Skip to main content
Log in

Effects of respiratory motion on accurate four-dimensional computed tomography acquisition and plan delivery for lung stereotactic body radiation therapy

  • Original Paper - Cross-Disciplinary Physics and Related Areas of Science and Technology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

An Erratum to this article was published on 13 March 2024

This article has been updated

Abstract

This study evaluated the impact of respiratory movement on four-dimensional computed tomography (4D-CT) acquisition and radiotherapy delivery. QUASAR Respiratory Motion Phantom with nine sinusoidal waveforms that combined three amplitudes (10, 20, and 30 mm) and three breaths per minute (BPMs) (10, 15, and 20) was used. We acquired 4D-CT for nine respective waveforms and measured and compared geometrical factors (volume, shape, and motion) to reference static CT. We optimized and delivered radiotherapy plans on a Vital Beam and evaluated gamma for dose distribution analysis with three acceptance criteria: 3%/3 mm, 3%/3 mm, and 5%/5 mm. Geometrical analysis revealed that an increase in amplitude decreased 4D-CT acquisition accuracy. Geometrical factors for an amplitude of ≤ 20 mm were within tolerance limits, however, amplitude 30 mm resulted in significant deviations over tolerance limits. BPM had a minimal effect on geometrical accuracy when accurate pitch values for respective BPMs were selected for scanning. Dose distribution analysis also indicated that an increase in amplitude decreased the gamma passing rates. Amplitude 30 mm failed to achieve a 95% passing rate for all three gamma evaluation criteria adopted in the present study. Overall, our results demonstrate that respiratory motion has significant effects on the accuracy of both 4D-CT acquisition and planned radiotherapy delivery. Small amplitude of ≤ 20 mm is required to ensure accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the finding of this study are available upon reasonable requests to the corresponding author (J.C.K.)

Change history

References

  1. S.T. Chao, L.K. Dad, L.A. Dawson, N.B. Desai, M. Pacella, R. Rengan et al., ACR-ASTRO practice parameter for the performance of stereotactic body radiation therapy. Am. J. Clin. Oncol. 43, 545–552 (2020)

    Article  Google Scholar 

  2. C.B. Simone 2nd., B. Wildt, A.R. Haas, G. Pope, R. Rengan, S.M. Hahn, Stereotactic body radiation therapy for lung cancer. Chest 143, 1784–1790 (2013)

    Article  Google Scholar 

  3. P. Kreinbrink, P. Blumenfeld, G. Tolekidis, N. Sen, D. Sher, G. Marwaha, Lung stereotactic body radiation therapy (SBRT) for early-stage non-small cell lung cancer in the very elderly (≥ 80years old): extremely safe and effective. J Geriatr Oncol. 8, 351–355 (2017)

    Article  Google Scholar 

  4. B. Zhang, F. Zhu, X. Ma, Y. Tian, D. Cao, S. Luo et al., Matched-pair comparisons of stereotactic body radiotherapy (SBRT) versus surgery for the treatment of early stage non-small cell lung cancer: a systematic review and meta-analysis. Radiother. Oncol. 112, 250–255 (2014)

    Article  Google Scholar 

  5. M. Guckenberger, N. Andratschke, K. Dieckmann, M.S. Hoogeman, M. Hoyer, C. Hurkmans et al., ESTRO ACROP consensus guideline on implementation and practice of stereotactic body radiotherapy for peripherally located early stage non-small cell lung cancer. Radiother. Oncol. 124, 11–17 (2017)

    Article  Google Scholar 

  6. G.M. Videtic, J. Donington, M. Giuliani, J. Heinzerling, T.Z. Karas, C.R. Kelsey et al., Stereotactic body radiation therapy for early-stage non-small cell lung cancer: executive summary of an ASTRO evidence-based guideline. Pract. Radiat. Oncol. 7, 295–301 (2017)

    Article  Google Scholar 

  7. M.W. Kissick, T.R. Mackie, Task group 76 report on “The management of respiratory motion in radiation oncology” [Med. Phys. 33, 3874–3900 (2006)]. Med. Phys. 36, 5721–5722 (2009)

    Article  Google Scholar 

  8. S.B. Jiang, Technical aspects of image-guided respiration-gated radiation therapy. Med. Dosim. 31, 141–151 (2006)

    Article  Google Scholar 

  9. I.S. Grills, D. Yan, A.A. Martinez, F.A. Vicini, J.W. Wong, L.L. Kestin, Potential for reduced toxicity and dose escalation in the treatment of inoperable non-small-cell lung cancer: a comparison of intensity-modulated radiation therapy (IMRT), 3D conformal radiation, and elective nodal irradiation. Int. J. Radiat. Oncol. Biol. Phys. 57, 875–890 (2003)

    Article  Google Scholar 

  10. S.C. Erridge, Y. Seppenwoolde, S.H. Muller, M. van Herk, K. De Jaeger, J.S. Belderbos et al., Portal imaging to assess set-up errors, tumor motion and tumor shrinkage during conformal radiotherapy of non-small cell lung cancer. Radiother. Oncol. 66, 75–85 (2003)

    Article  Google Scholar 

  11. Q.S. Chen, M.S. Weinhous, F.C. Deibel, J.P. Ciezki, R.M. Macklis, Fluoroscopic study of tumor motion due to breathing: facilitating precise radiation therapy for lung cancer patients. Med. Phys. 28, 1850–1856 (2001)

    Article  Google Scholar 

  12. E.A. Barnes, B.R. Murray, D.M. Robinson, L.J. Underwood, J. Hanson, W.H. Roa, Dosimetric evaluation of lung tumor immobilization using breath hold at deep inspiration. Int. J. Radiat. Oncol. Biol. Phys. 50, 1091–1098 (2001)

    Article  Google Scholar 

  13. E.D. Brandner, I.J. Chetty, T.G. Giaddui, Y. Xiao, M.S. Huq, Motion management strategies and technical issues associated with stereotactic body radiotherapy of thoracic and upper abdominal tumors: a review from NRG oncology. Med. Phys. 44, 2595–2612 (2017)

    Article  Google Scholar 

  14. Y. Kwong, A.O. Mel, G. Wheeler, J.M. Troupis, Four-dimensional computed tomography (4DCT): a review of the current status and applications. J. Med. Imaging Radiat. Oncol. 59, 545–554 (2015)

    Article  Google Scholar 

  15. C.L. Ong, M. Dahele, B.J. Slotman, W.F. Verbakel, Dosimetric impact of the interplay effect during stereotactic lung radiation therapy delivery using flattening filter-free beams and volumetric modulated arc therapy. Int. J. Radiat. Oncol. Biol. Phys. 86, 743–748 (2013)

    Article  Google Scholar 

  16. M. Nakamura, Y. Narita, A. Sawada, K. Matsugi, M. Nakata, Y. Matsuo et al., Impact of motion velocity on four-dimensional target volumes: a phantom study. Med. Phys. 36, 1610–1617 (2009)

    Article  Google Scholar 

  17. X. Li, E. Chen, B. Guo, W. Yang, R. Han, C. Hu et al., The impact of respiratory motion and CT pitch on the robustness of radiomics feature extraction in 4DCT lung imaging. Comput. Methods Programs Biomed. 197, 105719 (2020)

    Article  Google Scholar 

  18. C.H. Pan, A.C. Shiau, K.C. Li, S.H. Hsu, J.A. Liang, The irregular breathing effect on target volume and coverage for lung stereotactic body radiotherapy. J. Appl. Clin. Med. Phys. 20, 109–120 (2019)

    Article  Google Scholar 

  19. S.S. Jang, G.J. Huh, S.Y. Park, P.S. Yang, E.Y. Cho, The impact of respiratory gating on lung dosimetry in stereotactic body radiotherapy for lung cancer. Phys. Med. 30, 682–689 (2014)

    Article  Google Scholar 

  20. R. Muirhead, C. Featherstone, A. Duffton, K. Moore, S. McNee, The potential clinical benefit of respiratory gated radiotherapy (RGRT) in non-small cell lung cancer (NSCLC). Radiother. Oncol. 95, 172–177 (2010)

    Article  Google Scholar 

  21. O. Rouabhi, B. Gross, J. Bayouth, J. Xia, The dosimetric and temporal effects of respiratory-gated, high-dose-rate radiation therapy in patients with lung cancer. Technol. Cancer Res. Treat. 18, 1533033818816072 (2019)

    Article  Google Scholar 

  22. G. Hilgers, T. Nuver, A. Minken, Helical 4D CT pitch management for the brilliance CT big bore in clinical practice. J. Appl. Clin. Med. Phys. 16, 5111 (2015)

    Article  Google Scholar 

  23. A. Bezjak, R. Paulus, L.E. Gaspar, R.D. Timmerman, W.L. Straube, W.F. Ryan et al., Safety and efficacy of a five-fraction stereotactic body radiotherapy schedule for centrally located non-small-cell lung cancer: NRG oncology/RTOG 0813 trial. J. Clin. Oncol. 37, 1316–1325 (2019)

    Article  Google Scholar 

  24. G.M. Videtic, C. Hu, A.K. Singh, J.Y. Chang, W. Parker, K.R. Olivier et al., A randomized phase 2 study comparing 2 stereotactic body radiation therapy schedules for medically inoperable patients with stage I peripheral non-small cell lung cancer: NRG oncology RTOG 0915 (NCCTG N0927). Int. J. Radiat. Oncol. Biol. Phys. 93, 757–764 (2015)

    Article  Google Scholar 

  25. A. Niroomand-Rad, C.R. Blackwell, B.M. Coursey, K.P. Gall, J.M. Galvin, W.L. McLaughlin et al., Radiochromic film dosimetry: recommendations of AAPM radiation therapy committee task group 55. American Association of Physicists in Medicine. Med. Phys. 25, 2093–2115 (1998)

    Article  Google Scholar 

  26. M. Miften, A. Olch, D. Mihailidis, J. Moran, T. Pawlicki, A. Molineu et al., Tolerance limits and methodologies for IMRT measurement-based verification QA: recommendations of AAPM Task Group No. 218. Med. Phys. 45, e53–e83 (2018)

    Article  Google Scholar 

  27. G.A. Ezzell, J.W. Burmeister, N. Dogan, T.J. LoSasso, J.G. Mechalakos, D. Mihailidis et al., IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Med. Phys. 36, 5359–5373 (2009)

    Article  Google Scholar 

  28. E.D. Morris, J.P. Kim, P. Klahr, C.K. Glide-Hurst, Impact of a novel exponential weighted 4DCT reconstruction algorithm. J. Appl. Clin. Med. Phys. 19, 217–225 (2018)

    Article  Google Scholar 

  29. P.J. Keall, G. Starkschall, H. Shukla, K.M. Forster, V. Ortiz, C.W. Stevens et al., Acquiring 4D thoracic CT scans using a multislice helical method. Phys. Med. Biol. 49, 2053–2067 (2004)

    Article  Google Scholar 

  30. H.S. Grewal, S. Ahmad, H. Jin, Dosimetric study of the interplay effect using three-dimensional motion phantom in proton pencil beam scanning treatment of moving thoracic tumours. J. Radiother. Pract. 22, e11 (2023)

    Article  Google Scholar 

  31. S. Goossens, F. Senny, J.A. Lee, G. Janssens, X. Geets, Assessment of tumor motion reproducibility with audio-visual coaching through successive 4D CT sessions. J. Appl. Clin. Med. Phys. 15, 4332 (2014)

    Article  Google Scholar 

  32. R. George, T.D. Chung, S.S. Vedam, V. Ramakrishnan, R. Mohan, E. Weiss et al., Audio-visual biofeedback for respiratory-gated radiotherapy: impact of audio instruction and audio-visual biofeedback on respiratory-gated radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 65, 924–933 (2006)

    Article  Google Scholar 

  33. W.A. Mampuya, Y. Matsuo, N. Ueki, M. Nakamura, N. Mukumoto, A. Nakamura et al., The impact of abdominal compression on outcome in patients treated with stereotactic body radiotherapy for primary lung cancer. J. Radiat. Res. 55, 934–939 (2014)

    Article  ADS  Google Scholar 

  34. G. Bouilhol, M. Ayadi, S. Rit, S. Thengumpallil, J. Schaerer, J. Vandemeulebroucke et al., Is abdominal compression useful in lung stereotactic body radiation therapy? A 4DCT and dosimetric lobe-dependent study. Phys. Med. 29, 333–340 (2013)

    Article  Google Scholar 

  35. J.A. Lee, C.Y. Kim, D.S. Yang, W.S. Yoon, Y.J. Park, S. Lee et al., Four-dimensional computed tomography based respiratory-gated radiotherapy with respiratory guidance system: analysis of respiratory signals and dosimetric comparison. Biomed. Res. Int. 2014, 306021 (2014)

    Article  Google Scholar 

  36. G. Liu, F. Hu, X. Ding, X. Li, Q. Shao, Y. Wang et al., Simulation of dosimetry impact of 4DCT uncertainty in 4D dose calculation for lung SBRT. Radiat. Oncol. 14, 1 (2019)

    Article  Google Scholar 

  37. G. Hugo, C. Vargas, J. Liang, L. Kestin, J.W. Wong, D. Yan, Changes in the respiratory pattern during radiotherapy for cancer in the lung. Radiother. Oncol. 78, 326–331 (2006)

    Article  Google Scholar 

  38. Y. Seppenwoolde, H. Shirato, K. Kitamura, S. Shimizu, M. van Herk, J.V. Lebesque et al., Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 53, 822–834 (2002)

    Article  Google Scholar 

  39. S. Sarudis, A. Karlsson, J. Nyman, A. Back, Dosimetric effects of respiratory motion during stereotactic body radiation therapy of lung tumors. Acta Oncol. 61, 1004–1011 (2022)

    Article  Google Scholar 

  40. A. Edvardsson, F. Nordstrom, C. Ceberg, S. Ceberg, Motion induced interplay effects for VMAT radiotherapy. Phys. Med. Biol. 63, 085012 (2018)

    Article  Google Scholar 

  41. T. Gauer, T. Sothmann, O. Blanck, C. Petersen, R. Werner, Under-reported dosimetry errors due to interplay effects during VMAT dose delivery in extreme hypofractionated stereotactic radiotherapy. Strahlenther. Onkol. 194, 570–579 (2018)

    Article  Google Scholar 

  42. P. Klahr, Evaluation of slice sensitivity profiles for helical and axial 4D-CT acquisitions on the Philips Brilliance CT Big Bore. Med. Phys. 41, 101909 (2014)

    Article  Google Scholar 

  43. T. Pan, Comparison of helical and cine acquisitions for 4D-CT imaging with multislice CT. Med. Phys. 32, 627–634 (2005)

    Article  Google Scholar 

  44. Y. Matsuzaki, K. Fujii, M. Kumagai, I. Tsuruoka, S. Mori, Effective and organ doses using helical 4DCT for thoracic and abdominal therapies. J. Radiat. Res. 54, 962–970 (2013)

    Article  ADS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, J-CK; data curation, BKB, SJK, and J-CK; formal analysis, BKB, SJK, and J-CK; investigation, BKB, SJK, and J-CK; methodology, BKB; project administration, J-CK; manuscript writing—original draft, BKB; manuscript writing—review and editing, BKB, SJK, and J-CK.

Corresponding author

Correspondence to Jae-Chul Kim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to a retrospective Open Access cancellation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, B.K., Kim, S.J. & Kim, JC. Effects of respiratory motion on accurate four-dimensional computed tomography acquisition and plan delivery for lung stereotactic body radiation therapy. J. Korean Phys. Soc. 84, 323–334 (2024). https://doi.org/10.1007/s40042-023-00986-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00986-5

Keywords

Navigation