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Abstract In this paper, we consider 2-dimensional precubical sets, which can be
used to model systems of two concurrently executing processes. From the point of
view of concurrency theory, two precubical sets can be considered equivalent if their
geometric realizations have the same directed homotopy type relative to the extremal
elements in the sense of P. Bubenik. We give easily verifiable conditions under which
it is possible to reduce a 2-dimensional precubical set to an equivalent smaller one by
collapsing an edge or eliminating a square and one or two free faces. We also look at
some simple standard examples in order to illustrate how our results can be used to
construct small models of 2-dimensional precubical sets.

Keywords Cubical sets · d-spaces · Fundamental bipartite graph · Fundamental
category · Trace spaces · Directed homotopy theory · Concurrency theory
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1 Introduction

It has been known for some time now that precubical sets, i.e., cubical sets with-
out degeneracies, can be used to model concurrent systems (cf. [3,4,6–9]). These
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Fig. 1 A very simple
concurrent system and its
fundamental bipartite graph

(a) (b)

are systems of two or more computational processes which may communicate, share
resources, and execute in parallel. Let us consider, as an example, a very simple con-
current system where two processes A and B write to a piece of shared memory. Each
process performs a sequence of three actions: it accesses the memory, writes its name,
and terminates. The processes execute simultaneously but cannot write to the memory
at the same time. This situation can be modeled by the 2-dimensional precubical set
depicted in Fig. 1a (the definition of precubical sets is recalled in 2.1). The vertices
represent the states of the system, the horizontal arrows represent the actions of pro-
cess A, and the vertical arrows represent the actions of process B. Moreover, if it does
not matter in which order an action of A and an action of B are executed and they
may actually be performed concurrently, then this is indicated by a square linking
the two pairs of arrows corresponding to a consecutive execution of the actions. The
precubical set has a hole reflecting the fact that only one process can write its name
to the memory at a time.

Any precubical set can be realized geometrically as a topological space and indeed
even as a d-space in the sense of Grandis [11]. A d-space is a topological space with
a distinguished set of paths, called d-paths, which equip the space with a direction
of time. The d-paths in the geometric realization of a precubical set are obtained by
pasting together increasing paths on cubes. In the interpretation of a precubical set as
a model of a concurrent system, the passage to the geometric realization adds all pos-
sible intermediate states of the system to the model. The d-paths represent complete
or partial executions of the system.

Consider again our example concurrent system. There exists an infinite number
of d-paths leading from the initial state in the lower left corner to the final state in
the upper right corner. Computer scientifically, two such d-paths can be considered
equivalent if they represent executions which produce the same result, i.e., executions
where the processes write to the memory in the same order. Geometrically, this hap-
pens precisely when the d-paths turn around the hole on the same side. This leads to
the following notion of equivalence of d-paths: two d-paths α and β from a point x
in a d-space to a point y are said to be dihomotopic relative to {0, 1} if there exists a
homotopy H from α to β such that each path H(−, t) is a d-path from x to y. In the
example, there are two relative dihomotopy classes of d-paths leading from the initial
to the final state of the system, corresponding to the two possible orders in which the
processes can write to the memory.

An important tool in the study of the directed structure of a d-space is its fundamen-
tal category (cf. [8,11]). This is the directed analogue of the fundamental groupoid
of a topological space. The objects of the fundamental category of a d-space are its
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points and the morphisms are the relative dihomotopy classes of d-paths. The funda-
mental category of a d-space is, of course, a huge object, and a main line of research
in the area of directed algebraic topology is the development of methods to extract
the essential information of the fundamental category (cf. [1,4,5,10], [11, I.3], [12]).
A basic construction in this context is Bubenik’s fundamental bipartite graph of a
d-space, which is the full subcategory of the fundamental category generated by the
so-called extremal elements (cf. [1]). In the geometric realization of a precubical set,
the extremal elements are the points which correspond to the vertices in which no edge
begins or no edge ends (cf. 3.5). The fundamental bipartite graph of a d-space model
of a concurrent system represents the essential execution schedules of the system. In
the case of our example system, the fundamental bipartite graph is indicated Fig. 1b.

In this paper, we are concerned with the problem of reducing a given precubical set
to an equivalent smaller one. This approach complements the strategy to replace the
fundamental category by a smaller object containing the relevant directed informa-
tion. Ultimately, it would be very useful to have an efficient reduction algorithm for
precubical sets. Collapses of cubes are certainly potential steps of such an algorithm.
Unfortunately, the collapsing of cubes is a non-trivial matter in directed topology since
eliminating a cube with a free face from a precubical set may change its directed struc-
ture. Perhaps surprisingly, it appears that collapsing operations preserve significantly
more structure in 2-dimensional precubical sets than in higher dimensional ones. This
paper is devoted to collapsing operations for 2-dimensional precubical sets. Collapsing
operations for higher dimensional precubical sets will be discussed in a forthcoming
paper. As the referee has pointed out, one may consider the 2-dimensional case partic-
ularly interesting because the full subcategory of the fundamental category generated
by the vertices is in many important situations the same for a precubical set and its
2-skeleton (cf. [3]).

The collapsing operations of this paper preserve the dihomotopy type relative to the
extremal elements of the geometric realization. The notion of dihomotopy equivalence
we use here is based on a straightforward extension of the notion of dihomotopy of
d-paths to d-maps, i.e., morphisms of d-spaces (cf. 3.1). The reader should note that
other concepts of directed homotopy equivalence have been defined in the literature
(cf. [6,12]). The concept of dihomotopy equivalence used in this paper is quite strong,
and we show in 3.9 that dihomotopy equivalences relative to the extremal elements
between geometric realizations of precubical sets preserve the fundamental bipartite
graph and the homotopy type of any trace space (cf. [2,12,13]) between extremal
elements. Using the collapsing operations of this paper, the precubical set represented
in Fig. 1a can be reduced to a precubical set that looks exactly like the fundamental
bipartite graph in Fig. 1b.

Our results may be seen as related to those of [6]. In that paper, the authors define S-
and T-homotopy equivalences and give some of the collapsing operations we consider
here as examples of such equivalences. Using these particular collapsing operations
only, it is possible to reduce the precubical set of Fig. 1a to one that looks like the
fundamental bipartite graph in Fig. 1b with one additional arrow coming into the initial
vertex and one additional arrow going out of the final vertex.

The main results are contained in Sects. 5, 6. In Sect. 2 , we collect some basic facts
on precubical sets and d-spaces. Section 3 is devoted to dihomotopy. In Sect. 4, we
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present a method to construct d-maps and dihomotopies on geometric realizations of
precubical sets. The last two sections are devoted to examples and some final remarks.

2 Precubical sets and d-spaces

Definition 2.1 A precubical set is a graded set P = (Pn)n≥0 with boundary oper-
ators dk

i : Pn → Pn−1 (n > 0, k = 0, 1, i = 1, . . . , n) satisfying the relations
dk

i ◦ dl
j = dl

j−1 ◦ dk
i (k, l = 0, 1, i < j). If there exists a largest n such that Pn �= ∅,

then this n is called the dimension of P . The degree of an element x of P will be
denoted by |x |. The elements of degree 0 are also called the vertices of P . A mor-
phism of precubical sets is a morphism of graded sets which is compatible with the
boundary operators. The category of precubical sets will be denoted by �Set.

The category �Set can be seen as the presheaf category of functors
�op → Set where � is the small subcategory of Top whose objects are the stan-
dard n-cubes I n (n ≥ 0) and whose non-identity morphisms are composites of
the maps δk

i : I n → I n+1 (n ≥ 0, i ∈ {1, . . . , n + 1}, k ∈ {0, 1}) given by
δk

i (u1, . . . , un) = (u1, . . . , ui−1, k, ui . . . , un). Here, we consider the 0-cube as the
one-point space I 0 = {()}. The precubical n-cube is the n-dimensional precubical set
I

n = �(−, I n). By Yoneda’s Lemma, an element x of degree n of a precubical set P
determines a unique morphism of precubical sets x� : I

n → P such that x�(idI n ) = x .

Definition 2.2 Let P be a precubical set and x ∈ Pn be an element. We say that x is
regular if the morphism x� is injective.

We remark that if x is regular, then so is each dk
i x .

Definition 2.3 A precubical subset of a precubical set P is a precubical set Q such
that Qn ⊆ Pn for all n ≥ 0 and the boundary operators of Q and P coincide on Q.
The opposite precubical set of a precubical set P with boundary operators dk

i is the
precubical set Pop with boundary operators ∂k

i defined by Pop
r = Pr and ∂k

i = d1−k
i .

The transposed precubical set of a precubical set P with boundary operators dk
i is

the precubical set Pt with boundary operators ∂k
i defined by Pt

r = Pr and ∂k
i =

dk
r+1−i : Pr → Pr−1 (i ∈ {1, . . . , r}). The maps P 	→ Pop and P 	→ Pt extend to

functors in the obvious way.

The terminology of opposite and transposed precubical sets is an adaptation of the
one used in [11] for cubical sets. Note that the opposite and transposed precubical
set functors are involutions and that they preserve precubical subsets. Note also that a
regular element of a precubical set P is also regular as an element of Pop and Pt .

Precubical sets can be realized geometrically as d-spaces in the sense of M. Grandis
[11]. These spaces are defined as follows:

Definition 2.4 [11, I.1.4] A d-space is a topological space X together with a subset
d X ⊆ X I such that
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(i) d X contains all constant paths,
(ii) d X is closed under composition with (not necessarily strictly) increasing maps

I → I,
(iii) d X is closed under concatenation.

The elements of d X are called d-paths in X . A d-map is a continuous map f : X → Y
between d-spaces such that for any ω ∈ d X, f ◦ ω ∈ dY . The category of d-spaces
and d-maps is denoted by dTop.

Example 2.5 The directed interval is the d-space 
I = (I, d 
I ) where d 
I consists of
the (not necessarily strictly) increasing maps I → I . The d-paths in a d-space X are
precisely the d-maps 
I → X . Taking the n-fold product of 
I with itself we obtain
the directed n-cube 
I n . Note that the product of two d-spaces X and Y is a d-space
with respect to the set d(X × Y ) corresponding to d X × dY under the bijection
(X × Y )I ≈ X I × Y I .

Definition 2.6 (cp. [4,6,8], [11, I.1.6.7], [13]) The geometric realization of a precu-
bical set P is the quotient space |P| = (

∐
n≥0 Pn × I n)/∼ where the sets Pn are

considered as discrete spaces and the equivalence relation is given by

(dk
i x, u) ∼ (x, δk

i (u)), x ∈ Pn+1, u ∈ I n, i ∈ {1, . . . , n + 1}, k ∈ {0, 1}.

The geometric realization |P| is a d-space with respect to the set d|P| consisting of
increasing reparametrizations of finite concatenations of paths ω : I → |P| of the
form ω(t) = [x, α(t)] where x ∈ Pn and α is a continuous map I → I n which is
order-preserving with respect to the natural order of I and the componentwise natural
order of I n . The geometric realization of a morphism of precubical sets f : P → Q
is the d-map | f | : |P| → |Q| given by | f |([x, u]) = [ f (x), u]. With these definitions
the geometric realization is a functor | | : �Set → dTop.

Example 2.7 The map 
I n → |In|, u 	→ [idI n , u] is an isomorphism of d-spaces.

We remark that the geometric realization of a precubical set P is a CW-complex (cf.
[6]). The n-skeleton of |P| is the geometric realization of the n-dimensional precubical
subset P≤n of P defined by (P≤n)m = Pm (m ≤ n). The closed n-cells of |P| are
the d-spaces |x�(In)| where x ∈ Pn . The characteristic map of the cell |x�(In)| is the

d-map 
I n
∼=→ |In| |x�|→ |P| and this map is an isomorphism onto its image if and only if

x is regular. Note also that a natural isomorphism of d-spaces σP : |P| → |Pt | is given
by [z, (u1, . . . , ur )] 	→ [z, (ur , . . . , u1)]. Note finally that the geometric realization
of a precubical subset Q of P is both a CW-subcomplex of |P| and a d-subspace of
|P| in the sense of the following definition:

Definition 2.8 [11, I.1.4.1] A d-subspace of a d-space X is a d-space A such that the
topological space A is a subspace of X and d A = {ω ∈ AI | (A ↪→ X) ◦ ω ∈ d X}.

Reversing the direction of the d-paths of a d-space one obtains the opposite d-space:
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Definition 2.9 [11, I.1.4.0] Given a path ω : I → X we denote the inverse path
I → X, t 	→ ω(1 − t) by ω̄. The opposite d-space of a d-space X = (X, d X) is the
d-space Xop = (X, d Xop) defined by d Xop = {ω̄ |ω ∈ d X}. The map X 	→ Xop

extends to a functor in the obvious way.

Note that the opposite d-space functor is an involution. Note also that if A is a
d-subspace of X, then Aop is a d-subspace of Xop. Note finally that for a precu-
bical set P, a natural isomorphism of d-spaces φP : |P|op → |Pop| is given by
[z, (u1, . . . , ur )] 	→ [z, (1 − u1, . . . , 1 − ur )].

3 Dihomotopy, the fundamental bipartite graph, and d-path spaces

We shall work with the following notion of directed homotopy:

Definition 3.1 Two d-maps f, g : X → Y are said to be dihomotopic if there exists a
homotopy H : X × I → Y from f to g such that each map H(−, t) is a d-map. Such
a homotopy is called a dihomotopy from f to g. If f and g coincide on a d-subspace
A ⊆ X, then f and g are said to be dihomotopic relative to A if there exists a dihomot-
opy relative to A from f to g, i.e., a dihomotopy H : X × I → Y from f to g such that
each map H(−, t) coincides with f and g on A. Let X and Y be d-spaces with a com-
mon d-subspace A. A d-map f : X → Y satisfying f (a) = a for all a ∈ A is said to be
a dihomotopy equivalence relative to A if there exists a dihomotopy inverse relative to
A of f, i.e., a d-map g : Y → X such that g(a) = a for all a ∈ A and such that g◦ f and
f ◦g are dihomotopic relative to A to the identities of X and Y, respectively. A dihomot-
opy equivalence is a d-map which is a dihomotopy equivalence relative to the empty
d-space. Two d-spaces X and Y with a common d-subspace A are said to be di-
homotopy equivalent relative to A if there exists a dihomotopy equivalence relative
to A between them. Two d-spaces X and Y are dihomotopy equivalent if they are
dihomotopy equivalent relative to the empty d-space.

We remark that (relative) dihomotopy is an equivalence relation which is compati-
ble with the composition of d-maps. Some authors, as for instance Grandis [11], work
with a stronger notion of directed homotopy, called d-homotopy, where the homot-
opies are required to be d-maps X × 
I → Y . The reader is referred to Fajstrup [3]
for a result concerning the equivalence of the two notions of directed homotopy for
directed paths.

The one-dimensional information of a d-space is contained in its fundamental
category, which is the directed analogue of the fundamental groupoid of a topological
space.

Definition 3.2 ([8], [11, I.3]) The fundamental category of a d-space X is the category

π1(X) defined as follows: The objects are the elements of X and the set of morphisms
from an element x to an element y is the set of dihomotopy classes relative to {0, 1}
of d-paths from x to y. The map X 	→ 
π1(X) extends in the obvious way to a functor
from dTop to the category of small categories.

The fundamental category of a d-space is obviously a huge object. This led to the
development of several methods to extract the essential directed information of the
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fundamental category (cf. [1,4,5,10], [11, I.3], [12]). In [1], Bubenik introduced the
fundamental bipartite graph of a d-space:

Definition 3.3 [1] An element a of a d-space X is said to be minimal (maximal) if
any morphism in 
π1(X) with target (source) a has source (target) a. An element of
X is extremal if it is minimal or maximal. The d-subspace of X consisting of the
extremal elements is denoted by Extrl(X). The fundamental bipartite graph of a
d-space X, denoted by 
π1(X, Extrl(X)), is the full subcategory of 
π1(X) generated
by Extrl(X).

Note that the fundamental bipartite graph of a d-space is a bipartite graph if one
ignores the identity morphisms. In a d-space model of a concurrent system, initial
states of the system are modeled by minimal elements and final states and deadlocks
are modeled by maximal elements. The fundamental bipartite graph of the d-space
represents the essential execution schedules between these critical states of the sys-
tem. For precubical sets there is another definition of minimal, maximal, and extremal
elements:

Definition 3.4 Let P be a precubical set. An element v ∈ P0 is said to be minimal
(maximal) if there is no element x ∈ P1 such that d1

1 x = v (d0
1 x = v). An element of

P is extremal if it is minimal or maximal. The 0-dimensional precubical subset of P
consisting of the extremal elements is denoted by Extrl(P).

We remark that Extrl(Pop) = Extrl(Pt ) = Extrl(P). The easy proof of the
following proposition is left to the reader.

Proposition 3.5 Let P be a precubical set. An element a ∈ |P| is minimal (maximal)
if and only if there exists a minimal (maximal) element v ∈ P0 such that a = [v, ()].
Consequently, |Extrl(P)| = Extrl(|P|).

In [2] and [12], Fahrenberg and Raußen introduce trace spaces, which are quotient
spaces of the d-path spaces we define next. In [13], it is shown that trace and d-path
spaces are actually homotopy equivalent for geometric realizations of precubical sets.

Definition 3.6 Let X be a d-space and a, b ∈ X . The d-path space 
P(X)(a, b) is
defined to be the subspace of X I consisting of the d-paths from a to b.

Remark 3.7 Note that the path components of 
P(X)(a, b) are the morphisms from a
to b in 
π1(X).

We have the following result on the dihomotopy invariance of the fundamental
bipartite graph and d-path spaces:

Theorem 3.8 Let X and Y be two d-spaces such that Extrl(X) = Extrl(Y ) and
let f : X → Y be a dihomotopy equivalence relative to Extrl(X). Then the func-
tor 
π1( f ) : 
π1(X) → 
π1(Y ) restricts to an isomorphism of fundamental bipartite
graphs 
π1(X, Extrl(X)) → 
π1(Y, Extrl(Y )). Moreover, for any two elements a, b ∈
Extrl(X) the map f I : X I → Y I , ω 	→ f ◦ ω restricts to a homotopy equivalence

P(X)(a, b) → 
P(Y )(a, b).
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Proof By 3.7, the statement on the fundamental bipartite graphs follows from the
statement on d-path spaces. In order to prove the latter, let a, b ∈ Extrl(X) =
Extrl(Y ) and g : Y → X be a dihomotopy inverse relative to Extrl(X) of f .
Let f∗ : 
P(X)(a, b) → 
P(Y )(a, b) and g∗ : 
P(Y )(a, b) → 
P(X)(a, b) be the restric-
tions of f I and gI . Let H : X × I → X be a dihomotopy relative to Extrl(X) from
idX to g ◦ f . Then a homotopy h : 
P(X)(a, b) × I → 
P(X)(a, b) from id 
P(X)(a,b)
to g∗ ◦ f∗ is given by h(ω, t)(s) = H(ω(s), t). Similarly, id 
P(Y )(a,b) � f∗ ◦ g∗. ��
Corollary 3.9 Let P and Q be two precubical sets such that Extrl(P) = Extrl(Q)
and let f : |P| → |Q| be a dihomotopy equivalence relative to |Extrl(P)|. Then
the functor 
π1( f ) : 
π1(|P|) → 
π1(|Q|) restricts to an isomorphism of fundamen-
tal bipartite graphs 
π1(|P|, Extrl(|P|)) → 
π1(|Q|, Extrl(|Q|)). Moreover, for any
two elements v,w ∈ Extrl(P) the map f I : |P|I → |Q|I , ω 	→ f ◦ ω restricts to a
homotopy equivalence 
P(|P|)([v, ()], [w, ()]) → 
P(|Q|)([v, ()], [w, ()]).

The last proposition of this section permits us to dualize results on dihomotopy
equivalences for precubical sets. The straightforward proof is left to the reader.

Proposition 3.10 Let P and Q be two precubical sets with a common precubical
subset R.

(i) If f : |Pop| → |Qop| is a dihomotopy equivalence relative to |Rop|, then
(φ−1

Q ◦ f ◦ φP )
op : |P| → |Q| is a dihomotopy equivalence relative to |R|.

(ii) If f : |Pt | → |Qt | is a dihomotopy equivalence relative to |Rt |, then
σ−1

Q ◦ f ◦ σP : |P| → |Q| is a dihomotopy equivalence relative to |R|.

4 Construction of d-maps

The purpose of this section is to present a method to construct d-maps and dihomot-
opies between geometric realizations of precubical sets. The maps and homotopies
we consider in the next sections can be shown to be d-maps and dihomotopies by
checking the conditions we establish in this section.

Definition 4.1 A subset Z of a partially ordered set (J,≤) is called order-convex if
for any two elements a, b ∈ Z , {z ∈ J |a ≤ z ≤ b} ⊆ Z .

Remark 4.2 If α : I → I m is an order-preserving map and s ≤ t are elements of I
such that α(s) and α(t) belong to an order-convex set Z ⊆ I m, then [s, t] ⊆ α−1(Z).

Proposition 4.3 Let P and Q be precubical sets and f : ∐

r≥0
Pr × I r → |Q| be a

continuous map. Suppose that

(i) f (dk
i z, u) = f (z, δk

i u) for all r ≥ 1, z ∈ Pr ,u ∈ I r−1, i ∈ {1, . . . r}, k ∈ {0, 1},
(ii) for all r ≥ 1 and z ∈ Pr there exist a finite closed order-convex covering Az

of I r , a function ζz : Az → ∐

m≥0
Qm, and a family of order-preserving maps

{ fz,Z : Z → I |ζz(Z)|}Z∈Az such that for all Z ∈ Az and u ∈ Z , f (z, u) =
[ζz(Z), fz,Z (u)].

Then a d-map f̄ : |P| → |Q| is given by f̄ ([z, u]) = f (z, u).
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Collapsing operations for 2-dimensional precubical sets 289

Proof By condition (i), f̄ is well-defined and continuous. Let r ≥ 0 and z ∈ Pr and
consider a path ω ∈ d|P| of the form ω(t) = [z, α(t)] where the map α : I → I r

is order-preserving. We have to show that f̄ ◦ ω ∈ d|Q|. If r = 0, then f̄ ◦ ω is a
constant path and therefore f̄ ◦ ω ∈ d|Q|. Let r ≥ 1. Let Bz be the subset of Az

consisting of the sets Z ∈ Az such that α−1(Z) has more than one element. Then
I = ⋃

Z∈Bz

α−1(Z). Indeed, else there would exist an element s ∈ I\ ⋃

Z∈Bz

α−1(Z) and

one would have
⋃

Z∈Az

s∈α−1(Z)

α−1(Z) = {s} and hence I\{s} = ⋃

Z∈Az

s /∈α−1(Z)

α−1(Z) which

is impossible since I\{s} is not closed in I . Define a subset {Z1, . . . , Zl} ⊆ Bz such
that 0 < max α−1(Z1) < · · · < max α−1(Zl) = 1, [0,max α−1(Z1)] = α−1(Z1),

and [max α−1(Zi−1),max α−1(Zi )] ⊆ α−1(Zi ) for i ∈ {2, . . . , l} inductively as
follows. Choose Z1 ∈ Bz such that 0 ∈ α−1(Z1). Then 0 < max α−1(Z1) and,
by 4.2, [0,max α−1(Z1)] = α−1(Z1). Suppose that Zi has been defined and that
max α−1(Zi ) < 1. Then

[0,max α−1(Zi )] =
⋃

Z∈Bz

max α−1(Z)≤max α−1(Zi )

α−1(Z)

and hence
] max α−1(Zi ), 1] ⊆

⋃

Z∈Bz

max α−1(Z)>max α−1(Zi )

α−1(Z).

Since this is a finite union of closed subsets of I, it even contains the closed inter-
val [max α−1(Zi ), 1] as a subset. Therefore we may choose Zi+1 ∈ Bz such that
max α−1(Zi ) < max α−1(Zi+1) and max α−1(Zi ) ∈ α−1(Zi+1). By 4.2, we then
also have [max α−1(Zi ),max α−1(Zi+1)] ⊆ α−1(Zi+1). Since Bz is finite, the pro-
cess terminates after a finite number of steps. Set bi = max α−1(Zi ) (i = 1, . . . , l)
and b0 = 0. It suffices to show that for each i ∈ {1, . . . , l}, the path γi : I → |Q|,
t 	→ f̄ ◦ ω((1 − t)bi−1 + tbi ) belongs to d|Q|. Let βi be the composite

I
(1−t)bi−1+tbi−→ [bi−1, bi ] α→ Zi

fz,Zi→ I |ζz(Zi )|.

Then βi is order-preserving and γi (t) = [ζz(Zi ), βi (t)] (t ∈ I ). Thus, γi ∈ d|Q|. ��

Proposition 4.4 Let P and Q be precubical sets and h : ∐

r≥0
Pr × I r × I → |Q| be

a continuous map. Suppose that

(i) h(dk
i z, u, t) = h(z, δk

i u, t) for all r ≥ 1, z ∈ Pr , u ∈ I r−1, i ∈ {1, . . . r},
k ∈ {0, 1}, t ∈ I,

(ii) for all t ∈ I, r ≥ 1, and z ∈ Pr there exist a finite closed order-convex covering
Az,t of I r , a function ζz,t : Az,t → ∐

m≥0
Qm, and a family of order-preserving
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maps {hz,t,Z : Z → I |ζz,t (Z)|}Z∈Az,t such that for all Z ∈ Az,t and u ∈ Z ,
h(z, u, t) = [ζz,t (Z), hz,t,Z (u)].

Then a dihomotopy H : |P| × I → |Q| is given by H([z, u], t) = h(z, u, t).

Proof By condition (i), H is well-defined and continuous. By 4.3, the map
H(, t) : |P| → |Q| is a d-map for each t ∈ I . ��

5 One-dimensional reduction

In ordinary homotopy theory, a contractible subspace of a topological space can be
collapsed to a point, at least if the space and the subspace form an NDR-pair. The
resulting quotient space has the same homotopy type as the original space. In directed
homotopy theory, the situation is more complicated. Consider, for example, the geo-
metric realization of a precubical set P with two vertices and two edges that looks
like the graph in Fig. 1b. If one collapses one of the edges to a point, one obtains
the directed circle 
S1, which is the geometric realization of a precubical set with one
vertex and one edge. The d-spaces |P| and 
S1 are not dihomotopy equivalent. The
following theorem gives a condition under which it is possible to collapse an edge in
the geometric realization of a precubical set to a point without changing the directed
homotopy type relative to the extremal elements:

Theorem 5.1 Let P be a precubical set, b ∈ {0, 1}, and x ∈ P1 be a regular element
such that

(i) there is no element y ∈ P1\{x} such that d1−b
1 y = d1−b

1 x,
(ii) no element in P1 having d1−b

1 x in its boundary belongs to the boundary of an
element in P2.

Consider the set Y = {y ∈ P1 | db
1 y = d1−b

1 x}. Then a precubical set Q such that
Y ⊆ Q1, Q\Y is a common precubical subset of P and Q, and |P| and |Q| are di-
homotopy equivalent relative to |Q\Y | is given by Q0 = P0\{d1−b

1 x}, Q1 = P1\{x},
Qr = Pr (r > 1), and the boundary operators Dk

i defined by

Dk
i z =

{
db

1 x, z ∈ Y, i = 1, k = b,
dk

i z, else.

Moreover, if Y �= ∅, then Extrl(P) = Extrl(Q) ⊆ Q\Y and |P| and |Q| have
isomorphic fundamental bipartite graphs and homotopy equivalent d-path spaces for
each pair of extremal elements.

Proof We only consider the case b = 0. The case b = 1 is dual and can be deduced
from the case b = 0 using 3.10(i). Note first that the regularity of x and the two
conditions of the theorem ensure that Q is a precubical set, Y ⊆ Q1, and Q\Y is a
common precubical subset of P and Q. The situation is illustrated in Fig. 2, where
Y = {y, y′} and Q\Y is represented by the circles.
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Fig. 2 Precubical sets P and Q
in theorem 5.1

(a) (b)

Consider the continuous maps f : ∐

r≥0
Pr × I r → |Q| and g : ∐

r≥0
Qr × I r → |P|

defined by

f (z, u) =
{ [d0

1 x, ()], z ∈ {x, d1
1 x},

[z, u], z /∈ {x, d1
1 x}

and

g(z, u) =
⎧
⎨

⎩

[x, 2u], z ∈ Y, u ≤ 1/2
[z, 2u − 1], z ∈ Y, u ≥ 1/2
[z, u], z /∈ Y.

It is straightforward to check that f and g satisfy the conditions of 4.3. It follows that
the maps f̄ : |P| → |Q|, f̄ ([z, u]) = f (z, u) and ḡ : |Q| → |P|, ḡ([z, u]) = g(z, u)
are d-maps. Note that both f̄ and ḡ restrict to the identity on |Q\Y |. We show that
f̄ and ḡ are inverse dihomotopy equivalences relative to |Q\Y |. Consider the map
φ : ∐

r≥0
Pr × I r × I → |P| defined by

φ(z, u, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[z, u], z ∈ {x, d1
1 x}, t ≤ 1/2

[x, (2 − 2t)u], z = x, t ≥ 1/2,
[x, 2 − 2t], z = d1

1 x, t ≥ 1/2,
[z, (1 − 2t)u], z ∈ Y, u ≤ 1/2, t ≤ 1/2,
[x, 2 − 2t + (2t − 1)2u], z ∈ Y, u ≤ 1/2, t ≥ 1/2,
[z, (1 − 2t)u + 2t (2u − 1)], z ∈ Y, u ≥ 1/2, t ≤ 1/2,
[z, 2u − 1], z ∈ Y, u ≥ 1/2, t ≥ 1/2,
[z, u], z /∈ Y ∪ {x, d1

1 x}.

It is straightforward to check that φ is well-defined and continuous and that it satisfies
the conditions of 4.4. Therefore the map� : |P|× I → |P|, �([z, u], t) = φ(z, u, t)
is a dihomotopy. We have �([z, u], 0) = [z, u] and �([z, u], 1) = ḡ ◦ f̄ ([z, u]).
Moreover, �([z, u], t) = [z, u] for all [z, u] ∈ |P\(Y ∪ {x, d1

1 x})| = |Q\Y | and
t ∈ I . It follows that � is a dihomotopy relative to |Q\Y | from id|P| to ḡ ◦ f̄ .

Consider the continuous map ψ : ∐

r≥0
Qr × I r × I → |Q| defined by

ψ(z, u, t) =
⎧
⎨

⎩

[z, (1 − t)u], z ∈ Y, u ≤ 1/2,
[z, (1 − t)u + t (2u − 1)], z ∈ Y, u ≥ 1/2,
[z, u], z /∈ Y.
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One easily verifies that ψ satisfies the conditions of 4.4. Therefore the map
� : |Q|× I → |Q|,�([z, u], t) = ψ(z, u, t) is a dihomotopy. We have�([z, u], 0) =
[z, u] and �([z, u], 1) = f̄ ◦ ḡ([z, u]). Moreover, �([z, u], t) = [z, u] for all
[z, u] ∈ |Q\Y | and t ∈ I . It follows that � is a dihomotopy relative to |Q\Y |
from id|Q| to f̄ ◦ ḡ.

One easily shows that Extrl(P) = Extrl(Q) ⊆ Q\Y if Y �= ∅. By 3.9, this
implies that |P| and |Q| have isomorphic fundamental bipartite graphs and homotopy
equivalent d-path spaces for each pair of extremal elements. ��

Remark 5.2 Note that if the set Y has exactly one element, the equivalence between
|P| and |Q| can be seen as a T-homotopy equivalence in the sense of [6].

6 Two-dimensional reduction

In opposition to the situation in ordinary homotopy theory, the removal of a cube and
a free face from a precubical set changes in general the directed homotopy type of
the geometric realization. In this section we prove two theorems which give condi-
tions under which it is possible to eliminate a 2-dimensional cube and one or two free
faces in a precubical set without changing the directed homotopy type relative to the
extremal elements of the geometric realization.

Theorem 6.1 Let P be a precubical set, a ∈ {1, 2}, b ∈ {0, 1}, and x ∈ P2 be a
regular element such that

(i) no element of P2\{x} has d1−b
a x or db

3−a x in its boundary,
(ii) there is no element y ∈ P1\{d1−b

a x} such that db
1 y = db

1 d1−b
a x,

(iii) no element of the set Y = {y ∈ P1\{db
3−a x} | d1−b

1 y = d1−b
1 db

3−a x} is in the
boundary of some element in P2.

Then a precubical subset Q of P and a precubical subset R of Q such that the inclu-
sion ι : |Q| ↪→ |P| is a dihomotopy equivalence relative to |R| are given by Q0 = P0,

Q1 = P1\{db
3−a x}, Q2 = P2\{x}, Qr = Pr (r > 2), R0 = Q0\{d1−b

1 db
3−a x}, R1 =

Q1\({d1−b
a x} ∪ Y ), and Rr = Qr (r ≥ 2). Moreover, if Y �= ∅, then Extrl(P) =

Extrl(Q) ⊆ R and ι induces an isomorphism of fundamental bipartite graphs and a
homotopy equivalence of d-path spaces for each pair of extremal elements.

Proof We only consider the case a = 1 and b = 0. The remaining cases are dual
and can be deduced from the case a = 1 and b = 0 using 3.10. Note first that the
regularity of x and the three conditions of the theorem ensure that Q is a precubical
subset of P and R is a precubical subset of Q. The situation is illustrated in Fig. 3,
where Y = {y, y′} and R is represented by the circles and the area limited by the
curves.

We construct a dihomotopy H : |P| × I → |P| using 4.4. Consider the map
h : ∐

r≥0
Pr × I r × I → |P| defined by
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(a) (b)

Fig. 3 Precubical sets P and Q in theorem 6.1

h(x, (u1, u2), t)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[x, (u1, u2)], t ≤ 1
3 ,

[x, (u1, u2)], 1
3 ≤ t ≤ 2

3 , u1 ≤ u2,

[x, (u1, (3t − 1)u1 + (2 − 3t)u2)], 1
3 ≤ t ≤ 2

3 , u1 ≥ u2,

[x, ((3 − 3t)u1, u2 + (3t − 2)u1)], t ≥ 2
3 , u1 ≤ u2,

u2 ≤ 1 − u1,

[x, (u1 + (3t − 2)(u2 − 1), (3 − 3t)u2 + 3t − 2)], t ≥ 2
3 , u1 ≤ u2,

u2 ≥ 1 − u1,

[x, ((3 − 3t)u1, (3t − 1)u1)], t ≥ 2
3 , u1 ≥ u2, u1 ≤ 1

2 ,

[x, ((3t − 1)(u1 − 1)+ 1, (3 − 3t)u1 + 3t − 2)], t ≥ 2
3 , u1 ≥ u2, u1 ≥ 1

2 ,

h(d1
1 x, u, t) = h(x, (1, u), t), h(d0

2 x, u, t)

= h(x, (u, 0), t), h(d1
1 d0

2 x, (), t)

= h(x, (1, 0), t),

h(y, u, t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[y, (1 + 3t)u], t ≤ 1
3 , u ≤ 1

2 ,

[y, (1 − 3t)u + 3t], t ≤ 1
3 , u ≥ 1

2 ,

[y, 2u], t ≥ 1
3 , u ≤ 1

2 ,

[d1
1 x, (3t − 1)(2u − 1)], 1

3 ≤ t ≤ 2
3 , u ≥ 1

2 ,

[d1
1 x, 2u − 1], t ≥ 2

3 , u ≥ 1
2

for y ∈ Y, and h(z, (u1, . . . , ur ), t) = [z, (u1, . . . , ur )] for z ∈ R. It is straight-
forward to check that h is well-defined and continuous. A tedious but also straight-
forward verification shows that the conditions of 4.4 hold. Therefore a dihomotopy
H : |P| × I → |P| is given by H([z, (u1, . . . , ur )], t) = h(z, (u1, . . . , ur ), t). A
picture indicating what the dihomotopy H does is given in Fig. 4. By definition,
H([z, (u1, . . . , ur )], t) = [z, (u1, . . . , ur )] for all r ≥ 0, z ∈ Rr , (u1, . . . , ur ) ∈
I r , and t ∈ I . One easily checks that H([z, (u1, . . . , ur )], 0) = [z, (u1, . . . , ur )]
and H([z, (u1, . . . , ur )], 1) ∈ |Q| for all r ≥ 0, z ∈ Pr , and (u1, . . . , ur ) ∈
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Fig. 4 The dihomotopy H
moves the beginning points of
the thick lines to the endpoints
of the arrows.

Fig. 5 Precubical sets P and Q
in theorem 6.2 with b = 0

(a) (b)

I r . One also checks easily that H([z, (u1, . . . , ur )], t) ∈ |Q| for all r ≥ 0, z ∈
Qr , (u1, . . . , ur ) ∈ I r , and t ∈ I . This implies that the inclusion ι : |Q| ↪→ |P| is a
dihomotopy equivalence relative to |R|. Indeed, consider the d-map f : |P| → |Q|
given by f ([z, (u1, . . . , ur )]) = H([z, (u1, . . . , ur )], 1). A dihomotopy relative to
|R| from id|Q| to f ◦ ι is given by G : |Q| × I → |Q|, G([z, (u1, . . . , ur )], t) =
H([z, (u1, . . . , ur )], t) and H is a dihomotopy relative to |R| from id|P| to ι ◦ f .

Suppose now that Y �= ∅. One easily sees that Extrl(Q) = Extrl(P). Clearly,
d1

1 d0
2 x = d0

1 d1
1 x /∈ Extrl(P) and therefore Extrl(P) ⊆ R. It follows now from

3.9 that ι induces an isomorphism of fundamental bipartite graphs and a homotopy
equivalence of d-path spaces for each pair of extremal elements. ��

The statement of the following theorem is illustrated in Fig. 5.

Theorem 6.2 Let P be a precubical set, b ∈ {0, 1}, and x ∈ P2 be a regular element
such that no element of P2\{x} has d1−b

1 x or db
2 x in its boundary and the only ele-

ments of P1 having d1−b
1 db

2 x = db
1 d1−b

1 x in their boundary are d1−b
1 x and db

2 x. Then a
precubical subset Q of P such that the inclusion ι : |Q| ↪→ |P| is a dihomotopy equiva-
lence relative to |Q| is given by Q0 = P0\{d1−b

1 db
2 x}, Q1 = P1\{d1−b

1 x, db
2 x}, Q2 =

P2\{x}, and Qr = Pr (r > 2). Moreover, Extrl(P) = Extrl(Q) and ι induces an
isomorphism of fundamental bipartite graphs and a homotopy equivalence of d-path
spaces for each pair of extremal elements.

Proof The precubical set P, the number b, and the element x satisfy the conditions
of 6.1 with a = 1. It follows that a precubical subset M of P such that Q is a
precubical subset of M and the inclusion |M | ↪→ |P| is a dihomotopy equivalence
relative to |Q| is given by M0 = P0, M1 = P1\{db

2 x}, M2 = P2\{x}, and Mr = Pr

(r > 2). The precubical set M, the number 1 − b, and the element d1−b
1 x satisfy

the conditions of 5.1. We have Y = {y ∈ M1 | d1−b
1 y = db

1 d1−b
1 x} = ∅. It follows
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that the inclusion |Q| ↪→ |M | is a dihomotopy equivalence relative to |Q| and hence
that the inclusion ι : |Q| ↪→ |P| is a dihomotopy equivalence relative to |Q|. Note
that d1−b

1 db
2 x = db

1 d1−b
1 x /∈ Extrl(P). Therefore Extrl(P) ⊆ Q. This implies

that Extrl(P) ⊆ Extrl(Q). Let v ∈ Q0 be a minimal element of Q. Then for all
z ∈ Q1, d1

1 z �= v. If b = 0, then d1
2 x ∈ Q1 and therefore d1

1 d1−b
1 x = d1

1 d1
2 x �= v. If

b = 1, then d1
1 d1−b

1 x = d1−b
1 db

2 x /∈ Q0 and therefore d1
1 d1−b

1 x �= v. If b = 0, then
d1

1 db
2 x = d1−b

1 db
2 x /∈ Q0 and therefore d1

1 db
2 x �= v. If b = 1, then d1

1 x ∈ Q1 and
therefore d1

1 db
2 x = d1

1 d1
1 x �= v. It follows that v is a minimal element of P . A similar

argument shows that any maximal element of Q is also a maximal element of P . It
follows that Extrl(P) = Extrl(Q) and hence, by 3.9, that ι induces an isomorphism
of fundamental bipartite graphs and a homotopy equivalence of d-path spaces for each
pair of extremal elements. ��
Remark 6.3 Note that the equivalence between |P| and |Q| in 6.2 can be seen as a
composition of a T- and a S-homotopy equivalence in the sense of [6].

7 Examples

In this section, we use our reduction techniques to compute small models of three
well-known example precubical sets. In each case, we know a priori that the geomet-
ric realizations of the model and the given precubical set are dihomotopy equivalent
relative to the extremal elements and have isomorphic fundamental bipartite graphs
and homotopy equivalent d-path spaces between extremal elements. In order to con-
struct the small models, we use basically the following straightforward procedure: we
run through the 2-dimensional cubes as long as it is possible to eliminate one and after
that we proceed similarly with the 1-dimensional cubes.

Example 7.1 Consider the 2-dimensional precubical set depicted in Fig. 6a below. The
grey squares represent the elements of degree 2, the arrows represent the elements of
degree 1, and the end points of the arrows represent the elements of degree 0. The
arrow corresponding to an edge x points from d0

1 x to d1
1 x . The left-hand edge of a

square x is d0
1 x, the right-hand edge is d1

1 x, the lower edge is d0
2 x, and the upper

edge is d1
2 x . We use the following sequence of 2-dimensional reductions to deform

this precubical set into the 1-dimensional precubical subset depicted in Fig. 6b: we
proceed linewise from the top left square to the bottom right square using Theorem
6.2 with b = 1 to eliminate all squares except for the four squares on the right of the
holes where we use Theorem 6.1 with a = 2 and b = 0 and the four squares below the
holes where we use Theorem 6.1 with a = 1 and b = 1. A sequence of 1-dimensional
reductions using Theorem 5.1 with b = 0 permits us to simplify the model further to
the 1-dimensional precubical set with four vertices in Fig. 6c. From this we obtain the
final model in Fig. 6d using Theorem 5.1 twice with b = 1.

Example 7.2 Consider the precubical set in Fig. 7a.We use the following sequence
of 2-dimensional reductions to deform this precubical set into the 1-dimensional pre-
cubical subset in Fig. 7b: we proceed linewise from the top left square to the square
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(a) (b) (c) (d)

Fig. 6 Reduction of a square with two unordered holes

(a) (b) (c) (d)

Fig. 7 Reduction of a square with two ordered holes

on the left of the lower hole using Theorem 6.2 with b = 1 to eliminate all squares
except for the one on the right of the upper hole where we use Theorem 6.1 with
a = 2 and b = 0 and the one below the upper hole where we use Theorem 6.1 with
a = 1 and b = 1. We then eliminate the remaining squares using Theorem 6.2 with
b = 0 proceeding linewise upwards from the bottom right square to the square to the
right of the lower hole. We simplify the model further to the precubical set in Fig. 7c
by means of a sequence of 1-dimensional reductions using Theorem 5.1 with b = 0.
Using Theorem 5.1 with b = 1 we finally obtain the model in Fig. 7d.

Example 7.3 We deform the Swiss flag in Fig. 8a into the 1-dimensional precubical
subset in Fig. 8b successively as follows: we proceed linewise from the top left square
to the bottom right square using Theorem 6.2 with b = 1 to eliminate all squares
except for the three squares on the right of the upper and middle holes where we use
Theorem 6.1 with a = 2 and b = 0 and the three squares below the left and the middle
holes where we use Theorem 6.1 with a = 1 and b = 1. Using Theorem 5.1 several
times with b = 0 we obtain the 1-dimensional precubical set in Fig. 8c. We finally
obtain the model in Fig. 8d using Theorem 5.1 twice with b = 1. The reader might
be interested to compare this model to the one obtained in [6] using a sequence of S-
and T-homotopy equivalences.

8 Final remarks

8.1 Further collapsing operations

In this paper, we have established some results which give local combinatorial condi-
tions for the collapsibility of cubes in a 2-dimensional precubical set. The list of our
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(a) (b) (c) (d)

Fig. 8 Reduction of the Swiss flag

Fig. 9 Surface of the 3-cube
without the bottom face.

Fig. 10 |P| and |Q| are
dihomotopy equivalent relative
to |Q|.

(a) (b)

collapsing operations is not exhaustive, and it is possible and for some purposes neces-
sary to establish further collapsibility criteria. Consider, for example, the precubical set
depicted in Fig. 9, which represents the surface of the 3-cube without the bottom face.
The geometric realization of this precubical set is dihomotopy equivalent relative to
the extremal elements to the directed interval 
I . The results of this paper do not permit
us to establish this equivalence. Using the homotopy H defined in the proof of theorem
6.1 and depicted in Fig. 4 simultaneously on two adjacent squares, it is, however, easy
to establish that the geometric realizations of two precubical sets P and Q that look
like the ones in Fig. 10 are dihomotopy equivalent relative to |Q|. This result together
with the results of this paper permits us to reduce the precubical set of Fig. 9 to an edge.

8.2 Higher dimensions

It is natural to ask whether the results of this paper can easily be extended to higher
dimensions. Unfortunately, the situation in higher dimensions is more complicated.
Consider, for example, the precubical 3-cube I

3 and the precubical subset Q depicted
in Fig. 11. It is not difficult to see that |I3| and |Q| are not dihomotopy equivalent rela-
tive to |Q|. Therefore the three-dimensional version of theorem 6.2 is not true. Higher
dimensional collapsibility results will have either weaker conclusions or stronger and
more complex conditions than the results of the present paper. What can be done in
higher dimensions is currently being worked out and will be discussed in a forthcoming
paper.
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Fig. 11 |I3| and |Q| are not
dihomotopy equivalent relative
to |Q|.

(a) (b)

8.3 Extremal models

In [1], Bubenik introduces extremal models of d-spaces and calculates such extremal
models for the geometric realizations of the precubical set of the introduction and
the precubical sets of Examples 7.2 and 7.3. In all cases, the extremal model is a full
subcategory of the fundamental category of the geometric realization of our small
model, namely the full subcategory generated by the vertices of the model. It would
be interesting to know whether this link between the models constructed using our
approach and the extremal models of [1] can be established in general.
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