we can inductively construct an automorphism φ of Tc A such that
φmφ−1 = � or, equivalently, m = φ−1�φ. The first part of the theorem is proven.

To demonstrate that the twisting automorphism is unique, assume that m =
φ−1�φ = ψ−1�ψ . Then ω := φψ−1 satisfies ω−1�ω = �. For the bilinear part ω2
of ω this gives

ω2(� ⊗ 11A) + ω2(11A ⊗ �) − �ω2 = 0,

i.e. δ(ω2) = 0. Since ω ∈ Nat(k)0, ω2 = 0 by Proposition 3.6. In the same vein
we prove inductively that ωk = 0 for all k ≥ 2, therefore ω = 11 : Tc A → T

c A so
φ = ψ .

Theorem 4.1 combined with Example 3.8 gives:

Corollary 4.2 Natural A∞-algebras satisfying (27) are parametrized by power series

φ(t) := t + ω2t
2 + ω3t

3 + ω4t
4 + · · · (29)

with ωk ∈ k[�k], k ≥ 2. Natural A∞-algebras satisfying also (28) are parametrized
by expressions (29) with ω2 the identity permutation 11�2 .

A weak isomorphism of A∞-algebras induces a strict isomorphism of their coho-
mology algebras. We therefore get another

Corollary The cohomology H∗(A,�)of anynatural A∞-algebra (A,�,m2,m3, ...)

is the trivial associative algebra with the underlying space H∗(A,�).

The observation made in Example 3.9 combined with Theorem 4.1 lead to another

Corollary Assume that � is a derivation of A. Then any natural A∞-braces vanish
on A.
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We finally formulate our characterization of Börjeson braces [6] recalled in Exam-
ple 1.3.

Theorem 4.3 Börjeson’s braces (A,�, b�
2 , b�

3 , b�
4 , . . .) are the unique, up to a strict

isomorphism, natural recursive A∞-braces defined over Z such that

(i) b�
2 measures the deviation of � from being a derivation, i.e.

b�
2 (a1, a2) = �(a1a2) − �(a1)a2 − (−1)|a1|a1�(a2), a1, a2 ∈ A,

(ii) the coefficient at �(a1a2a3) in b�
3 (a1, a2, a3) is either +1 or −1 and,

(iii) the hereditarity is satisfied, that is for all k ≥ 1,

b�
k = 0 implies b�

k+1 = 0.

It is obvious that the Börjeson braces are recursive and satisfy (i) and (ii).
Their hereditarity established in [6] follows from an inductive formula mentioned
in Remark 4.6. It remains to prove that (i)–(iii) characterize Börjeson’s braces up to a
strict isomorphism. This will follow from Propositions 4.4 and 4.5 below.

Proposition 4.4 Suppose that A = (A,�,m2,m3,m4, . . .) are natural hereditary
A∞-braces such that m2 = b�

2 and m3 = b�
3 . Then mk = b�

k for any k ≥ 2.

Proof Assume we have already proved that

b�
k = mk for 2 ≤ k ≤ n,

with some n ≥ 3. The A∞-axiom (7) taken with n = k + 1 implies that δ(mn+1) =
δ(b�

n+1), i.e. δ(mn+1−b�
n+1) = 0. By Proposition 3.6 there exists zn+1 ∈ Nat(n+1)0

such that
mn+1 − b�

n+1 = δzn+1. (30)

Consider the free associative algebra Fr(x1, . . . , xn+1) on degree 0 variables
x1, . . . , xn+1. Let An+1 be Fr(x1, . . . , xn+1) quotiented by the ideal In+1 gener-
ated by

mn(a1, . . . , an) for a1, . . . , an ∈ Fr(x1, . . . , xn+1). (31)

Then both b�
n+1 and mn+1 vanish on An+1, since both braces are hereditary. By (30),

δzn+1 must vanish on An+1, too. In particular, δzn+1(x1, . . . , xn+1) = 0.10 We are
going to prove that this implies that zn+1 = 0, so mn+1 = b�

n+1 again by (30).
It follows from the description of Nat(n + 1)0 given in Example 3.11 that

zn+1(a1, . . . , an+1) =
∑

σ∈�n+1

ξσaσ(1)aσ(1) · · · aσ(n+1),

10 As customary, we denote both the generators of Fr(x1, . . . , xn+1) and their equivalence classes in
An+1 by the same symbols.
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with some ξσ ∈ k, therefore

δzn+1(x1, . . . , xn+1)

=
∑

σ∈�n+1

ξσ

(
�(xσ(1) · · · xσ(n+1))

−
∑

1≤i≤n+1

xσ(1) · · · �(xσ(i)) · · · xσ(n+1)
)
. (32)

The crucial observation is that modding out by the ideal In+1 generated by (31)
does not introduce any relations involving the monomials

�(xσ(1))xσ(2) · · · xσ(n+1), σ ∈ �n+1. (33)

Let us show for instance that the degree 1 part I 1n+1 of the ideal In+1 does not involve the
element �(x1)x2 · · · xn+1. It follows from the definition of an ideal that the subspace
of I 1n+1 spanned by words containing x1, . . . , xn+1 in this order consists of linear
combinations of the monomials

x1mn(x2, ..., xn+1), mn(x1x2, ..., xn+1), ...,mn(x1, ..., xnxn+1), mn(x1, ..., xn)xn+1.

Looking at the explicit form ofmn = b�
n we immediately realize that none of the above

terms contains the monomial �(x1)x2 · · · xn+1. The argument for other permutations
is similar.

Inspecting the coefficients at the terms (33) in (32), we see that δzn+1 = 0 in An+1
only if all ξσ ,σ ∈ �n+1, are trivial. So zn+1 = 0 as required, and the induction goes on.

In the proof of Proposition 4.4, the requirement that n ≥ 3 in (30) was crucial.
Indeed, the monomial �(x1)x2x3 does occur in m2(x1, x2)x3, so the argument fol-
lowing formula (33) does not work for n = 2. We must therefore prove also the
following

Proposition 4.5 LetA = (A,�,m2,m3,m4, . . .)beanatural recursive A∞-algebra
such that m2 = b�

2 , the coefficient C3 at �(a1a2a3) in m3(a1, a2, a3) is either 1 or
−1, and m3 = 0 implies m4 = 0. Then in fact C3 = 1 and m3 = b�

3 .

Proof Boring tour de force. It follows from the assumptions that the automorphism φ

inducing A must be of the form φ = (11A, μ,C3μ3, . . .). This means that a1, a2, a3
appear in m3 only in this order. It is simple to prove that m3’s with this property form
the family:

m3(a1, a2, a3)= (1+α)�(a1a2a3) − α
(
(�(a1)a2a3+(−1)εa1a2�(a3)

)

+(1−α)(−1)εa1�(a2)a3−(�(a1a2)a3 + (−1)εa1�(a2a3)
)
, (34)

depending on a parameter α ∈ k. We did not write the signs explicitly, because they
equal the Koszul sign of the permutation of (�, a1, a2, a3) in the corresponding term.
For instance, ε at the last term in the first line means |a1| + |a2|.
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The operation m4 decomposes into the sum m′
4 + m′′

4, where m′
4 is the part that

contains a1, a2, a3, a4 in this order. The m′
4-part is parametrized by α ∈ k as above

and another parameter β ∈ k by

m′
4(a1, a2, a3, a4)

= (1 + β)�(a1a2a3a4) + (2α − β)
(
�(a1)a2a3a4 + (−1)εa1a2a3�(a4)

)

+ (4α − β)
(
(−1)εa1�(a2)a3a4 + (−1)εa1a2�(a3)a4

)

− (1 + α)
(
�(a1a2a3)a4 + (−1)εa1�(a2a3a4)

)

− α
(
�(a1a2)a3a4 + (−1)εa1a2�(a3a4)

) + (1 − α)(−1)εa1�(a2a3)a4.

If the vanishing of m3 implies the vanishing of m4, then m′
4 must equal the linear

combination

Am3(a1a2, a3, a4) + Bm3(a1, a2a3, a4) + Cm3(a1, a2, a3a4)

+Da1m3(a2, a3, a4) + Em3(a1, a2, a3)a4 (35)

with some A, . . . , E ∈ k. Expanding m3’s in the above display gives the system:

(1 + β) = (1 + α)(A + B + C),

(2α − β) = −α(B + C + E) = −α(A + B + D),

(4α − β) = (1 − α)C − αD − (α − 1)E = (1 − α)A − αE − (α − 1)D,

α = αA + C + E = αC + A + D,

(1 − α) = (1 − α)B − D − E, and

(α + 1) = A + B − (α + 1)E = B + C − (α + 1)D.

(36)

The case C3 = 1 corresponds to α = 0 by (34). The 2nd equation of (36) immedi-
ately gives that β = 0, so the corresponding m2 and m3 equal the Börjeson braces b�

2
and b�

3 as claimed.
TheC3 = −1 case happenswhenα = −2. Onemay verify that then the system (36)

has the unique solution, namely

α = β = −2, A = C = 1/2, B = 0 and D = E = −3/2.

Therefore, the only way how to express m′
4 as a linear combination (35) is

m′
4(a1, a2, a3, a4)

= 1

2

(
m3(a1a2, a3, a4) + m3(a1, a2, a3a4)

)

−3

2

(
a1m3(a2, a3, a4) + m3(a1, a2, a3)a4

)
,

so m3 = 0 does not imply m4 = 0 over Z. This excludes this case.

Remark 4.6 In the C3 = 1 case of the above proof, the solutions of the system (36)
form a 2-parametric family depending on A, B ∈ k:
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α = β = 0, C = 1 − (A + B), D = −A and E = (A + B) − 1.

The particular solution with B = 1 and all other parameters trivial gives rise to the
‘canonical’ recursion

b�
4 (a1, a2, a3, a4) = b�

3 (a1, a2a3, a4)

that generalizes to all higher Börjeson’s braces in the obvious way, proving their
hereditarity.

Example 4.7 (Non-hereditary braces) Proposition 4.4 can be used to produce exam-
ples of non-hereditary braces. Recall from Example 2.4 that the Börjeson braces are
generated by the automorphism φ with the generating series φ(t) := t + t2 + t3 +
t4 + · · · . Assume thatA = (A,�,m2,m3, . . .) is the A∞-algebra given by the auto-
morphism φ̃ with the generating series of the form

φ̃(t) := t + t2 + t3 + higher order terms.

Clearly m2 = b�
2 , m3 = b�

3 . By Proposition 4.4, A is hereditary if and only if
φ(t) = φ̃(t). So choosing e.g. φ̃(t) := t + t2 + t3 produces non-hereditary braces.

Example 4.8 (Super-exotic A∞-braces) We present A∞-braces that are natural in the
extended sense of Example 3.7. They are given, for elements a, a1, a2, . . . of a graded
associative algebra A with a differential �, by

s�
1 (a) = �(a),

s�
2 (a1, a2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�(a1a2), if (|a1|, |a2|) = (0, 0),

−�(a1)a2, if (|a1|, |a2|) = (−1, 0),

−a1�(a2), if (|a1|, |a2|) = (0,−1), and

0, in the remaining cases,

s�
3 (a1, a2, a3) =

⎧
⎪⎨

⎪⎩

�(a1a2a3), if (|a1|, |a2|, |a3|) = (0, 0, 0),

a1�(a2)a3 if (|a1|, |a2|, |a3|) = (0,−1, 0), and

0 in the remaining cases,

...

s�
k (a1, . . . , ak) =

{
�(a1 · · · ak), if (|a1|, . . . , |ak |) = (0, . . . , 0), and

0 in the remaining cases, k ≥ 4.

The above braces are the Börjeson braces of the couple (A′,�), where A′ is the
associative algebra with the same underlying space as A but the multiplication ·′
defined as

a ·′ b :=
{
ab, if (|a|, |b|) = (0, 0), and

0, in the remaining cases.
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Notice that the above braces are nontrivial even when� is a derivation! For this reason
we did not consider this kind of extended naturality.

Commutative associative case. The first part of this section translates to the com-
mutative case in a straightforward manner, so we formulate only the commutative
versions of the main theorems. We start with the commutative variant of Theorem 4.1.
Recall that L� denotes the trivial L∞-algebra from Example 2.7.

Theorem 4.9 For each natural L∞-algebra L = (A, l1, l2, l3, . . .) such that

l1 = � (37)

there exist a unique natural automorphism φ = (11, φ2, φ3, . . .) of the symmetric
coalgebra S

c A such that L equals the twisting of L� via φ. The L∞-algebra A =
(A, l1, l2, l3, . . .) satisfies

l2(a1, a2) = �(a1a2) − (−1)|a1|a1�(a2) − �(a1)a2, a1, a2 ∈ A, (38)

if and only if φ2 equals the product of A.

Theorem 4.9 combined with the description of natural automorphisms given in
Example 3.12 leads to:

Corollary 4.10 Natural L∞-algebras satisfying (37) are parametrized by power
series

φ(t) := t + f2t
2 + f3t

3 + f4t
4 + · · · ∈ k[[t]]. (39)

Natural L∞-algebras satisfying also (38) are parametrized by series (39)with f2 = 1.

The following theorem offers a characterization of Koszul L∞-braces analogous
to that of Börjeson A∞-braces given in Theorem 4.3.

Theorem 4.11 The Koszul braces (A,�,��
2 ,��

3 ,��
4 , . . .) are the unique natural

L∞-braces defined over Z such that

(i) ��
2 measures the deviation of � from being a derivation, i.e.

��
2 (a1, a2) = �(a1a2) − �(a1)a2 − (−1)|a1|a1�(a2), a1, a2 ∈ A,

(ii) the coefficient at �(a1a2a3) in ��
3 (a1, a2, a3) is either +1 or −1 and,

(iii) the hereditarity is satisfied, that is for all k ≥ 1, that is

��
k = 0 implies ��

k+1 = 0.

Exercise Explain how to construct non-hereditary L∞-braces.
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