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Abstract We show that the category of N -complexes has a Strøm model structure,
meaning the weak equivalences are the chain homotopy equivalences. This generalizes
the analogous result for the category of chain complexes (N = 2). The trivial objects
in the model structure are the contractible N -complexes which we necessarily study
and derive several results.
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1 Introduction

Let R be a ring and N ≥ 2. By an N -complex X we mean a sequence of R-modules
and R-linear maps

· · · dn+2−−→ Xn+1
dn+1−−→ Xn

dn−→ Xn−1
dn−1−−→ · · ·

satisfying d N = 0. That is, composing any N -consecutive maps gives 0. So a
2-complex is a chain complex in the usual sense. N -complexes seem to have first
appeared in the paper [12]. Since then many papers have appeared on the sub-
ject, many of them studying their interesting homology (recently called “amplitude
homology”), and pointing to their relevance in theoretical physics. See for example
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94 J. Gillespie

[2,3,5,7,9,13,18]. There are many other papers written on the subject, most notably
those of Dubois-Violette and coauthors.

Recall that Quillen’s notion of a model structure on a category provides a con-
text for a homotopy theory in that category. Quillen’s original model structure on the
category of topological spaces has as weak equivalences the weak homotopy equiv-
alences [15]. This is the canonical example of a model structure and its associated
homotopy category is equivalent to the usual homotopy category of CW-complexes.
On the other hand, Arne Strøm proved in [17] that the category of all topological
spaces has a model category structure where the weak equivalences are the (strong)
homotopy equivalences. The homotopy category associated to this model structure
recovers the more naive homotopy category in which morphisms between spaces are
homotopy classes of continuous maps.

There is an analogous situation for the category of chain complexes of R-modules. In
Chapter 2.3 of [10], Hovey describes a projective model structure on chain complexes
having as weak equivalences the homology isomorphisms. The associated homotopy
category is the unbounded derived category D(R) (Quillen originally did this for
bounded below chain complexes). But there is a Strøm-type model structure on chain
complexes as well which has as weak equivalences the chain homotopy equivalences.
In analogy with topological spaces, the resulting homotopy category is the naive
homotopy category where maps are homotopy classes of chain maps. This was the
result proved in the paper [8].

And so the same should be true for the category of N -complexes. In [7], the authors
constructed a Quillen model structure on the category of N -complexes which general-
izes the usual projective model structure on chain complexes constructed in Chapter 2.3
of [10]. This model structure on N -complexes can be viewed as a model for amplitude
homology theory since the weak equivalences are the amplitude homology isomor-
phisms. The main result of the current paper is the existence of a Strøm type model
structure on N -complexes. This statement appears in Theorem 4.3.

Our techniques are entirely different than those in [8]. We use Hovey’s method
of cotorsion pairs to construct the model structure. This method was written in the
language of exact categories in [6]. We will see that the model structure is “Frobenius”
in the sense that it exists on an exact category and every object is both cofibrant and
fibrant.

The paper should be quite accessible to anyone with just a bit of familiarity with
chain complexes and either model categories or cotorsion pairs. In Sect. 2 we give
a summary of any background information needed on N -complexes and cotorsion
pairs/model categories. In Sect. 3 we make a brief study of contractible N -complexes,
which are the trivial objects in the model structure. In particular, we characterize
contractible complexes as direct sums of N -disks in Theorem 3.3 and as the pro-
jective and injective objects in an exact category in Proposition 4.1. We also prove
that two chain maps are homotopic if and only if their difference factors through
a contractible N -complex (Corollary 3.5). The main result is proved in Sect. 4 as
Theorem 4.3.
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The homotopy category of N -complexes is a homotopy category 95

2 Preliminaries: N-complexes and Hovey pairs

In this section we review the central concepts that are related in this paper:
N -complexes and model structures. We provide references to the literature for more
complete explanations.

2.1 The category of N -complexes

We will mostly follow the original notation and definitions of [12] and [13] when
working with N -complexes.

Throughout this paper R denotes a ring with unity and N ≥ 2 is an integer. One
should think of an N -complex as a generalized chain complex. Precisely, an N-complex
is a sequence of R-modules and maps

· · · dn+2−−→ Xn+1
dn+1−−→ Xn

dn−→ Xn−1
dn−1−−→ · · ·

satisfying d N = 0. That is, composing any N -consecutive maps gives 0. So a
2-complex is chain complex in the usual sense. A chain map or simply map f : X −→ Y
of N -complexes is a collection of maps fn : Xn −→ Yn making all the rectangles com-
mute. In this way we get a category of N -complexes, denoted N -Ch(R), whose objects
are N -complexes and whose morphisms are chain maps. This is an abelian category
with all limits and colimits taken degreewise.

Given an R-module M and n ∈ Z, we define an N -complex Dn(M) by letting it
equal M in degrees n, n − 1, n − 2, . . . , n − (N − 1), all joined by identity maps, and
0 in every other degree. We will call it the disk on M of degree n. So when N = 2, we
get that Dn(M) is the usual disk on M used in algebraic topology.

Next, for an N -complex X note that there are N−1 choices for homology. Indeed for
t = 1, 2, . . . , N we define t Zn(X) = ker (dn−(t−1) · · · dn−1dn). In particular, we have
1 Zn(X) = ker dn and N Zn(X) = Xn . Next, for t = 1, 2, . . . , N we define t Bn(X) =
Im (dn+1dn+2 · · · dn+t ). In particular, 1 Bn(X) = Im dn+1 and N Bn(X) = 0. Finally,
we define t Hn(X) =t Zn(X)/N−t Bn(X) for t = 1, 2, . . . , N − 1. Following [2] we
call these modules the amplitude homology modules of X .

Definition 2.1 Let X be an N -complex. We call t Hn(X) the amplitude t homology
module of degree n (or the nth amplitude t homology module of X ). We say X is
N -exact, or just exact, if t Hn(X) = 0 for each n and all t = 1, 2, . . . , N − 1.

The facts in the following proposition are fundamental.

Proposition 2.2 We have the following properties on exactness of N-complexes.

1. An N-complex X is exact if and only if for any fixed amplitude t we have t Hn(X) = 0
for each n.

2. Suppose 0 −→ X −→ Y −→ Z −→ 0 is a short exact sequence of N-complexes. If
any two out of the three are exact, then so is the third.

Proof A proof of the first statement appears as Proposition 1.5 of [12] and a proof of
the second can be found as Lemma 4.4 of [7]. ��
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96 J. Gillespie

Definition 2.3 Two chain maps f, g : X −→ Y of N -complexes are called chain
homotopic, or simply homotopic if there exists a collection {sn : Xn −→ Yn+N−1} such
that gn − fn = d N−1sn + d N−2sn−1d + d N−3sn−2d2 + · · ·+ sn−(N−1)d N−1 for each
n. More succinctly, we denote this

g − f =
N−1∑

i=0

d N−1−i sdi .

If f and g are homotopic, then we write f ∼ g. We also call a map f null homotopic
if f ∼ 0.

It is easy to check that ∼ is an equivalence relation on Hom sets. Furthermore,
one can easily check that if g1 ∼ g2, then g1 f ∼ g2 f . Similarly, if f1 ∼ f2, then
g f1 ∼ g f2. It follows that if f1 ∼ f2 and g1 ∼ g2 then g1 f1 ∼ g2 f2. That is,
composition respects chain homotopy. This gives us the following definitions.

Definition 2.4 There is a category N - K(R), called the homotopy category of
N -complexes, whose objects are the same as those of N -Ch (R) and whose Hom
sets are the ∼ equivalence classes of Hom sets in N -Ch (R). An isomorphism in
N - K(R) is called a chain homotopy equivalence. These are the maps f : X −→ Y for
which there exists a map g : Y −→ X such that g f and f g are chain homotopic to the
proper identity maps.

The above definitions clearly extend standard definitions important to chain com-
plexes (N = 2). The following proposition illuminates this further.

Proposition 2.5 N- K(R) is an additive category and the canonical functor γ :
N-Ch (R) −→ N- K(R) defined by f �→ [ f ] is additive. Moreover, the amplitude
homology functors t Hn : N-Ch(R) −→ R-Mod factor through γ .

Proof First we must show that if f1 ∼ f2 and g1 ∼ g2 then f1 + g1 ∼ f2 + g2. But
if f2 − f1 = ∑N−1

i=0 d N−1−i sdi and g2−g1 =∑N−1
i=0 d N−1−i tdi , then adding we get

( f2 − f1) + (g2 − g1) =
N−1∑

i=0

d N−1−i sdi +
N−1∑

i=0

d N−1−i tdi

from which we get ( f2 + g2) − ( f1 + g1) = ∑N−1
i=0 d N−1−i (s + t)di , which proves

what we want.
Since composition and addition are well defined on homotopy classes, it now fol-

lows that N -K(R) inherits the bilinear composition from N -Ch(R), making N -K(R)

an additive category (since it also inherits the zero object and biproducts). Now set-
ting γ ( f ) = [ f ] automatically gives an additive functor. To show that t Hn factors
through γ it is enough to show that if f is null homotopic, then the induced amplitude
homology maps t Hn( f ) are all zero. This makes a nice exercise but also can be found
in [12] Proposition 1.11. ��
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The homotopy category of N -complexes is a homotopy category 97

2.2 Model structures and hovey pairs

In [11], Hovey described a one-to-one correspondence between well behaved model
category structures on an abelian category A and so-called cotorsion pairs in A. A
cotorsion pair is essentially a pair of classes of objects (F , C) which are orthogonal
with respect to the functor Ext1

A(−,−). For example, if R is a ring and A is the class
of all R-modules while P is the class of all projective modules and I is the class of
all injective modules, then (P,A) and (A, I) are cotorsion pairs. Furthermore if F
is the class of flat modules and C is the class of cotorsion modules, then (F , C) is a
cotorsion pair. The text [4] is a standard reference on cotorsion pairs.

We will use a version of Hovey’s correspondence theorem (from [11]) couched in
the language of exact categories. The notion of an exact category was also introduced
by Quillen in [16]. An exact category is a pair (A, E) where A is an additive category
and E is a class of “short exact sequences”: That is, triples of objects connected by

arrows A
i−→ B

p−→ C such that i is the kernel of p and p is the cokernel of i . A map such
as i is necessarily a monomorphism while p an epimorphism. In the language of exact
categories i is called an admissible monomorphism while p is called an admissible
epimorphism. The class E of short exact sequences must satisfy several axioms which
are inspired by familiar properties of short exact sequences in any abelian category.
As a result many concepts that make sense in abelian categories, such as the extension
functor Ext and cotorsion pairs, still make sense in exact categories. The reader should
be able to find any needed facts on exact categories, including cotorsion pairs in exact
categories, and model structures on exact categories (exact model structures) nicely
summarized in Sects. 2 and 3 of [6]. One can also see Bühler’s paper [1] for a very
thorough and readable exposition on exact categories. For easy reference we now state
Hovey’s theorem which is applied in Sect. 4 to obtain the desired model structure on
N -complexes. The definition of thick is given in Sect. 4.

Theorem 2.6 (Hovey’s correspondence theorem) Let (A, E) be a (weakly idempotent
complete) exact category. Then there is a one-to-one correspondence between exact
model structures on A and complete cotorsion pairs (Q,R ∩ W) and (Q ∩ W,R)

whereW is a thick subcategory ofA. Given a model structure,Q is the class of cofibrant
objects, R the class of fibrant objects and W the class of trivial objects. Conversely,
given the cotorsion pairs with W thick, a cofibration (resp. trivial cofibration) is an
admissible monomorphism with a cokernel in Q (resp. Q∩ W), and a fibration (resp.
trivial fibration) is an admissible epimorphism with a kernel in R (resp. R∩W). The
weak equivalences are then the maps g which factor as g = pi where i is a trivial
cofibration and p is a trivial fibration.

Recently a pair of cotorsion pairs (Q,R ∩ W) and (Q ∩ W,R) as in the above
theorem have been referred to as a Hovey pair.

Remark Hovey’s theorem in [11] already allowed for “proper classes” of short exact
sequences (defined in Sect. XII.4 of [14]) which in fact give rise to exact categories (by
an argument that can be found in Theorem 4.3 of Sect. XII.4 in [14]). However, exact
categories are slightly more general in that they allow for certain full subcategories
of abelian categories (for example, the category of all projective R-modules along
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98 J. Gillespie

with the collection of all short exact sequences between these modules forms an exact
category. However, this can not be construed as an abelian category along with a proper
class). In any case, one needs to make a choice of language. It could be the language
of proper classes of short exact sequences in an abelian category or the language of
exact categories. For the current paper either would work, but we choose the second.

3 Contractible N-complexes

Recall that a chain complex is contractible if its identity map is null homotopic. In
this case, it is rather immediate that the chain complex is the direct sum of disks on its
cycle modules. In this section and the next we derive several results on contractible
N -complexes. Our first result below is a generalization to N > 2 the decomposition
into a direct sum of N -disks. One sees that a complication arises immediately when
N > 2.

Definition 3.1 We call an N -complex C contractible if its identity map 1C is null
homotopic.

Lemma 3.2 Suppose we have a map g : X −→ Y of R-modules having a “splitting”
s : Y −→ X satisfying gsg = g. Then X = ker g ⊕ Im sg. Moreover, the pair of maps
(g, s) restricts to an isomorphism pair g : Im sg −→ Im g, and s : Im g −→ Im sg.

Proof This is a variation of an elementary result. We wish to show (i) X = ker g +
Im sg and (ii) ker g ∩ Im sg = 0. For (i), let x ∈ X . Then one easily checks that
x − sg(x) ∈ ker g and so x = [x − sg(x)] + sg(x) ∈ ker g + Im(sg). For (ii),
say z ∈ ker g ∩ Im sg We write z = sg(x) (some x ∈ X ) and suppose g(z) = 0.
Then 0 = gsg(x) = g(x). Therefore sg(x) = 0 too. So z = 0. This proves that
X = ker g ⊕ Im sg. It is clear that g restricts to a map g : Im sg −→ Im g, and s to a
map s : Im g −→ Im sg. It is easy to check directly that these are isomorphisms and
inverses. ��
Theorem 3.3 An N-complex C is contractible if and only if it is a direct biproduct of
N-disks

C =
⊕

n∈Z

DN
n (Mn) =

∏

n∈Z

DN
n (Mn)

for some set of R-modules {Mn}n∈Z. In fact, in this case Mn =1 Zn−(N−1)C.

Proof First we note that for some set of R-modules {Mn}n∈Z we indeed have⊕
n∈Z

DN
n (Mn) = ∏

n∈Z
DN

n (Mn) since there are only finitely many terms (sum-
mands) in each degree. Now suppose we are given such a complex

⊕
n∈Z

DN
n (Mn)

which we will denote by X . We wish to show X is contractible. To do so, we define
the maps

sn : Mn+N−1 ⊕ · · · ⊕ Mn+1 ⊕ Mn −→ Mn+2(N−1) ⊕ · · · ⊕ Mn+N ⊕ Mn+N−1
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The homotopy category of N -complexes is a homotopy category 99

by sn(xN−1, . . . , x1, x0) = (0, . . . , 0, xN−1). It is easy to see that {sn} is a homotopy
showing 1X ∼ 0.

Next suppose that C is a contractible complex, so 1C ∼ 0. We will denote the
cycle modules t ZnC of C simply by t Zn for this proof. We immediately have from
Proposition 2.5 that C is N -exact. We will show that C is isomorphic to the direct sum⊕

n∈Z
DN

n (1 Zn−(N−1)). First, by the definition of contractible, there exists a collection
{sn : Cn −→ Cn+N−1} such that 1Xn = d N−1sn + d N−2sn−1d + d N−3sn−2d2 + · · · +
sn−(N−1)d N−1 for each n. By composing both sides of the equation with d N−1 we
get that the differential satisfies d N−1sd N−1 = d N−1. So according to Lemma 3.2, s
is a splitting of d N−1 : Cn −→ Cn−(N−1) and gives a decomposition Cn = N−1 Zn ⊕
s[1 Zn−(N−1)] in each degree. Furthermore, restricting the pair (d N−1, s) gives us an
isomorphism d N−1 : s[1 Zn−(N−1)] −→ 1 Zn−(N−1) with inverse s : 1 Zn−(N−1) −→
s[1 Zn−(N−1)]. We view (C, d) as shown below:

���
�
�

��� � � � � � �

(n + 1) N−1 Zn+1

��

⊕
s[1 Zn+1−(N−1)]

��������������

(n) N−1 Zn

��

⊕
s[1 Zn−(N−1)]

��������������

(n − 1) N−1 Zn−1
⊕

���
�
�

s[1 Zn−1−(N−1)]

��� � � � � � �

Recall that there is a filtration 1 Zn ⊆ 2 Zn ⊆ · · · ⊆ N−2 Zn ⊆ N−1 Zn . The
plan now is to continue to show that N−2 Zn is a direct summand of N−1 Zn and
likewise N−3 Zn is a direct summand of N−2 Zn and so on... So we start now by
claiming N−1 Zn = N−2 Zn ⊕ ds[1 Zn+1−(N−1)]. To prove this we will show (i)
N−1 Zn = N−2 Zn + ds[1 Zn+1−(N−1)] and (ii) N−2 Zn ∩ ds[1 Zn+1−(N−1)] = 0. For
(i), let z ∈ N−1 Zn . Then by N -exactness we know there exists x ∈ Xn+1 such
that z = dx . But we know x = z′ + s(z′′) for some z′ ∈ N−1 Zn+1 and z′′ ∈
s[1 Zn+1−(N−1)]. So z = d(z′ + s(z′′)) = dz′ +ds(z′′) ∈ N−2 Zn +ds[1 Zn+1−(N−1)].
To show (ii), suppose that x ∈ N−2 Zn ∩ ds[1 Zn+1−(N−1)]. Then d N−2x = 0
but also x = ds(z) for some z ∈ 1 Zn+1−(N−1). So 0 = d N−2x = d N−1s(z).
But since we know d N−1 : s[1 Zn+1−(N−1)] −→ 1 Zn+1−(N−1) is an isomorphism
with inverse s : 1 Zn+1−(N−1) −→ s[1 Zn+1−(N−1)] we get d N−1s(z) = z. So
0 = z. Therefore x = 0 too. This completes the proof of (ii) and so we have
shown N−1 Zn = N−2 Zn ⊕ ds[1 Zn+1−(N−1)]. We note that the restricted differ-
ential d : s[1 Zn+1−(N−1)] −→ ds[1 Zn+1−(N−1)] is an isomorphism with inverse
sd N−2. This is because (sd N−2 ◦ d)(s[1 Zn+1−(N−1)]) = sd N−1s[1 Zn+1−(N−1)] =
s[1 Zn+1−(N−1)], and on the other hand we have (d ◦ sd N−2)(ds[1 Zn+1−(N−1)]) =
dsd N−1s[1 Zn+1−(N−1)] = ds[1 Zn+1−(N−1)]. As a result we may now view (C, d)
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100 J. Gillespie

as shown below:

���
�
�

��� � � � � � �

� � � � � � � �

� � � � � � � �

(n + 1) N−2 Zn+1

��

⊕
ds[1 Zn+2−(N−1)]

��������������

��

⊕
s[1 Zn+1−(N−1)]

�������������

�������������

(n) N−2 Zn

��

⊕
ds[1 Zn+1−(N−1)]

��������������

��

⊕
s[1 Zn−(N−1)]

�������������

�������������

(n − 1) N−2 Zn−1

���
�
�

⊕
ds[1 Zn−(N−1)] ⊕

���
�
�

s[1 Zn−1−(N−1)]

� � � � � � � �

� � � � � � � �

A similar argument shows N−2 Zn = N−3 Zn ⊕ d2s[1 Zn+2−(N−1)] and so we get:

���
�
�

��� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

� � � � � � � �

N−3 Zn+1

��

⊕
d2s[1 Zn+3−(N−1)]

��������������

⊕
ds[1 Zn+2−(N−1)]

��������������

��������������
⊕

s[1 Zn+1−(N−1)]

��������������

��������������

N−3 Zn

��

⊕
d2s[1 Zn+2−(N−1)]

��������������

⊕
ds[1 Zn+1−(N−1)]

��������������

��������������
⊕

s[1 Zn−(N−1)]

��������������

��������������

N−3 Zn−1

���
�
�

⊕
d2s[1 Zn+1−(N−1)]

��� � � � � � �

⊕
ds[1 Zn−(N−1)]

� � � � � � � � �

� � � � � � � � �
⊕

s[1 Zn−1−(N−1)]

� � � � � � � �

� � � � � � � �

Continuing in this way we are led to a decomposition C = ⊕
n∈Z

DN
n (1 Zn−(N−1)).

��
Proposition 3.4 Let C be contractible. So we may assume C = ⊕

n∈Z
DN

n (Mn).

1. Any collection of maps {un : Xn −→ Mn+N−1} determines a chain map β : X −→
C by setting βn = (un, un−1dX , un−2d2

X , . . . , un−(N−1)d
N−1
X ). Conversely, any

chain map β : X −→ C is equivalent to a collection of maps {un : Xn −→ Mn+N−1}
satisfying this condition.

2. Any collection of maps {qn : Mn −→ Yn} determines a chain map p : C −→ Y by
setting pn = d N−1

Y qn+(N−1) +· · ·+d2
Y qn+2 +dY qn+1 +qn. Conversely, any chain

map p : C −→ Y is equivalent to a collection of maps {qn : Mn −→ Yn} satisfying
this condition.
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The homotopy category of N -complexes is a homotopy category 101

Proof Assume we have a collection of maps {un : Xn −→ Mn+N−1} as in (1). Then
it is easy to check that the diagram below commutes and so β = {βn} as defined is a
chain map.

Xn
βn−−−−→ Mn+N−1 ⊕ · · · ⊕ Mn+1 ⊕ Mn

dX

⏐⏐	
⏐⏐	

Xn−1
βn−1−−−−→ Mn+N−2 ⊕ · · · ⊕ Mn ⊕ Mn−1

On the other hand, suppose β : X −→ C is any chain map. Then for each n we
must have βn = (un, u′

n, u′′
n, . . . , uN−1

n ) for some maps un, u′
n, u′′

n, . . . , uN−1
n . One

can check that commutativity of the above diagram leads to the following relations:

u′
n = un−1dX , u′′

n = u′
n−1dX , . . . , uN−1

n = uN−2
n−1 dX .

Then solving for each of these in terms of the ui ’s we get

βn =
(

un, u′
n, u′′

n, . . . , uN−1
n

)
=

(
un, un−1dX , un−2d2

X , . . . , un−(N−1)d
N−1
X

)
.

The proof of (2) can be checked in a similar way. ��
Corollary 3.5 Let f, g : X −→ Y be chain maps of N-complexes. Then f ∼ g if and
only if g − f factors through a contractible complex.

Proof It is enough to show f is null homotopic if and only if f factors through
a contractible complex. So assume f ∼ 0. Then there exists a collection of maps
{sn : Xn −→ Yn+N−1} such that fn = d N−1sn + d N−2sn−1d + d N−3sn−2d2 + · · · +
sn−(N−1)d N−1 for each n. By part (1) of Proposition 3.4, the collection {sn : Xn −→
Yn+N−1} determines a chain map β : X −→ ⊕

n∈Z
DN

n (Yn) where

βn =
(

sn, sn−1dX , sn−2d2
X , . . . , sn−(N−1)d

N−1
X

)
.

Furthermore, by part (2) of Proposition 3.4, the identity maps {1Yn : Yn −→ Yn}
determine a chain map p : ⊕

n∈Z
DN

n (Yn) −→ Y where

pn = d N−1
Y + · · · + d2

Y + dY + 1Yn .

This shows that f factors through the contractible complex
⊕

n∈Z
DN

n (Yn) since

pnβn = d N−1sn + d N−2sn−1d + d N−3sn−2d2 + · · · + sn−(N−1)d
N−1 = fn .

On the other hand, suppose f factors through some contractible complex C =⊕
n∈Z

DN
n (Mn). So f = pβ where β : X −→ C and p : C −→ Y . Then

by Proposition 3.4 we get βn = (un, un−1dX , un−2d2
X , . . . , un−(N−1)d

N−1
X ) for
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some collection {un : Xn −→ Mn+N−1} and p : C −→ Y must take the form
pn = d N−1

Y qn+(N−1) + · · · + d2
Y qn+2 + dY qn+1 + qn where {qn : Mn −→ Yn} is

some collection of maps. Composing we get pnβn =

d N−1qn+(N−1)un + d N−2qn+(N−2)un−1d + · · · + dqn+1un−(N−2)d
N−2

+qnun−(N−1)d
N−1.

Now setting sn = qn+(N−1)un we get a collection of maps {sn : Xn −→ Yn+N−1}
satisfying fn = d N−1sn + d N−2sn−1d + d N−3sn−2d2 + · · · + sn−(N−1)d N−1. By
definition, we get f ∼ 0. ��
Corollary 3.6 The class of contractible complexes is closed under direct sums, prod-
ucts and retracts (direct summands).

Proof First note that for a fixed n, we have
⊕

i∈I DN
n (Mi ) = DN

n (
⊕

n∈Z
Mi ). Using

this observation, given a direct sum
⊕

i∈I Ci of contractible complexes, it will again
be contractible by applying Theorem 3.3 and reshuffling the summands. A similar
argument with products applies to show that a product of contractible complexes is
again contractible.

We now show that a retract (direct summand) of a contractible complex is again
contractible. So suppose C is contractible and suppose i : S −→ C and r : C −→ S
are chain maps with ri = 1S . Then by Corollary 3.5 we conclude that 1S ∼ 0, which
means C is contractible. ��

4 Main theorem

We now use the results of the previous section along with Hovey’s correspondence
Theorem 2.6 to show there is a model structure on the category of N -complexes whose
homotopy category recovers N -K(R). We use the language of exact model structures
from [6].

Let N -Ch(R)dw be the exact category (A, E), where A is the category N -Ch(R)

and E is the class of all degreewise split short exact sequences of N -complexes. Then
one can check that N -Ch(R)dw is a weakly idempotent complete exact category.
Checking this is rather trivial and we refer the reader to Sect. 2 of [6] for the checklist
of properties. But most of this is immediate: The most nontrivial thing required here
is that pushouts (and pullbacks) of N -complexes are taken degreewise and that any
pushout (or pullback) of a split exact sequence of R-modules is still split exact.

Proposition 4.1 The following statements are equivalent for an N-complex C.

1. C is contractible.
2. C is a projective object in N-Ch (R)dw.
3. C is an injective object in N-Ch (R)dw.

Proof We will show C is contractible if and only if it is projective in N -Ch (R)dw.
The proof for injectives is similar.
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First we show that a disk DN
n (M) on any module M is projective in N -Ch(R)dw.

Indeed by Proposition 11.3 of [1], all that is required is to show that any degreewise split
epimorphism Y −→ DN

n (M) splits. Giving such an epimorphism means there is an N -
complex X and a degreewise split short exact sequence 0 −→ X −→ Y −→ DN

n (M) −→ 0
of N -complexes. Since degreewise split, we have in degrees k = n, n − 1, . . . , n −
(N − 1), isomorphisms of short exact sequences

0 −−−−→ Xk −−−−→ Yk −−−−→ M −−−−→ 0
∥∥∥

⏐⏐	θk

∥∥∥

0 −−−−→ Xk
jk−−−−→ Xk ⊕ M

πk−−−−→ M −−−−→ 0

where jk and πk are the canonical injection and projection maps. Also, in all other
degrees k, we have isomorphisms θk : Yk −→ Xk . The isomorphisms θk along with
the differential of Y immediately induce an isomorphism of N -complexes θ : Y −→ Y
and indeed an isomorphism of short exact sequences of N -complexes

0 −−−−→ X −−−−→ Y −−−−→ DN
n (M) −−−−→ 0

∥∥∥
⏐⏐	θ

∥∥∥

0 −−−−→ X
j−−−−→ Y

π−−−−→ DN
n (M) −−−−→ 0

where Y k = Xk ⊕ M or Xk in the appropriate degrees. It is clear that it is enough
to show that the map π splits (on the level of N -complexes), for then Y −→ DN

n (M)

must too split since θ is an isomorphism and the right square above commutes.
But now one can check that the differential of Y is completely determined by a

collection of maps {s1, s2, . . . , sN } with the si : M −→ Xn−i collectively satisfying
a condition. Regardless of this condition, we use the maps si to define a splitting
DN

n (M)
s−→ Y induced by defining it in degree n to be (0, 1M ) : M −→ Xn ⊕ M . Then

in degrees n − i (for i = 1, 2, . . . , N − 1) the splitting takes the form

(
di−1s1 + di−2s2 + · · · + dsi−1 + si , 1M

)
: M −→ Xn−i ⊕ M.

This proves that a disk DN
n (M) on any module M is projective in N -Ch(R)dw.

Next suppose C is contractible and write C = ⊕
n∈Z

DN
n (Mn) using Theorem 3.3.

Then since each DN
n (Mn) is projective in N -Ch(R)dw and since C is a direct sum

of projectives it follows from Corollary 11.7 of [1] that C is projective in the exact
category N -Ch(R)dw. This proves (1) implies (2).

To prove (2) implies (1), first let X be any N -complex. Then
⊕

n∈Z
DN

n (Xn) is
contractible and there is a map p : ⊕

n∈Z
DN

n (Xn) −→ X induced by the set of
identity maps {1Xn : Xn −→ Xn} using Proposition 3.4 (2). Note that in degree n we
have

pn : Xn+N−1 ⊕ · · · ⊕ Xn+1 ⊕ Xn
d N−1+···+d+1−−−−−−−−−→ Xn
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104 J. Gillespie

which is clearly an epimorphism. Now define an N -complex K by setting Kn =
Xn+N−1 ⊕ · · · ⊕ Xn+2 ⊕ Xn+1 and with differential defined by

d(xN−1, . . . , x2, x1) = (xN−2, . . . , x2, x1,−d N−1xN−1 − · · · − d2x2 − dx1).

One can check that this differential makes K an N -complex. Now we have a chain
map i : K −→ ⊕

n∈Z
DN

n (Xn) defined in each degree via

in = (1, 1, . . . , 1,−d N−1 − · · · − d2 − d).

It is easy to check that

0 −→ K
i−→

⊕

n∈Z

DN
n (Xn)

p−→ X −→ 0

is a degreewise split short exact sequence, or in other words, p is an admissible
epimorphism in N -Ch(R)dw. Now in the case that X is projective in N -Ch(R)dw we
get that the map p must split, meaning we have a map j : X −→ ⊕

n∈Z
DN

n (Xn)

satisfying pj = 1X . Using Corollary 3.5 we conclude 1X ∼ 0. So by definition, X is
contractible. ��
Remark We didn’t actually need to describe the complex K in the proof of Proposi-
tion 4.1. But we do so to point out now that it can be taken to serve as the loop on X .
That is, �X . The dual construction produces the suspension �X .

Recall that by a thick subcategory we mean a class of objects W which is closed
under direct summands and satisfies the property that if two out of three terms in a
short exact sequence are in W , then so is the third.

Corollary 4.2 Let W be the class of contractible N-complexes.

1. W is a thick subcategory of N-Ch(R)dw.
2. N-Ch(R)dw has enough projectives and enough injectives. That is, given an N-

complex X, there exists C, D ∈ W , a degreewise split epimorphism C −→ X
(enough projectives) and a degreewise split monomorphism X −→ D (enough
injectives).

Proof First, by Corollary 3.6 we know that W is closed under taking direct summands.
Next suppose that 0 −→ X −→ Y −→ Z −→ 0 is a degreewise split short exact sequence
of N -complexes. If Z is in W then the sequence splits by Proposition 4.1, making X
a direct summand of Y . So if Y is in W , then X must also be in W by Corollary 3.6.
This proves that Y, Z being in W implies X is in W . The dual argument holds and
shows X, Y ∈ W implies Z ∈ W . Finally suppose X and Z are in W . Then by
Proposition 4.1 it is clear that Y = X ⊕ Z . So Y ∈ W by Corollary 3.6. This proves
W is thick.

The proof of the second statement in fact already appeared in the proof of Proposi-
tion 4.1 above. That is, given any X , the map p : ⊕

n∈Z
DN

n (Xn) −→ X induced from
the set of identity maps {1Xn : Xn −→ Xn} shows N -Ch(R)dw has enough projectives.
The dual argument shows we have enough injectives. ��
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Theorem 4.3 Let A denote the class of all N-complexes and let W denote the class
of all contractible complexes. Both (A,W) and (W,A) are complete cotorsion pairs
in N-Ch(R)dw, and so form a Hovey pair. The corresponding model structure on
Ch(R)dw is described as follows. The cofibrations (resp. trivial cofibrations) are the
degreewise split monomorphisms (resp. split monomorphisms with contractible coker-
nel) and the fibrations (resp. trivial fibrations) are the degreewise split epimorphisms
(resp. split epimorphisms with contractible kernel). The weak equivalences are the
homotopy equivalences. We note the following properties of this model structure:

1. The model structure is Frobenius. In particular, each N-complex is both cofibrant
and fibrant.

2. The formal homotopy relation coincides with the notion of chain homotopy in
Definition 2.3 and two maps are chain homotopic if and only if their difference
factors through a contractible complex.

3. HoCh(R)dw = N-K(R).

Proof It follows immediately from Proposition 4.1 (2) that (W,A) is a cotorsion
pair in N -Ch(R)dw and Proposition 4.1 (3) says that (A,W) is a cotorsion pair.
Corollary 4.2 (2) says that these cotorsion pairs are complete. Also by Corollary 4.2 (1),
W is thick and so (A,W) and (W,A) form a Hovey pair where in Theorem 2.6 we
have A = Q = R and W are the trivial objects. The existence of the model structure
follows and as in [6] we call it Frobenius since it exists on an exact category and each
object is both cofibrant and fibrant.

It was shown in Corollary 4.8 (3) of [6] that for any Frobenius model structure, two
maps are homotopic if and only if their difference factors through a projective-injective
object. So the second statement now follows from Corollary 3.5 and Proposition 4.1.
The third statement is clear from the most fundamental theorem about model cate-
gories: See Theorem 1.2.10 of [10]. ��
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