Skip to main content
Log in

Conductivity maxima in electrolyte-gated transistors with molecular-doped semiconducting polymer films

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In contrast to that of conventional inorganic semiconductor materials, the physics of the doping of π-conjugated organic materials is poorly understood. Therefore, this study aimed to investigate the mechanisms underlying the doping of polymer semiconductors. Electrolyte-gated transistors (EGTs) were used to electrochemically modulate the driving force for the molecular-ion doping of π-conjugated-semiconducting polymer films. Electrochemical transistors were fabricated in which 1-ethyl-3-methylimidazolium-bis(trifluoromethylsulfonyl) ([EMIM][TFSI]) and tetrafluoro-tetracyanoquinodimethane (F4-TCNQ)-doped poly(2,5-bis(3-tetradecylthiophen-2yl)thieon(3,2-b)thiophene) (PBTTT-C14) polymer films were used as the electrolyte gate medium and conducting channel layer, respectively. The EGTs with F4-TCNQ-doped PBTTT-C14 films showed conductivity maxima of ~ 600 S/cm at a critical gate bias, which indicated that there was negative transconductance at gate biases above this threshold. The conductivity maxima of the EGTs with F4-TCNQ-doped PBTTT-C14 films were caused by excess doping via ion exchange between the [TFSI] anion of the ionic liquid and the F4-TCNQ anion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C. C. Hu, Modern semiconductor devices for integrated circuits, 1st ed.; Pearson, (2010).

  2. B. Lüssem, C.-M. Keum, D. Kasemann, B. Naab, Z. Bao, K. Leo, Chem. Rev. 116, 13714 (2016)

    Article  Google Scholar 

  3. I.E. Jacobs, A.J. Moulé, Adv. Mater. 29, 1703063 (2017)

    Article  Google Scholar 

  4. A.D. Scaccabarozzi, A. Basu, F. Aniés, J. Liu, O. Zapata-Arteaga, R. Warren, Y. Firdaus, M.I. Nugraha, Y. Lin, M. Campoy-Quiles, N. Koch, C. Müller, L. Tsetseris, M. Heeney, T.D. Anthopoulos, Chem. Rev. 122, 4420 (2022)

    Article  Google Scholar 

  5. C.K. Chiang, C.R. Fincher, Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau, A.G. MacDiarmid, Phys. Rev. Lett. 39(17), 1098 (1977)

    Article  ADS  Google Scholar 

  6. E. Lim, K.A. Peterson, G.M. Su, M.L. Chabinyc, Chem. Mater. 30, 998 (2018)

    Article  Google Scholar 

  7. M.J. Panzer, C.D. Frisbie, J. Am. Chem. Soc. 129, 6599 (2007)

    Article  Google Scholar 

  8. J. Lee, L.G. Kaake, J.H. Cho, X.Y. Zhu, T.P. Lodge, C.D. Frisbie, J. Phys. Chem. C 113, 8972 (2009)

    Article  Google Scholar 

  9. C. Francis, D. Fazzi, S.B. Grimm, F. Paulus, S. Beck, S. Hillebrandt, A. Pucci, J. Zaumseil, J. Mater. Chem. C 5, 6176 (2017)

    Article  Google Scholar 

  10. D. Rawlings, E.M. Thomas, R.A. Segalman, M.L. Chabinyc, Chem. Mater. 31, 8820 (2019)

    Article  Google Scholar 

  11. J. Lee, Appl. Phys. Lett. 108, 203302 (2016)

    Article  ADS  Google Scholar 

  12. J. Lee, B. Cho, J.W. Chung, M.S. Kang, Appl. Phys. Lett. 103, 163302 (2013)

    Article  ADS  Google Scholar 

  13. M.S. Kang, A. Sahu, D.J. Norris, C.D. Frisbie, Nano Lett. 10, 3727 (2010)

    Article  ADS  Google Scholar 

  14. M.J. Panzer, C.D. Frisbie, J. Am. Chem. Soc. 127, 6960 (2005)

    Article  Google Scholar 

  15. M.J. Panzer, C.D. Frisbie, Appl. Phys. Lett. 88, 203504 (2006)

    Article  ADS  Google Scholar 

  16. Y. Yamashita, J. Tsurumi, M. Ohno, R. Fujimoto, S. Kumagai, T. Kurosawa, T. Okamoto, J. Takeya, S. Watanabe, Nature 572, 634 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Pukyong National University Development Project Research Fund (2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiyoul Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.H., Chang, D.W., Kim, J. et al. Conductivity maxima in electrolyte-gated transistors with molecular-doped semiconducting polymer films. J. Korean Phys. Soc. 82, 491–496 (2023). https://doi.org/10.1007/s40042-023-00746-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00746-5

Keywords

Navigation