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0 Introduction

Let R be a commutative ring with unit. An n-dimensional polytope P ⊆ R
n with

integral vertices determines a projective toric R-scheme X P together with a family
of line bundles OX P (k) (a family of quasi-coherent sheaves of OX P -modules which
are locally free of rank 1). To a given chain complex of quasi-coherent sheaves F• we
associate an R-module chain complex �̌(F•) given by first forming a Čech complex
in each chain degree of F•, and then taking the total complex of the resulting twofold
chain complex.

Set n P = 0 if P has integral points in its interior; otherwise, let n P � 1 be such
that the dilated polytope (n P + 1)P has lattice points in its interior, but n P P does
not. This number can be characterised in different ways: n P � 0 is minimal among
non-negative integers k such that OX P (−k − 1) is not acyclic; also, n P is the number
of distinct integral roots of the Ehrhart polynomial of P .

We will show that there is a homotopy equivalence of K -theory spaces

K (X P ) � K (R)× · · · × K (R)
︸ ︷︷ ︸

n P+1factors

×K (X P , [n P ])

where K -theory is defined using perfect complexes of sheaves and modules, and the
last factor on the right denotes the K -theory of those perfect complexes F• of quasi-
coherent sheaves on X P for which �̌ (F•(k)) is acyclic for 0 � k � n P . In fact, we
will prove slightly more: by exploiting a strictly combinatorial viewpoint of sheaves
on toric varieties we can prove the corresponding result for a unital ring R which is
commutative, or else left noetherian.

A corresponding result has been proved by the author in a “non-linear” context,
replacing modules by topological spaces [5]. It must also be pointed out that the split-
ting result is, in general, far from optimal: a lot of K -theoretical information can be
left over in the factor K (X P , [n P ]). For example, if n P = 0 (which can be guaranteed
by first replacing P by its dilate (n + 1)P) the splitting results merely gives a ver-
sion of reduced K -theory. But in the other extreme, if P is an n-dimensional simplex
with volume 1/n! then X P = P

n is n-dimensional projective space; one can show
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A splitting result for the algebraic K -theory of projective toric schemes 3

that n P = n and K (Pn, [n]) � ∗ in this case so that we recover the known splitting
results for projective spaces, generalised to suitable non-commutative ground rings
(Theorem 3.3.1). There are, of course, intermediate cases; suffice it to mention that
0/1-polytopes do not have interior lattice points and hence lead to non-trivial splittings
with n P � 1. Interesting examples of 0/1-polytopes arise as Stanley’s order and
chain polytope associated to finite posets [10].

The paper is divided into three parts. In Sect. 1 we introduce the combinatorial
framework for sheaves on projective toric varieties, and give a first formulation of the
main result, Theorem 1.5.1. We also prove that for a commutative ring R we recover
the usual notions of algebraic geometry. In Sect. 2 we develop some algebraic geom-
etry from the combinatorial viewpoint, allowing for a non-commutative ground ring
R: we define twisting sheaves and study the Čech complex of various of complexes
of sheaves. Of major importance is the finiteness Theorem 2.6.1 which asserts that
the Čech complex of a perfect complex is a perfect complex of R-modules. In the
left noetherian case this is quite straightforward, while the non-noetherian com-
mutative case requires noetherian approximation (descent). Finally, Sect. 3 contains
a detailed formulation of the main theorem, and its proof.

We assume some familiarity with basic homological algebra as presented by Wei-

bel [13], Waldhausen K -theory [12] and its formulation in an algebro-geometric
setting by Thomason and Trobaugh [11]. We mention a few conventions used in
this paper. Chain complexes are topologically indexed: differentials lower the degree
by 1. If needed, modules are considered as chain complexes concentrated in chain
degree 0. The term “module” without any qualification refers to a left module.

1 The K -theory of projective toric varieties

1.1 Complexes of sheaves on projective toric varieties

We start by a combinatorial description of quasi-coherent sheaves on toric schemes
defined by a polytope.

Let P ⊆ R
n be an n-dimensional polytope with integral vertices. Each non-empty

face F of P gives rise to a cone (the set of finite linear combinations with non-negative
real coefficients)

T P
F = TF = cone {p − f | p ∈ P, f ∈ F},

the tangent cone of F, and hence to an additive monoid S P
F = SF = TF ∩ Z

n .

Lemma 1.1.1 Let F ⊆ G be a pair of non-empty faces of P. Then there exists a
vector vF,G ∈ Z

n ∩ TF such that

TG = TF + RvF,G and SG = SF + ZvF,G .

In the former case the symbol “+” denotes Minkowski sum, the set of sums of ele-
ments of the indicated cones; in the latter, the symbol “+” denotes the submonoid of
Z

n generated by sums of elements of the indicated monoids.
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4 T. Hüttemann

Proof This is Proposition 1.2.2 of [2], applied to the dual cones σ = T∨F and τ = T∨G .
	


Now let R denote an arbitrary ring with unit. We then have monoid R-algebras
AP

F = AF = R[SF ] for every non-empty face F of P; an element v ∈ SF gives rise
to the element x = 1 · v ∈ AF . Note that AF is not commutative unless R is, but that
the element x lies in the centre of AF . Moreover, monoid generators of SF give rise to
R-algebra generators of AF which is thus a finitely generated algebra by Gordan’s
Lemma ([2, 1.2.1], applied to the dual cone σ = T∨F ). The previous Lemma implies
immediately:

Lemma 1.1.2 For F ⊆ G the algebra AG is obtained from the algebra AF by local-
ising by a single element xF,G in the centre of AF . Consequently, for every p ∈ AG

there is N � 0 such that x N
F,G · p ∈ AF . 	


Replacing P by an integral dilate k P = {kp | p ∈ P}, k � 1, and replacing the
face F by its dilate kF does not change these cones, monoids and algebras. That is,
T P

F = T k P
k F , and similarly for SF and AF .

Definition 1.1.3 (Presheaves) Let F(P)0 denote the set of non-empty faces of P, par-
tially ordered by inclusion. We write Ch (R) for the category of (possibly unbounded)
chain complexes of R-modules.

1. A presheaf on P is a functor

Y : F(P)0 −→ Ch (R), F �→ Y F

equipped with extra data which turns the object Y F into a chain complex of (left)
AF -modules, such that for each pair of non-empty faces F ⊆ G of P the structure
map Y F −→ Y G is a map of AF -module chain complexes.

2. A map of presheaves is a natural transformation of functors such that its F-com-
ponent is an AF -linear map, for each F ∈ F(P)0. The category of presheaves is
denoted by Pre (P).

3. A map f : Y −→ Z of presheaves is called a quasi-isomorphism, or a weak equiv-
alence, if all its components f F are quasi-isomorphisms of chain complexes of
modules.

Definition 1.1.4 (Quasi-coherent sheaves)

1. An object Y ∈ Pre (P) is called a quasi-coherent sheaf, or sheaf for short, if for
each pair of non-empty faces F ⊆ G of P, the adjoint structure map

AG ⊗AF Y F −→ Y G

is an isomorphism of AG -module chain complexes.
2. The full subcategory of Pre (P) consisting of sheaves is denoted qCoh (P).
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A splitting result for the algebraic K -theory of projective toric schemes 5

Definition 1.1.5 (Homotopy sheaves)

1. A presheaf Y ∈ Pre (P) is called a homotopy sheaf if for each pair of non-empty
faces F ⊆ G of P the adjoint structure map AG ⊗AF Y F −→ Y G is a quasi-iso-
morphism of chain complexes.

2. The full subcategory of Pre (P) consisting of homotopy sheaves is denoted
hCoh (P).

Every sheaf is a homotopy sheaf, and qCoh (P) is a full subcategory of hCoh (P).
Moreover, the notion of a homotopy sheaf is homotopy invariant in the following
sense: If f : Y −→ Z is a weak equivalence of presheaves, then Y is a homotopy
sheaf if and only if Z is a homotopy sheaf. This is true since AG is a localisation of AF

by 1.1.2, for every pair of non-empty faces F ⊆ G of P, so that the functor AG⊗AF −
is exact.

A chain complex of modules over some ring is called strict perfect if it is bounded
and consists of finitely generated projective modules. It is called perfect if it is quasi-
isomorphic to a strict perfect complex. In fact, a complex C is perfect if and only if
there exists a strict perfect complex B and a quasi-isomorphism B −→ C .

Definition 1.1.6 (Perfect complexes and vector bundles)

1. The homotopy sheaf Y ∈ hCoh (P) is called a perfect complex if for each F ∈
F(P)0 the chain complex Y F is a perfect complex of AF -modules.

2. The full subcategory of hCoh (P) consisting of perfect complexes is denoted by
Perf (P).

3. A homotopy sheaf Y ∈ hCoh (P) is called a homotopy vector bundle if for each
F ∈ F(P)0 the chain complex Y F is a strict perfect complex of AF -modules.

4. The full subcategory of hCoh (P) consisting of homotopy vector bundles is
denoted hVect (P).

The notion of a perfect complex is homotopy invariant in the manner described
above for homotopy sheaves.

In algebraic geometry, a perfect complex can be replaced up to quasi-isomorphism
by a bounded chain complex of vector bundles provided the scheme under consid-
eration has an ample line bundle (as is the case for a projective scheme) or, more
generally, has an ample family of line bundles. In the homotopy world the replace-
ment is possible without reference to such additional structure.

Lemma 1.1.7 For Y ∈ Perf (P) there is a homotopy vector bundle Z ∈ hVect (P)

together with a quasi-isomorphism ζ : Z
�−→ Y .

Proof By definition of perfect complexes there is, for each F ∈ F(P)0, a bounded
chain complex V F of finitely generated AF -modules together with a quasi- isomor-
phism νF : V F −→ Y F .

Let P(d) denote the sub-poset of F(P)0 of faces of dimension at most d. For F
a vertex of P define Z F = V F and ζ F = νF ; this defines a P(0)-diagram Z and a
quasi-isomorphism Z −→ Y |P(0).
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6 T. Hüttemann

Suppose we have constructed a quasi-isomorphism of P(d − 1)-diagrams Z −→
YP(d−1) such that each component of Z is a strict perfect complex over the appropriate
algebra. We show how to extend this data to P(d).

Fix a d-dimensional face F of P, and let

L F Z = colim
G⊆F

dim G<d

AF ⊗AG Z G .

This is a strict perfect complex of AF -modules. We define L F Y by a similar colimit
with Z G replaced by Y G . These come equipped with canonical maps

L F Z −→ L F Y −→ Y F

induced by the maps ζG defined before, and the structure maps of Y . Up to homotopy,
the composition factors over the quasi-isomorphism νF (this follows from [13, 10.4.7]
together with the fact that νF induces an isomorphism of hom-sets hom(L F Z , V F ) ∼=
hom(L F Z ,Y F ) in the derived category of AF ). Let Z F be the mapping cylinder of
L F Z −→ V F ; a homotopy then determines a map ζ F : Z F −→ Y F such that the
two compositions

L F Z −→ Z F −→ Y F and L F Z −→ L F Y −→ Y F

agree. Since Z F � V F the map ζ F is a quasi-isomorphism. For G ⊂ F define a
structure map Z G −→ Z F as the composition Z G −→ L F −→ Z F , considered as
maps of AG -modules.

Performing this construction for each d-dimensional face of P yields a P(d)-dia-
gram Z together with a quasi-isomorphism ζ : Z −→ Y |P(d). At the nth step we
arrive at the assertion of the Lemma. 	


1.2 Algebraic K -theory

The category Perf (P) carries the structure of a “complicial biWaldhausen cate-
gory” in the sense of Thomason and Trobaugh [11, 1.2.11]; as ambient abelian
category we choose the category Pre (P). The weak equivalences are as defined in
1.1.3. The cofibrations are the degreewise split injections Y −→ Z in Perf (P) with
cokernel in Perf (P).

Definition 1.2.1 The algebraic K -theory of P is defined to be the K -theory space of
the complicial biWaldhausen category Perf (P). In symbols,

K (P) = �|wS•Perf (P)|

where the symbol “w” denotes the subcategory of weak equivalences as usual.
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A splitting result for the algebraic K -theory of projective toric schemes 7

1.3 Justification of terminology

Let now R be a commutative ring with unit. The polytope P determines a projective
R-scheme X P , obtained from the affine schemes UF = Spec AF by gluing UF and
UG along their common open subscheme UF∨G . A chain complex F of quasi-coherent
OX P -modules gives rise, by evaluation on open sets UF , to a sheaf

YF : F �→ �(UF , F) (1.3.0.1)

as defined in 1.1.4. The categories of chain complexes of quasi-coherent OX P -mod-
ules and of perfect complexes of quasi-coherent OX P -modules in the sense of [11,
2.2.10] are equivalent, via this construction, to the categories qCoh (P) and Perf (P)∩
qCoh (P), respectively.

Lemma 1.3.1 Every homotopy sheaf Y ∈ hCoh (P) can be functorially replaced by
a chain complex of quasi-coherent OX P -modules F in such a way that �(UF , F)
and Y F are quasi-isomorphic. More precisely, there exists a homotopy sheaf Ȳ ∈
hCoh (P), and there exist maps YF −→ Ȳ ←− Y, cf. (1.3.0.1), which restrict to
quasi-isomorphisms of chain complexes on F-components for every F ∈ F(P)0.
Moreover, this data can be chosen to depend on Y in a functorial manner.

Proof This is the content of [6, 4.4.1]. In short, the homotopy sheaf Ȳ is a fibrant
replacement of Y with respect to a suitable model structure on Pre (P) (the replace-
ment can be chosen functorially in Y ), and F is the limit of the F(P)0-diagram of
quasi-coherent OX P -modules F �→ j F∗ (Ỹ F ). Here j F is the inclusion UF ⊂ X P , j F∗
is push-forward along j, and Ỹ F is the the chain complex of quasi-coherent OUF -mod-
ules associated to the complex of modules Ȳ F . 	


For Y ∈ Perf (P) the chain complex F of Lemma 1.3.1 is a perfect complex
in the sense of [11, 2.2.10]. Conversely, every perfect complex F of quasi-coherent
OX P -modules gives rise to an object YF : F �→ �(UF , F) of Perf (P), by [11, 2.4.3]
applied to the affine schemes UF .

Definition 1.3.2 The algebraic K -theory K (X P ) of X P is the algebraic K -theory
space of the complicial biWaldhausen category of perfect complexes of quasi-coher-
ent OX P -modules, equipped with weak equivalences the quasi-isomorphisms, and
cofibrations the degreewise split monomorphisms with cokernel a perfect complex.

This is the “right” definition by [11, 3.6] since the scheme X P is quasi-compact
(a finite union of affine schemes) and semi-separated (with open affine subschemes
UF as semi-separating cover).

Proposition 1.3.3 The algebraic K -theory space K (X P ) of X P is homotopy equiva-
lent to K (P).

Proof The functor sending a perfect complex F to its associated object YF of Perf (P),

YF : F �→ �(UF , F),
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8 T. Hüttemann

is exact and induces, in view of Lemma 1.3.1, an equivalence of derived categories.
By [11, 1.9.8] this implies that K (X P ) � K (P) as claimed. 	


1.4 Lattice points and Ehrhart polynomials

We need to introduce a classical result on counting lattice points in polytopes. Let
P ⊆ R

n be an n-dimensional polytope with integral vertices. For a non-negative inte-
ger k, let NP (k) denote the number of integral points in the dilation k P of P . Since
0P = {0} ⊂ R

n we have NP (0) = 1.

Theorem 1.4.1 (Ehrhart Theorem) There is a unique polynomial EP (x)with rational
coefficients, called the Ehrhart polynomial of P, such that EP (k) = NP (k) for all
non-negative integers k. The polynomial EP (x) has degree n, constant term 1 and
leading coefficient vol (P) (with volume normalised so that vol ([0, 1]n) = 1). More-
over, if j is a negative integer then (−1)n EP ( j) is the number of integral points in
the interior of the dilation jP.

The reader can find a proof of this remarkable theorem in [7, 12.16] or [1, §18].
From the geometric meaning of the Ehrhart polynomial we deduce:

Corollary 1.4.2 All integral zeros of EP (x) are negative, and the set of integral zeros
of EP (x) is of the form {−n P , −n P + 1, . . . , −1} for some integer n P ∈ [0, n]. The
number n P is minimal among integers k � 0 such that−(k+ 1)P has integral points
in its interior. 	


1.5 The main result

We can now formulate a preliminary version of the main result of this paper.

Theorem 1.5.1 Let P ⊆ R
n be an n-dimensional polytope with integral vertices, and

let n P denote the number of distinct integral roots of its Ehrhart polynomial. Let
R be a ring with unit. Suppose that R is commutative, or else left noetherian. Then
there is a homotopy equivalence of K -theory spaces

K (P) � K (R)n P+1 × K (P, [n P ])

where K (R) denotes the K -theory space of the ring R, defined using perfect complexes
of R-modules, and K (P, [n P ]) denotes the K -theory space of a certain subcategory
of the category Perf (P).

In view of Proposition 1.3.3, this implies a splitting result for the algebraic K -theory
of projective toric R-schemes provided R is a commutative ring with unit.

The proof of Theorem 1.5.1 will be given in Sect. 3.2, and will contain explicit
descriptions of the homotopy equivalence and of K (P, [n P ]).
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A splitting result for the algebraic K -theory of projective toric schemes 9

2 ČECH cohomology

2.1 Double complexes and the spectral sequence argument

We work over an arbitrary unital ring R. Let D∗,∗ be a double complex of R-mod-
ules; that is, we are given R-modules Dp,q for p, q ∈ Z, “horizontal” and “vertical”
differentials

∂h : Dp,q −→ Dp−1,q and ∂v : Dp,q −→ Dp,q−1

with ∂h ◦ ∂h = 0 and ∂v ◦ ∂v = 0, such that

∂h ◦ ∂v = −∂v ◦ ∂h .

Its total complex Tot D∗,∗ is a chain complex with Tot(D∗,∗)n =⊕

p+q=n Dp,q and

differential ∂ = ∂h + ∂v, cf. [13, 1.2.6].
Let D′∗,∗ be another double complex of R-modules. A map of double complexes

f : D∗,∗ −→ D′∗,∗ is a collection of R-linear maps Dp,q −→ D′p,q which commute
with vertical and horizontal differentials.

Proposition 2.1.1 (The spectral sequence argument) Let D∗,∗ be a double complex
of R-modules. Suppose that D∗,∗ is concentrated in the first n + 1 columns so that
Dp,∗ = 0 if p < 0 or p > n, or that D∗,∗ is concentrated in the first n + 1 rows so
that D∗,q = 0 if q < 0 or q > n.

1. There is a convergent spectral sequence

E1
p,q = H h

q (D∗,p) �⇒ Hp+qTot D∗,∗ (2.1.1.1)

with E2
p,q = Hv

p H h
q (D∗,∗). Here H h denotes taking homology modules with

respect to the horizontal differential ∂h, and Hv denotes taking homology mod-
ules with respect to the vertical differential ∂v .

2. Suppose that D′∗,∗ is another double complex of R-modules concentrated in the
first n + 1 columns or rows. Suppose that the map of double complexes f :
D∗,∗ −→ D′∗,∗ induces an isomorphism on horizontal homology modules. Then
f induces a quasi-isomorphism

Tot ( f ) : Tot D∗,∗
�−→ Tot D′∗,∗.

Proof The spectral sequence in (1) arises in the standard way from a filtration of
Tot D∗,∗ by the rows of D∗,∗, see [13, Sect. 5.6] for details of the construction, and
[13, 5.2.5] for convergence. The result of (2) now follows from convergence of the
bounded spectral sequences for D∗,∗ and D′∗,∗, together with the fact that by hypothesis
f induces an isomorphism of spectral sequences on the E1-term. 	
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10 T. Hüttemann

2.2 Čech cohomology

Assume now that we have oriented the faces of P so that we have incidence numbers
[F : G] ∈ {−1, 0, 1} at our disposal.

Definition 2.2.1 1. Given a diagram A : F(P)0 −→ R-Mod we define its Čech

complex to be the bounded chain complex �̌P (A) = �̌(A) given by

�̌(A)s :=
⊕

dim F=n−s

AF

the sum extending over all non-empty faces of P, with differentials given by

AG [F :G]←−−− AF for the pair F ⊆ G of non-empty faces of P .
2. Let Y : F(P)0 −→ Ch (R) be a diagram of chain complexes of R-modules. We

define the Čech complex �̌P (Y ) = �̌(Y ) of Y to be the total complex of the
double chain complex of R-modules

Ds,t (Y ) = Ds,t =
⊕

dim F=n−s

Y F
t (2.2.1.1)

with horizontal differentials given by Y G
t
[F :G]←−−− Y F

t and vertical differential given
by the differential in Y multiplied by the sign (−1)s, cf. [13, 1.2.5].

3. Any presheaf Y ∈ Pre (P) can be considered as a diagram of chain complexes of
R-modules, and we define its Čech complex �̌P (Y ) = �̌(Y ) as in (2).

Remark 2.2.2 1. The homology modules of �̌(A) in 2.2.1 (1) are isomorphic to
higher derived inverse limits of the diagram A; more precisely, limk(A) ∼=
Hn−k�̌(A). See [4, 2.19] for a proof.

2. If A : F(P)0 −→ R-Mod is a constant diagram with value AF = M for all F,
then Hn�̌(A) = M and Hk�̌(A) = 0 for k �= n. This follows easily from (1), or
from the observation that �̌(A) is dual to the chain complex computing cellular
homology of the polytope P with coefficients in M, up to re-indexing.

3. If R is a commutative ring and Y ∈ qCoh (P) is concentrated in chain degree 0,
then Y determines a quasi-coherent sheaf F on the scheme X P . By [4, 2.18] we
have isomorphisms Hn−k�̌(Y ) ∼= Hk(X P , F), the kth cohomology module of
X P with coefficients in the sheaf F .

4. For the diagram Y in 2.2.1 (2) D∗,∗ is concentrated in the first n + 1 columns
so that Dp,∗ = 0 if p < 0 or p > n. We have D∗,t = �̌(Yt ) which is a chain
complex computing lim n−∗Yt . The double chain complex D∗,∗(Y ) thus gives rise
to a convergent (homological) spectral sequence

E1
s,t (Y ) = lim←

n−s(Yt ) �⇒ Hs+t �̌(Y ), (2.2.2.1)

cf. Proposition 2.1.1 (1).
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A splitting result for the algebraic K -theory of projective toric schemes 11

Remark 2.2.3 There is another standard spectral sequence which we will have occa-
sion to use. Let Y ∈ Pre (P), or more generally, let Y be a diagram F(P)0 −→ Ch (R).
Denote by D∗,∗ the double complex of R-modules associated to Y (2.2.1.1). Filtration
by columns yields a convergent E1-spectral sequence

E1
p,q(Y ) =

⊕

dim F=n−p

Hq(Y
F ) �⇒ Hp+q �̌(Y ),

cf. [13, 5.6.1]; by Remark 2.2.2 (1), E2
p,q(Y ) = lim←

n−p Hq(Y ).

Proposition 2.2.4 Formation of Čech complexes is homotopy invariant. More pre-
cisely, let f : Y −→ Z be a map of F(P)0-diagrams of R-module chain complexes.
Suppose that for each F ∈ F(P)0 the F-component of f is a quasi- isomorphism.
Then f induces a quasi-isomorphism �̌(Y ) −→ �̌(Z).

Proof Consider the spectral sequence 2.2.3 for Y and Z . By hypothesis, the map f
induces an isomorphism of E1-spectral sequences E1∗,∗(Y ) ∼= E1∗,∗(Z), hence induces
an isomorphism of their abutments. But this is just a reformulation of the claim. 	


2.3 Line bundles determined by P

The polytope P determines a family of objects of qCoh (P) as follows. For k ∈ Z we
define

O(k) : F �→ O(k)F = R[(k F + TF ) ∩ Z
n],

considered as a diagram of chain complexes concentrated in degree 0. Here TF is the
tangent cone of P at F, and k F + TF = {k f + v | f ∈ F, v ∈ TF } is the Minkow-

ski sum of the dilation kF of F and the cone TF . The symbol R[S] means the free
R-module with basis S.

It is not difficult to see that O(k) is an object of qCoh (P); the AF -module structure
of O(k)F is induced by the translation action of the monoid TF ∩ Z

n on the set of
integral points in k F + TF . In fact, O(k)F is a free AF -module of rank 1.

Proposition 2.3.1 For k ∈ Z and j ∈ N there is an isomorphism

Hj �̌(O(k)) ∼=
⎧

⎨

⎩

R[k P ∩ Z
n] if j = n and k � 0 ,

R[(int k P) ∩ Z
n] if j = 0 and k < 0 ,

0 otherwise.

Proof For R = C this is the standard calculation of cohomology of the line bundles
O(k) on the toric variety X P . Details are contained, for example, in [5, 2.5.3]; the
calculation given there remains valid for arbitrary rings with unit. 	


It follows from Theorem 1.4.1 that the number n P defined in Corollary 1.4.2 can
be characterised as being minimal among those k � 0 for which O(−k − 1) is not
acyclic (i.e., �̌O(−k − 1) is not acyclic).
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12 T. Hüttemann

2.4 Twisting sheaves

Definition 2.4.1 Let Y ∈ Pre (P) and k ∈ Z. We define the kth twist of Y, denoted
Y (k), as the objectwise tensor product of O(k) and Y . Explicitly,

Y (k) : F �→ Y (k)F = O(k)F ⊗AF Y F

with structure maps induced by those of O(k) and Y .

By definition Y (k)F is isomorphic to the tensor product of Y F with a free AF -mod-
ule of rank 1, hence Y (k)F is non-canonically isomorphic to Y F . The following prop-
erties are easily verified:

Lemma 2.4.2 1. For Y ∈ Pre (P) and k, 	 ∈ Z there is an isomorphism Y (k)(	) ∼=
Y (k + 	). Moreover Y (0) ∼= Y, this last isomorphism being natural in Y .

2. If Y ∈ qCoh (P) then Y (k) ∈ qCoh (P) for every k ∈ Z.
3. If Y ∈ hCoh (P) then Y (k) ∈ hCoh (P) for every k ∈ Z.
4. If Y ∈ Perf (P) then Y (k) ∈ Perf (P) for every k ∈ Z. 	


2.5 Quasi-coherent functors

Definition 2.5.1 A quasi-coherent functor Y is an object Y ∈ qCoh (P) which is
concentrated in chain degree 0.

Lemma 2.5.2 Let Y be a quasi-coherent functor, let F ∈ F(P)0, and let sF ∈ Y F .
Then there exists k ∈ Z and a map f : O(k) −→ Y such that sF is in the image of
the F-component of f .

Proof The proof is a translation of the corresponding algebro-geometric fact
[3, II.5.14 (b)] into combinatorial language. To begin with, we may assume that each
face of P has a lattice point in its relative interior. Indeed, we can replace P by its
dilate (n+1)P; note that this does not change the poset F(P)0, nor does it change the
cones, monoids and algebras constructed from P . Twisting translates easily: the sheaf
O(1) computed with respect to (n + 1)P is precisely the sheaf O(n + 1) computed
with respect to P .

All algebras and modules constructed from P are R-submodules of the free R-mod-
ule R[Zn]. An element vF ∈ Z

n gives rise to an element xF = 1·vF ∈ R[Zn]. We think
of the x-symbols as multiplicative, that is, we write xF/xG for the module element
associated to the vector vF − vG .

Now choose, for each F ∈ F(P)0, a lattice point vF in the relative interior of F .
It is not difficult to see that O(N )G = R[(N G + TG) ∩ Z

n], considered as a free
R-module, has basis given by NvG + SG ⊆ Z

n so that

O(N )G = x N
G AG , N ∈ Z.

Moreover, if p ∈ O(N )G then x M
F p ∈ O(M + N )G for all M � 0. In fact, x M

F p is
the image of x M

F ⊗ p under the isomorphism O(M)⊗O(N ) ∼= O(M + N ) restricted
to G-components.
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A splitting result for the algebraic K -theory of projective toric schemes 13

As notational convention, given an element x ∈ Z G for a quasi-coherent functor
Z we call the image x |H of x under the structure map Z G −→ Z H the restriction of
x to H .

Let us now start with the actual proof. By definition of tangent cones vF−vG ∈ TG

for each G ∈ F(P)0 so that xF/xG ∈ AG . One can show the following:

2.5.2.1 For each G ∈ F(P)0 we have

TF∨G = TG + R(vF − vG) and SF∨G = SG + Z(vF − vG)

where F ∨G is the join of F and G, that is, the smallest face of P containing F ∪G.
Consequently, the algebra AF∨G is obtained from AG by localising by the single
element xF/xG in the centre Z(AG) of AG.

This implies that for a large enough positive integer N the element sG =
(xF/xG)

N · sF |F∨G is in Y F∨G ∼= AF∨G ⊗AG Y G , where sF is the element
given in the formulation of the Lemma. We may pick an integer N which works
for all G ∈ F(P)0 simultaneously. Then for all G, x N

G ⊗ sG is an element of
Y (N )G = (O(N )⊗ Y )G which restricts to x N

F ⊗ sF |F∨G ∈ (O(N )⊗ Y )F∨G (note
here that (x N

F ⊗ sF )|F∨G = x N
F ⊗ (sF |F∨G)).

Now let G ⊆ H ∈ F(P)0 be an arbitrary pair of non-empty faces of P . We do
not know whether the elements x N

G ⊗ sG |H and x N
H ⊗ sH agree, but we know that

after restricting further to F ∨ H both agree with x N
F ⊗ sF |F∨H . Consequently, using

2.5.2.1 again, for all large integers M we have equality
(

xF

xH

)M

· x N
G ⊗ sG |H =

(

xF

xH

)M

· x N
H ⊗ sH ∈ Y (N )H.

Now multiplication with x M
H yields an isomorphism Y (N )H ∼= Y (M + N )H so that

the above equality becomes

(x M
F x N

G )⊗ sG |H = (x M
F x N

H )⊗ sH ∈ Y (M + N )H,

with both elements restricting to x M+N
F ⊗ sF |F∨H on F ∨ H .

To sum up, we have shown that the family of elements (x M
F x N

G )⊗ sG,G ∈ F(P)0,
determines an element e in lim← Y (M + N ), and hence an R-module homomorphism

R −→ lim← Y (M + N ) which sends 1 ∈ R to e. But then, by forcing equivariance,

there is a map O(0) −→ Y (M + N ) which sends 1 ∈ AG to (x M
F x N

G )⊗ sG . Twisting
by −(M + N ) yields a map O(−M − N ) −→ Y such that sG is in the image of the
G-component. This applies in particular to G = F which is the case of the Lemma.

	

Corollary 2.5.3 Let Y be a quasi-coherent functor such that for all F ∈ F(P)0 the
AF -module Y F is finitely generated. Then there are finitely many numbers ni ∈ Z and
a map

⊕

i

O(ni ) −→ Y

which is surjective on each component.
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14 T. Hüttemann

Proof For F ∈ F(P)0 choose generators s F
1 , . . . , s F

	(F). By Lemma 2.5.2 there are

maps f F
i : O(nF

i ) −→ Y such that s F
i is in the image of f F

i . The required map is
given by the sum

⊕

F∈F(P)0

	(F)
⊕

i=1

O(nF
i ) −→ Y.

	

Lemma 2.5.4 Let R be a left noetherian ring. Let Y be a quasi-coherent functor
such that for all F ∈ F(P)0 the AF -module Y F is finitely generated. Then Hk�̌(Y )
is trivial for k < 0 and k > n, and is a finitely generated R-module for all k ∈ Z.

Proof This follows the pattern of [3, III.5.2]. Triviality of Hk�̌(Y ) for k < 0 and
k > n is immediate as �̌(Y ) is concentrated in degrees 0 to n, by construction.

The Lemma is true for a finite sum of quasi-coherent functors of the form O(k),
by the calculation in Proposition 2.3.1. By Corollary 2.5.3 we can find a surjection
Z −→ Y with Z a finite sum of O(k)s. Let K denote the kernel; this is a quasi-
coherent functor as well. By construction we obtain a short exact sequence of chain
complexes

0 −→ �̌K −→ �̌Z −→ �̌Y −→ 0.

Now use increasing induction on k on the corresponding exact sequence snip-
pet

Hk+1�̌Z −→ Hk+1�̌Y −→ Hk�̌K ,

starting with k = −1; by choice of Z the module on the left is finitely generated, and
by what has been established by induction the module on the right is finitely gener-
ated as well. Since R is left noetherian it follows that the middle module is finitely
generated. 	

Proposition 2.5.5 Suppose R is left noetherian. Let Y ∈ hCoh (P) be such that
Y F

k is finitely generated as an AF -module for all F ∈ F(P)0 and all k ∈ Z. Then

�̌(Y ) is a (possibly unbounded) chain complex with finitely generated homology mod-
ules.

Proof Since Y is a homotopy sheaf Hq(Y ) : F �→ Hq(Y F ) is a quasi-coherent functor
(this uses Lemma 1.1.2 and the fact that taking homology is compatible with localisa-
tion). Since R is left noetherian, and since all the modules Y F

k are finitely generated,
the modules Hq(Y F ) are finitely generated as well. It follows from Lemma 2.5.4,
applied to Hq(Y ), and from Remark 2.2.2 (1) that all the entries of the E2-term
of the spectral sequence 2.2.3 are finitely generated R-modules. Since this spectral
sequence is concentrated in columns 0 to n, its abutment Hp+q �̌Y consists of finitely
generated R-modules as well (making use the fact that R is left noetherian once
again). 	
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A splitting result for the algebraic K -theory of projective toric schemes 15

2.6 Finiteness of the Čech complex

We are now going to prove the following fundamental finiteness result:

Theorem 2.6.1 Let R be a unital ring. Suppose that R is commutative, or else left
noetherian. Let Y ∈ Perf (P). Then �̌(Y ) is a perfect complex of R-modules.

Proof Suppose first that R is left noetherian. Since Y is a perfect complex, there
exists a homotopy vector bundle V ∈ hVect (P) together with a quasi-isomorphism
V −→ Y by Lemma 1.1.7. Then the induced map �̌V −→ �̌Y is a quasi-isomor-
phism by Proposition 2.2.4. Since V is bounded so is �̌V . Since V F consists of
projective AF -modules and since AF is free as an R-module, �̌V consists of projec-
tive R-modules, and has finitely generated homology modules by Proposition 2.5.5.
But this means that �̌V is chain homotopy equivalent to a strict perfect complex of
R-modules [9, 1.7.13].

Now suppose that R is commutative, but not noetherian. Then Y can be replaced,
up to quasi-isomorphism, by a bounded complex V in hVect (P) ∩ qCoh (P); this is
true since the toric scheme X P is projective over Spec R and thus has an ample line
bundle, so we can appeal to Lemma 1.3.1 and [11, 2.3.1 (d)]. Then �̌(Y ) � �̌(V ),
and it is enough to prove the Theorem for V only.

The complex V descends to a noetherian subring R0. More precisely, write
qCoh (P)0 for the category qCoh (P) defined over a subring R0 instead of R, and sim-
ilarly for hVect (P)0. Then by noetherian approximation [11, Appendix C], there is
a noetherian subring R0 of R, and a bounded complex V0 ∈ hVect (P)0∩qCoh (P)0
such that V = R⊗R0 V0. By the first part of the proof there is a strict perfect complex B0

of R0-modules which is chain homotopy equivalent to �̌V0. But then �̌V ∼= R⊗R0 �̌V0
is homotopy equivalent to R ⊗R0 B0, and the latter is strict perfect. 	


2.7 Canonical sheaves and suspension of chain complexes

Definition 2.7.1 1. For k ∈ Z and C ∈ Ch (R) we define O(k)⊗ C to be the sheaf
given by

(O(k)⊗ C)F = O(k)F ⊗R C for F ∈ F(P)0

with structure maps induced by those of O(k). We call O(k)⊗C the kth canonical
sheaf associated to C.

2. Let C be an R-module chain complex. We denote by con (C) the constant F(P)0-
diagram with value C and identity structure maps.

3. The nth suspension C[n] of the chain complex C ∈ Ch (R) is defined by C[n]k =
Ck−n, and multiplying the differentials with the sign (−1)n .

Lemma 2.7.2 Let C ∈ Ch (R). If k < 0 is an integer such that EP (k) = 0 (i.e., such
that k P has no lattice points in its interior), then �̌ (O(k)⊗ C) is acyclic.

Proof Let D∗,∗ = D∗,∗ (O(k)⊗ C) be the double chain complex associated to O(k)⊗
C, cf. (2.2.1.1). The AF -moduleO(k)F ∼= AF is a free R-module for each F ∈ F(P)0,
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16 T. Hüttemann

and the Čech complex �̌O(k) has the property that the image of each chain module
under the differential is a free R-module (since all maps are given by inclusion of
bases). Hence by the Künneth formula [13, 3.6.1] the homology of the horizontal
chain complex D∗,p fits into a short exact sequence

Hk

(

�̌O(k)
)

⊗R C p −→ Hk

(

�̌O(k)⊗R C p

)

−→ TorR
1

(

Hn−1�̌O(k), C p

)

.

By hypothesis EP (k) = 0 so that �̌O(k) is acyclic by Proposition 2.3.1. So first and
third term of the short exact sequence are trivial, hence so is the middle term.

But this means that the spectral sequence (2.2.2.1) associated to D∗,∗ has trivial
E1-term, hence its abutment H∗�̌ (O(k)⊗ C) is trivial too. This proves the Lemma.

	

Lemma 2.7.3 For every chain complex C ∈ Ch (R) we have a canonical quasi-iso-

morphism C[n] �−→ �̌con (C).

Proof Let A∗,∗ denote the complex C considered as a double chain complex concen-
trated in column n. That is, we’re looking at the double chain complex with An,k =
Ck, A j,k = 0 for j �= n, and vertical differential the differential of C multiplied with
the sign (−1)n . Then the total complex of A∗,∗ is precisely C[n].

The double chain complex A∗,∗ maps into the double chain complex D∗,∗ =
D∗,∗ (con (C)) associated to con (C) by the diagonal map 
 given by

Ct −→
⊕

dim F=n

Ct = Dn,t , t ∈ Z.

This defines indeed a map of double chain complexes by the properties of incidence
numbers; more precisely, the horizontal chain complex D∗,t is the tensor product of
Ct with the dual of the chain complex computing the integral cellular homology of P,
and the map of horizontal chain complexes A∗,t −→ D∗,t is the tensor product of Ct

with the dual of the augmentation map. In particular, the map is a quasi-isomorphism
with respect to “horizontal” homology. By the spectral sequence argument 2.1.1 (2),

 induces a quasi-isomorphism

C[n] = Tot A∗,∗
Tot
−−−→ Tot D∗,∗ = �̌ (con (C)) .

	

Lemma 2.7.4 For every chain complex C ∈ Ch (R) we have a canonical map
con (C) −→ O(0)⊗ C, induced by the inclusions of F-components

con (C)F = C ∼= R[{0}] ⊗R C −→ R[Zn ∩ CF ] ⊗R C = (O(0)⊗ C)F ,

which in turn induces a quasi-isomorphism �̌con (C)
�→ �̌ (O(0)⊗ C).
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A splitting result for the algebraic K -theory of projective toric schemes 17

Proof First recall that O(0)F = AF = R[SF ] for each F ∈ F(P)0; this means that
we can consider O(0)F as a Z

n-graded R-module with homogeneous components 0
or R. The double chain complex D∗,∗ (O(0)⊗ C) associated to O(0) ⊗ C is a dou-
ble chain complex of Z

n-graded R-modules with horizontal and vertical differentials
respecting the grading. We can thus concentrate on homogeneous components one at
a time. As explained in [5, 2.5.3], the component of degree 0 ∈ Z

n of the horizon-
tal chain complex D∗,t (O(0)⊗ C) is the tensor product of Ct with the dual of the
chain complex calculating the integral cellular homology of P so that its horizontal
homology is concentrated in column n and has value Ct . For all homogeneous degrees
different from 0 the chain complex is acyclic (loc. cit.).

On the other hand, we have a canonical isomorphism of diagrams

con (C) ∼= con (R)⊗ C

where con (R) is the constant diagram with value R, considered as a diagram of
chain complexes concentrated in chain degree 0. We can think of R as a Z

n-graded
module concentrated in degree 0 ∈ Z

n . Thus the associated double chain complex
D∗,∗ (con (R)⊗ C) consists of Z

n-graded modules with differentials preserving the
grading. In homogeneous degree 0, the horizontal chain complexes D∗,t (con (R)⊗ C)
and D∗,t (O(0)⊗ C) agree, in non-zero degrees the horizontal chain complex
D∗,t (con (R)⊗ C) is the zero-complex.

We have an obvious map of double complexes

ω : D∗,∗ (con (R)⊗ C) −→ D∗,∗ (O(0)⊗ C) ,

the inclusion of degree 0 components, which by the previous two paragraphs induces
an isomorphism on horizontal homology modules. By the spectral sequence argu-
ment 2.1.1 (2) the composite

�̌con (C) ∼= �̌ (con (R)⊗ C) = Tot D∗,∗ (con (R)⊗ C)
�−→
ω

Tot D∗,∗ (O(0)⊗ C) = �̌ (O(0)⊗ C)

is thus a quasi-isomorphism. 	


2.8 A model for suspension

For any presheaf Y ∈ Pre (P) we let Y [n] denote the nth suspension of Y, that is, the
diagram given by F �→ Y [n]F = Y F [n], cf. Definition 2.7.1 (3), with structure maps
induced by those of Y .

Definition 2.8.1 Let F be a face of P (possibly empty), and let Y ∈ Pre (P). We
define a new presheaf F∗Y by the rule

F∗Y : G �→ Y G∨F
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18 T. Hüttemann

where G ∨ F is the join of G and F, that is, the smallest face of P containing G ∪ F,
and (F∗Y )G = Y F∨G is considered as an AG-module chain complex by restriction of
scalars.

Remark 2.8.2 If R is a commutative ring and Y ∈ qCoh (P) is a sheaf, let F denote
the chain complex of quasi-coherent sheaves on X P determined by Y . Then F∗Y
corresponds to j∗(F |UF ) = j∗

(

˜Y F
)

where j : UF −→ X P is the inclusion.

The construction of F∗Y is natural in Y : For F ⊆ F ′ a pair of faces of P, the struc-
ture maps of Y induce a map of presheaves F∗Y −→ F ′∗Y . Moreover, every entry of
F∗(Y ) is an AF -module, by restriction of scalars (A∅ = R here) so that �̌F∗Y is a
chain complex of AF -modules. Hence the following definition is meaningful:

Definition 2.8.3 For Y ∈ Pre (P) we define a new presheaf σY by

F �→ (σY )F = �̌(F∗Y ).

Lemma 2.8.4 Let Y ∈ Pre (P). There is a natural map of presheaves

α : Y [n] −→ σY

which is a quasi-isomorphism on each component. In particular, if Y is a homotopy
sheaf then so is σY, and if Y is a perfect complex so is σY .

Proof Let γY denote the presheaf (γY )F = �̌con (Y F ). For any face F ∈ F(P)0
the structure maps of Y induce a map of diagrams con (Y F ) −→ F∗Y and thus a
map �̌con (Y F ) −→ �̌F∗Y . This construction is natural in F so we obtain maps of
presheaves

Y [n] −→ γY −→ σY,

the first one consisting of the canonical quasi-isomorphisms of Lemma 2.7.3. The
composition of these two maps is the α of the Lemma, and we are left to prove that
the map

(γY )F = �̌con (Y F ) −→ �̌F∗Y = (σY )F

is a quasi-isomorphism for each F ∈ F(P)0;we will use the (by now familiar) spectral
sequence comparison argument.

Write st F = {G ∈ F(P)0 |G ⊇ F}, a sub-poset of F(P)0. Given a diagram
A : F(P)0 −→ R-Mod we can consider its restriction A|st F to the poset st F . Con-
versely, a diagram B : st F −→ R-Mod can be extended to a diagram

F∗B : F(P)0 −→ R-Mod , G �→ BG∨F .

In fact, extension and restriction form an adjoint pair, with restriction being the left
adjoint. Both functors are exact.

123



A splitting result for the algebraic K -theory of projective toric schemes 19

Now let B : st F −→ R-Mod be given, and let B −→ I • be an injective resolution
of B. Then F∗B −→ F∗ I • is an injective resolution of F∗B. Consequently, we have

lim←
q B = Hq lim

st F
I •

= Hq hom
(

(con R)|st F , I •
)

= Hq hom(con R, F∗ I •)
= Hq lim F∗ I •

= lim←
q F∗B.

On the other hand, st F has minimal element F so that lim B = B F , and lim is exact;
that is,

lim←
q B =

{

B F if q = 0

0 else.

These calculations apply in particular to B = A|st F for A an F(P)0-diagram of
R-modules. Since (F∗(A|st F ))

F = AF this means that

lim←
q F∗(A|st F ) =

{

AF if q = 0

0 else.

The calculations also imply that the obvious map con (B F )|st F −→ B, for arbitrary
B as before and its adjoint con B F −→ F∗B induce isomorphisms

lim←
q
(

con B F
)

|st F
∼=−→ lim←

q B and lim←
qcon B F ∼=−→ lim←

q F∗B

as both are the identity on F-components.
Let us return to the map

(γY )F = �̌con (Y F ) −→ �̌F∗Y = (σY )F .

It is induced by a map of double chain complexes

D∗,∗(con Y F ) −→ D∗,∗(F∗Y )

which, when restricted to t th horizontal chain complexes, is a map of chain com-
plexes computing the higher derived limits lim←

n−∗ of the diagrams A = con Y F
t and

F∗ (Yt |st F ) , respectively, by Remark 2.2.2 (1); by the calculation above, applied to A
and B = Yt |st F , this yields an isomorphism on homology modules for all values of
∗. In other words, the E1-terms of the two spectral sequences are isomorphic, hence
their abutments are as well, so the map in question is a quasi-isomorphism as claimed.
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20 T. Hüttemann

2.9 Relating O(0)⊗ �̌ to nth suspension

We proceed to construct a map between the functors O(0) ⊗ �̌ and nth suspension
which will be used later in K -theoretical computations.

2.9.1 Let Y ∈ Pre (P), and fix F ∈ F(P)0. The structure maps of Y induce a canonical
map Y F −→ lim F∗Y and thus, by forcing equivariance, a map

ρF : O(0)⊗ Y F −→ F∗Y. (2.9.1.1)

Lemma 2.9.2 For Y ∈ hCoh (P) the map �̌(ρF ) : �̌ (O(0)⊗ Y F
) −→ �̌F∗Y is a

quasi-isomorphism.

Proof The map �̌(ρF ) fits into a commutative square diagram

�̌
(

O(0)⊗ Y F
)

�̌(ρF )−−−→�̌F∗Y

�̌con (Y F )

�

� Y F [n]

�

Left, bottom and right map are quasi-isomorphisms by Lemmas 2.7.4, 2.7.3 and 2.8.4,
respectively, hence the top map is a quasi-isomorphism as well. 	

2.9.3 Let Y ∈ Pre (P). The structure maps of Y induce, for each F ∈ F(P)0, a map
of presheaves Y −→ F∗Y and hence a map of chain complexes �̌Y −→ �̌F∗Y =
(σY )F . Since this is natural in F we obtain a map

�̌Y −→ lim
F∈F(P)0

�̌F∗Y = lim
F∈F(P)0

(σY )F

which, by forcing equivariance, defines a map

β : O(0)⊗ �̌Y −→ σY. (2.9.3.1)

Lemma 2.9.4 Let Y ∈ hCoh (P). Then �̌(β) : �̌
(

O(0)⊗ �̌Y
)

−→ �̌(σY ) is a

quasi-isomorphism of chain complexes of R-modules.

Before we delve into the proof, we fix conventions regarding triple chain com-
plexes. Suppose we have a threefold R-module chain complex A∗,∗,∗: a Z

3-indexed
collection of R-modules Ax,y,z together with pairwise commuting differentials

∂̄x : Ax,y,z −→ Ax−1,y,z

∂̄y : Ax,y,z −→ Ax,y−1,z

∂̄z : Ax,y,z −→ Ax,y,z−1
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which square to trivial maps. That is, we are looking at an object of the category
Ch (Ch (Ch (R))). Then we can define new differentials by

∂x = ∂̄x , ∂y = (−1)x ∂̄y , ∂z = (−1)x+y ∂̄z;

which are easily checked to anti-commute: ∂i∂ j = (δi, j − 1)∂ j∂i (where δi, j is the
usual Kronecker delta symbol). We say that the graded module A∗,∗,∗ together with
the maps ∂i , i = x, y, z is a triple chain complex (in analogy to the established usage of
the term double complex in the literature). We define the total complex Totx,y,z(A∗,∗,∗)
by setting

Totx,y,z(A∗,∗,∗)n =
⊕

x+y+z=n

Ax,y,z

equipped with the differential defined by ∂ = ∂x +∂y+∂z . This is an R-module chain
complex, the relation ∂2 = 0 is easily verified.

The relevant observation here is that one can do the totalisation in two steps. Define
Toty,z(A∗,∗,∗) by

Toty,z(A∗,∗,∗)p,q =
⊕

y+z=q

Ap,y,z

this is a double chain complex when equipped with “horizontal” differential ∂h = ∂x

and “vertical” differential ∂v = ∂y + ∂z . It is a matter of tracing definitions to see that
we have an equality of chain complexes

Tot
(

Toty,z(A∗,∗,∗)
) = Totx,y,z(A∗,∗,∗).

Similarly, we can define a double chain complex Totx,z(A∗,∗,∗) by

Totx,z(A∗,∗,∗)p,q =
⊕

x+z=p

Ax,q,z

equipped with “horizontal” differential ∂h = ∂x + ∂z and “vertical” differential ∂v =
∂y . We then have an equality of chain complexes

Tot
(

Totx,z(A∗,∗,∗)
) = Totx,y,z(A∗,∗,∗).

Proof of Lemma 2.9.4 The map �̌(β) is a map of R-module chain complexes which
can, in fact, be described by a map of triple chain complexes. In more detail, define

Ax,y,z =
⊕

dim G=n−x

⊕

dim F=n−y

O(0)G ⊗R Y F
z ,
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equipped with differentials ∂̄z given by the differential in Y F , and differentials ∂̄x and
∂̄y determined by incidence numbers [G1 : G2] and [F1 : F2], respectively. Similarly,
define

Bx,y,z =
⊕

dim G=n−x

⊕

dim F=n−y

Y G∨F
z ,

equipped with differentials as above. Then both Ax,y,z and Bx,y,z are threefold chain
complexes and thus determine, by modification of the differentials, triple chain com-
plexes as explained above. The structure maps of Y induce a map of triple chain
complexes γ : Ax,y,z −→ Bx,y,z . A tedious but straightforward tracing of signs and
direct sums involved shows:

(i) D∗,∗
(

O(0)⊗ �̌Y
)

= Toty,z(A∗,∗,∗),
(ii) D∗,∗ (σY ) = Toty,z(B∗,∗,∗),

(iii) D∗,∗(β) = Toty,z(γ ).

Since Tot ◦ Toty,z = Totx,y,z this implies that

Totx,y,z(γ ) = �̌(β). (2.9.4.1)

Let us now consider the double chain complex map Totx,z(γ ). We claim that
Totx,z(γ ) induces a quasi-isomorphism on horizontal chain complexes. By the usual
spectral sequence argument 2.1.1, this implies that Totx,y,z(γ ) = Tot (Totx,z(γ ))

is a quasi-isomorphism of R-module chain complexes, hence so is �̌(β) in view
of (2.9.4.1).

Fix an index q ∈ Z. The qth row of the source of Totx,z(γ ) has pth entry
⊕

dim F=n−q

⊕

x+z=p

⊕

dim G=n−x

O(0)G ⊗R Y F
z

and is thus of the form
⊕

dim F=n−q

�̌
(

O(0)⊗ Y F
)

up to the (constant!) sign (−1)q in the differential of Y F . In particular this is non-trivial
only for 0 � q � n.

The qth row of the target of Totx,z(γ ) has pth entry
⊕

dim F=n−q

⊕

x+z=p

⊕

dim G=n−x

Y G∨F
z =

⊕

dim F=n−q

⊕

x+z=p

⊕

dim G=n−x

(F∗Y )Gz

and is thus of the form
⊕

dim F=n−q

�̌F∗Y

up to the (constant!) sign (−1)q in the differential of F∗Y . In particular this is non-
trivial only for 0 � q � n.
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Thus in row q the map Totx,z(γ ) is, up to sign (−1)q in the differentials of source
and target, the direct sum of the maps ρF defined in (2.9.1.1) with dim F = n − q.
By Lemma 2.9.2 this means that Totx,z(γ ) is a quasi-isomorphism of horizontal chain
complexes as claimed. 	


3 Splitting the K -theory

Let R be a ring with unit. For this entire section we assume that R is commutative, or
else left noetherian.

3.1 Reduced K -theory

Recall that an R-module chain complex C is called perfect if it is quasi-isomorphic to
a strict perfect complex, that is, a bounded complex B of finitely generated projective
R-modules; if this is the case, there will always be a quasi-isomorphism B −→ C .
Write Perf (R) for the category of perfect chain complexes of R-modules. We write
K (R) for the K -theory space of the complicial biWaldhausen category Perf (R)
equipped with quasi-isomorphisms as weak equivalences, and the degreewise split
monomorphisms with cokernel in Perf (R) as cofibrations.

For an n-dimensional polytope P ⊂ R
n we have defined the category Perf (P) of

perfect complexes in 1.1.6; recall that an object of Perf (P) is a diagram indexed by
the face lattice of P with values in perfect chain complexes of modules over different
rings, subject to a gluing condition. The K -theory space of Perf (P) is denoted by
K (P), cf. Sect. 1.2.

Let Perf (P)[0] denote the full subcategory of those Y ∈ Perf (P) such that �̌(Y )
is acyclic, cf. Definition 2.2.1 (3). This is a complicial biWaldhausen category with
the usual conventions. Its associated K -theory space is called the reduced K -theory
of P and denoted K̃ (P).

We call a map f : Y −→ Z in Perf (P) an h[0]-equivalence if �̌( f ) is a quasi-iso-
morphism; with respect to these maps as weak equivalences, Perf (P) is (yet another)
complicial biWaldhausen category. Note that every quasi-isomorphism in Perf (P)
is an h[0]-equivalence as the functor �̌ preserves quasi-isomorphisms by Proposi-
tion 2.2.4.

We will need the functor

ψ0 : Perf (R) −→ Perf (P) ,C �→ O(0)⊗ C.

It is easy to see that ψ0 takes values in perfect complexes. Indeed, for C ∈ Perf (C)
there is a strict perfect complex of R-modules D which is quasi-isomorphic to C .
Since AF is a free R-module, for each F ∈ F(P)0, taking tensor product with AF

over R is exact. Consequently, ψ0(Y )F is quasi-isomorphic to AF ⊗R D which is a
strict perfect complex of AF -modules.

Proposition 3.1.1 There is a fibration sequence of K -theory spaces

K̃ (P) −→ K (P)
�̌−→ K (R)
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which has a section up to homotopy and up to sign induced by the functor ψ0. Hence
there is a splitting up to homotopy

K̃ (P)× K (R) � K (P).

Proof By the Fibration Theorem [12, 1.6.4] the sequences of exact functors of
biWaldhausen categories

(Perf (P)[0], w) ⊆−→ (Perf (P), w) −→ (Perf (P), h[0]) (3.1.1.1)

where w stands for quasi-isomorphisms as weak equivalences, induces a fibration
sequence of K -theory spaces.

We have exact functors

Perf (R)
ψ0−→ (Perf (P), h[0]) and (Perf (P), h[0])

�̌−→ Perf (R),

the latter being well defined by Theorem 2.6.1. By Lemmas 2.7.3 and 2.7.4 we have
a natural weak equivalence of functors from the nth suspension C �→ C[n] to the
composition �̌ ◦ ψ0. Since suspension induces a self homotopy equivalence on the
K -theory space K (R), the functor �̌ is surjective on homotopy groups.

By Lemmas 2.8.4 and 2.9.4 there is a chain of natural transformation of functors
represented by

Y [n] −→ σY � O(0)⊗ �̌(Y ) = ψ0 ◦ �̌(Y )

which is in fact a chain of h[0]-equivalences of functors. Thus �̌ is injective on
homotopy groups.

In total, we have shown that the functor �̌ induces a homotopy equivalence from
the K -theory of the base of the fibration sequence (3.1.1.1) to K (R). The resulting
fibration sequence

K̃ (P) −→ K (P)
�̌−→ K (R)

has section up to homotopy and up to sign induced by ψ0 (as the composition �̌ ◦ψ0
is weakly equivalent to nth suspension, just as argued above) which yields the desired
splitting. 	


3.2 Further splitting

If �̌ (O(−1)) happens to be acyclic, we can split off a further copy of K (R) from
the reduced K -theory K̃ (P); acyclicity of �̌O(− j) for j > 1 allows to iterate the
procedure. The argument is virtually the same as in Sect. 3.1, but the functors involve
additional twisting. We record the details.
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For a given integer k � 0, let Perf (P)[k] denote the full subcategory of those
Y ∈ Perf (P) such that �̌Y ( j) is acyclic for 0 � j � k. This is a complicial biWald-

hausen category with the usual conventions. Its associated K -theory space is denoted
K (P, [k]); in particular, K (P, [0]) = K̃ (P).

We call a map f : Y −→ Z in Perf (P) an h[k]-equivalence if �̌ f ( j) is a quasi-iso-
morphism for 0 � j � k; with respect to these maps as weak equivalences, Perf (P)
is (yet another) complicial biWaldhausen category. Note that every quasi-isomor-
phism in Perf (P) is an h[k]-equivalence as both twisting and the functor �̌ preserve
quasi-isomorphisms.

We will need the functors

ψk : Perf (R) −→ Perf (P),C �→ O(k)⊗ C

(k ∈ Z here). One can show that this functor takes indeed values in perfect complexes;
the argument is as for ψ0. As a matter of notation, let us also introduce the kth twist
functor

θk : Perf (P) −→ Perf (P), Y �→ Y (k).

Recall that the polytope P determines a polynomial EP (x) with rational coeffi-
cients such that |EP (− j)| is the number of integral points in the interior of − j P for
integers j � 1, cf. Theorem 1.4.1. It follows that if EP (− j) = 0 for some j > 1,
then EP (−	) = 0 for 0 < 	 � j . Let n P be the number of distinct integral roots of
EP (x); then n P ∈ [0, n], and if n P �= 0 then n P is maximal among the negatives of
integer roots of EP (x).

Proposition 3.2.1 For 1 � 	 � n P there is a fibration sequence of K -theory spaces

K (P, [	]) −→ K (P, [	− 1]) �̌◦θ	−−→ K (R)

which has a section up to homotopy and up to sign induced by the functor ψ−	.
Consequently, we have a homotopy equivalence

K (P, [	])× K (R) � K (P, [	− 1]).

Proof The sequence of biWaldhausen categories

(Perf (P)[	], w) ⊆−→ (Perf (P)[	−1], w) −→ (Perf (P)[	−1], h[	])

induces a fibration sequence of K -theory spaces, by the Fibration Theorem [12, 1.6.4].
We have to prove that the K -theory of its base is homotopy equivalent, via �̌ ◦ θ	, to
K (R), where we have written θ	 for the 	th twist functor Y �→ Y (	).

First note that ψ−	 restricts to an exact functor

ψ−	 : Perf (R) −→ (Perf (P)[	−1], h[	]).
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We have to check that �̌ ◦ θ j , when applied to a complex of the form ψ−	(C), pro-
duces an acyclic chain complex for 0 � j < 	. But for j in this range we have
−n P � −	+ j < 0 so that EP (−	+ j) = 0. It follows that

�̌ ◦ θ j ◦ ψ−	(C) ∼= �̌C(−	+ j)

is acyclic by Lemma 2.7.2.
Now the composition (�̌ ◦ θ	) ◦ ψ−	 ∼= �̌ψ0 is weakly equivalent to the nth sus-

pension endo-functor C �→ C[n] of Ch (R), by Lemmas 2.7.3 and 2.7.4, hence �̌ ◦ θ	
induces a surjection on homotopy groups of K -theory spaces.

According to Lemmas 2.8.4 and 2.9.4 the composition ψ0 ◦ �̌ is connected to the
nth suspension functor by a chain of h[0]-equivalences depicted

Y [n] �−→ σY � ψ0 ◦ �̌(Y )

(where the first map is actually a weak equivalence). Replacing Y by its 	th twist Y (	)
yields a chain of h[0]-equivalences

θ	Y [n] �−→ σY (	) � ψ0 ◦ �̌ ◦ θ	(Y ). (3.2.1.1)

Twisting by −	 again leaves us with a chain of natural maps

Y [n] �−→
μ
θ−	 (σY (	)) �

ν
ψ−	 ◦ �̌ ◦ θ	(Y ).

We claim that the maps μ and ν are h[	]-equivalences. This is clear for μ since μ is in
fact a weak equivalence. As for ν, given an integer j with 0 � j � 	we have to prove
that application of �̌◦θ j to the map ν produces a quasi-isomorphism of R-module chain
complexes. For 0 � j < 	 this is true since both source and target of the resulting map
of chain complexes are acyclic. Indeed, �̌◦θ j (θ−	 (σY (	))) � �̌Y ( j)[n] � 0 since Y
is an object of Perf (P)[	−1],while �̌◦θ j◦ψ−	◦�̌◦θ	(Y ) = �̌◦ψ j−	◦�̌◦θ	(Y ) � 0 by
Lemma 2.7.2, applied to the chain complex C = �̌ ◦ θ	(Y ), since EP ( j − 	) = 0. For
j = 	 note that θ	(ν) is the map σY (	) � ψ0 ◦ �̌Y (	) which is an h[0]-equivalence
according to Lemma 2.9.4 (applied to Y (	) instead of Y ).

We have thus verified the claim. But this means that nth suspension andψ−	◦�̌◦θ	
induce homotopic maps on the K -theory space of (Perf (P)[	−1], h[	]) so that �̌ ◦ θ	
induces a map of K -theory spaces which is injective on homotopy groups.

This proves that K (Perf (P)[	−1], h[	]) � K (R) via the functor �̌◦θ	. The resulting
fibration sequence

K̃ (P, [	]) −→ K (P, [	− 1]) �̌◦θ	−−→ K (R)

has a section up to homotopy and up to sign induced by ψ−	 as the composition
�̌ ◦ ψ	 ◦ ψ−	 is weakly equivalent to nth suspension, just as argued above. 	


We are now in a position to return to the main theorem of the paper.
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Theorem 1.5.1 Let P ⊆ R
n be an n-dimensional lattice polytope, and let n P be the

number of distinct integral roots of its Ehrhart polynomial EP (x). Let R be a ring
with unit; suppose that R is commutative, or else left noetherian. Then there is a
homotopy equivalence of K -theory spaces

K (P) � K (R)1+n P × K (P, [n P ])

where K (R) denotes the K -theory of the ring R, and K (P, [n P ]) denotes the K -theory
of those perfect complexes Y ∈ Perf (P) which satisfy �̌ (Y ( j)) � 0 for 0 � j � n P .
If n P = 0 this expresses the tautological splitting K (P) � K (R) × K̃ (P) where
K̃ (P) = K (P, [0]).
Proof This follows by concatenating the homotopy equivalences from Proposi-
tions 3.1.1 and 3.2.1 for 	 = 1, 2, . . . , n p. 	


3.3 Algebraic K -theory of projective space

Theorem 3.3.1 Let
n be an n-dimensional simplex with volume 1/n!. Then n
n = n
and K (
n, [n]) � ∗ so there is a homotopy equivalence

K (
n) � K (R)n+1.

Let us remark first that an n-dimensional simplex with volume 1/n! can be trans-
formed, by integral translation and a linear map in GLn(Z), into the standard simplex
with vertices 0, e1, . . . , en ∈ R

n . Up to isomorphism, the algebraic data associated
to 
n does not change so that we may assume 
n to be a standard simplex to begin
with. Its Ehrhart polynomial is E
n (x) = (x + 1)(x + 2) · · · (x + n)/n! which has
precisely n
n = n integral roots.

In case of a commutative ring R we have X
n = P
n
R, projective n-space over R,

and the splitting of Theorem 3.3.1 corresponds to the known splitting of K -theory of
projective n-space which in turn is a special case of Quillen’s “projective bundle”
theorem in K -theory applied to the trivial vector bundle of rank n + 1 over the affine
scheme Spec R [8, Sect. 8.2] [11, 4.1].

Proof of 3.3.1 It is enough to prove the following assertion:

3.3.1.1 Let Y ∈ hCoh (
n) be such that �̌ (Y (	)) is acyclic for all 	 with 0 � 	 � n.
Then the chain complexes Y F are acyclic for all F ∈ F(
n)0.

For then the map Y −→ 0 in hCoh (
n) gives a weak equivalence of endo-functors
of Perf (P)[n] from the identity to the zero functor. Consequently, the identity map
of K (
n, [n]) is null homotopic so that K (
n, [n]) � ∗. The theorem now follows
from the splitting result 1.5.1 and the fact that n
n = n.

The above assertion roughly states that the sheaves O(k), 0 � k � n, gen-
erate the derived category of hCoh (P). This point of view has been pursued, in
a model category context, in [6, 3.3.5]. We sketch the argument for the reader’s
convenience.
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Suppose Y ∈ hCoh (
n) has the property that all the structure maps Y F −→ Y G

are quasi-isomorphisms, for all pairs F ⊆ G of non-empty faces of 
n . For fixed
F ∈ F(
n)0 the structure maps then induce a chain of quasi-isomorphisms of dia-
grams

Y −→ con Y

n � con Y F .

By Proposition 2.2.4 and Lemma 2.7.3 we obtain quasi-isomorphisms of chain com-
plexes of R-modules

�̌Y
�−→ �̌

(

con Y

n
)

�� �̌
(

con Y F
)

�� Y F [n].

So if in addition �̌(Y ) = �̌ (Y (0)) is acyclic we know that Y F [n] and hence Y F is
acyclic as well. — It is thus sufficient to prove the following claim:

3.3.1.2 Let Y ∈ hCoh (
n) be such that �̌ (Y (	)) is acyclic for all 	 with 0 � 	 � n.
Then the structure maps Y F −→ Y G are quasi-isomorphisms for all pairs F ⊆ G of
non-empty faces of 
n .

It is in fact enough to consider structure maps of the form Y F −→ Y v∨F for
F ∈ F(
n)0 and a vertex v of P .

As remarked above, 
n is isomorphic to a standard n-simplex with vertices
0, e1, · · · , en ∈ R

n; the isomorphism can be chosen to map any vertex of 
n to
0. In view of this symmetry it is enough to prove the following:

3.3.1.3 Suppose that 
n is a standard n-simplex, and suppose that Y ∈ hCoh (
n) is
such that �̌ (Y (	)) is acyclic for all 	 with 0 � 	 � n. Then for every face F of 
n

not containing 0 the structure map Y F −→ Y 0∨F is a quasi-isomorphism.
This assertion is proved by induction on n, the case n = 0 being trivial as Pre (
0) =

hCoh (
0) = Ch (R-Mod).
So let n > 0. For every face F of
n there is an obvious inclusion of sets k F+TF ⊆

(k + 1)F + TF , 0 � k < n, which is an equality if and only if 0 ∈ F . Hence we have
corresponding maps O(k) −→ O(k+ 1) and Y (k) −→ Y (k+ 1)which are identities
if 0 ∈ F . We obtain short exact sequences in Pre (
n)

0 −→ Y (k) −→ Y (k + 1) −→ Z(k + 1) −→ 0 (3.3.1.4)

where Z(k + 1) is, a priori, simply a name for the cokernel. However, since taking
cokernels commutes with tensor products we see that Z(k+ 1) is indeed the kth twist
of Z(1) = coker (O(0) −→ O(1)). As the functor �̌ preserves short exact sequences
we conclude that �̌Z(k + 1) is acyclic for 0 � k < n since �̌Y (k) and �̌Y (k + 1) are
acyclic in this range by hypothesis.

We now have to analyse the diagram Z(k + 1) in more detail. If 0 ∈ F the map
Y (k)F −→ Y (k + 1)F is the identity, as remarked above, so Z(k + 1)F = 0. —
Suppose now that F is a face of
n with 0 /∈ F . There is in fact a maximal face
n−1

of 
n not containing 0, and F is a face of 
n−1. We will argue that Z(k + 1), when
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restricted to F(
n−1)0, is naturally an object of hCoh (
n−1) with �̌
n−1 Z(k + 1)
being acyclic for 0 � k < n. By induction this implies:

3.3.1.5 The chain complex Z(1)F is acyclic for all F ∈ F(
n−1)0 and hence for all
F ∈ F(
n)0

First let R
n−1 denote the affine hull of 
n−1, turned into a vector space by dis-

tinguishing a lattice point as origin. It comes equipped with its own integer lattice
Z

n−1 = Z
n ∩ R

n−1. Let F ∈ F(
n−1)0. Then

(

((k + 1)F + TF ) ∩ Z
n) \ ((k F + TF ) ∩ Z

n) = ((k + 1)F + T R
n−1

F ) ∩ Z
n−1

the barrier cones on the left being computed in R
n, the barrier cone on the right being

computed in R
n−1. This translates into an isomorphism

coker
(

O
n (k)F −→ O
n (k + 1)F
) ∼= O
n−1(k + 1)F . (3.3.1.6)

By considering k = −1 we obtain from this an algebra isomorphism

A

n

F /O
n (−1)F = O
n (0)F/O
n (−1)F ∼= A

n−1

F (3.3.1.7)

and thus an algebra epimorphism A

n

F −→ A

n−1

F . The isomorphism displayed

in (3.3.1.7) is used to equip Z(k + 1)F with a natural A

n−1

F -module structure while
the isomorphism (3.3.1.6) is used to verify that twisting with respect to
n and
n−1,

respectively, is compatible. A straightforward 5-lemma argument shows that Z(k),
when considered as an object of Pre (
n−1), is indeed a homotopy sheaf. Finally, from
the definition of Čech complexes it follows that the chain complexes �̌
n (Z(k + 1))
and �̌
n−1

(

Z(k + 1)|F(
n−1)0

)

agree up to re-indexing by 1. In total, this means that
Z(k + 1) ∈ hCoh (
n−1) satisfies the induction hypotheses as claimed. We have thus
verified 3.3.

From the short exact sequence (3.3.1.4), restricted to F-components, we infer that
the map σF : Y (0)F −→ Y (1)F is a quasi-isomorphism of chain complexes, hence
so is the map from Y (0)F to the colimit of the infinite sequence

Y (0)F �−→
σF

Y (1)F ∼=−→ Y (0)F �−→
σF

Y (1)F ∼=−→ Y (0)F �−→ . . . .

Here every second map is a fixed isomorphism between Y (0)F and Y (1)F . It is not
difficult to see that the colimit of this sequence is isomorphic to A0∨F ⊗AF Y F (this
follows from the fact that the cone T0∨F is obtained from the cone TF by forming
Minkowski sum with a single ray spanned by the negative of a vector in TF ∩ Z

n).
Now the composite

Y F −→ A0∨F ⊗AF Y F −→ Y 0∨F
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is a structure map of Y, and both constituent maps are quasi-isomorphisms: the first by
what we have just shown, the second by the stipulation that Y be a homotopy sheaf. In
total, we have verified that the structure map Y F −→ Y 0∨F is a quasi-isomorphism.
We are done. 	
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