Skip to main content
Log in

Application of computational modeling to improve cornea transplant surgery

  • Original Paper - Cross-Disciplinary Physics and Related Areas of Science and Technology
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Cornea transplant involving applanation results in a deformation of the cornea. This deformation combined with a mismatch of dimensional and mechanical properties between donor and recipient corneas gives rise to tension on the transplanted cornea, astigmatism and vision difficulties. Therefore, accurate prediction of deformation of the incision plant during such operations is necessary to minimize complications. In this work, we employed a finite element simulation on a cornea with measured geometry and hyperelastic Mooney–Rivlin mechanical properties to analyze the intended incision plane’s change during corneal applanation. A simulation of the cornea transplant procedure assuming two different geometries to be the same was performed, and the transplanted cornea showed a 5.1% change in the exterior radius. When the proposed method was applied, no change in the radius after transplant was observed. Moreover, a precise matching of the incision plane can be selected for the corneas, and the corneal deformation after an IntraLase-Enabled Keratoplasty (ILEK) corneal transplant procedure is expected to be minimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.B. Jonas, U. Vossmerbaeumer, J. Refract. Surg. 20, 391 (2004)

    Article  Google Scholar 

  2. R.J. Duffey, D.U. Leaming, J. Refract. Surg. 19, 357 (2003)

    Article  Google Scholar 

  3. S. Richard et al., Corneal Transplantation: Penetrating Keratoplasty (Springer, Cham, 2020)

    Google Scholar 

  4. J.J. Pan et al., Comput. Methods Progr. Biomed. 197, 105679 (2020)

    Article  Google Scholar 

  5. Y.M. Por et al., Am. J. Ophthalmol. 145, 772 (2008)

    Article  Google Scholar 

  6. H.K. Soong, J.B. Malta, Am. J. Ophthalmol. 147, 189 (2009)

    Article  Google Scholar 

  7. S. Fung, F. Aiello, V. Maurino, J. Eye. 30, 553 (2016)

    Article  Google Scholar 

  8. Y.Y. Cheng et al., J. Transplant. 88, 1294 (2009)

    Article  Google Scholar 

  9. R.K. Jha et al., Korean Phys. Soc. 69, 749 (2016)

    Article  ADS  Google Scholar 

  10. V. Mazlin et al., Nat. Commun. 11, 1868 (2020)

    Article  ADS  Google Scholar 

  11. R.M. Werkmeister et al., Biomed. Opt. Exp. 8(2), 1221 (2017)

    Article  Google Scholar 

  12. G. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Engineering (Wiley, England, 2000)

    MATH  Google Scholar 

  13. V. Alastruà et al., J. Biomech. Eng. 128, 150 (2006)

    Article  Google Scholar 

  14. M.R. Bryant, P.J. McDonnell, J. Biomech. Eng. 118, 473 (1996)

    Article  Google Scholar 

  15. A. Pandolfi, F. Manganiello, Biomech. Mod. Mech. Biol. 5, 237 (2006)

    Article  Google Scholar 

  16. I. Simonini, A. Pandolfi, PLoS One 10, 0130426 (2015)

    Google Scholar 

  17. A.S. Roy, W.J. Dupps, J. Biomech. Eng. 133, 011002 (2011)

    Article  Google Scholar 

  18. T.R. Friberg, J.W. Lace, Exp. Eye. Res. 47, 429 (1988)

    Article  Google Scholar 

  19. E. Uchio et al., Br. J. Ophthalmol. 83, 1106 (1999)

    Article  Google Scholar 

  20. F. Cavas-Martínez et al., PLoS ONE 9, 110249 (2014)

    Article  ADS  Google Scholar 

  21. W.M. Petroll et al., J. Cornea. 15, 154 (1996)

    Article  Google Scholar 

  22. P.M. Pinsky, D. van der Heide, D. Chernyak, J. Cataract. Refract. Surg. 31, 136 (2005)

    Article  Google Scholar 

  23. H.C. Howland, R.H. Rand, S.R. Lubkin, J. Refract. Surg. 8, 183 (1992)

    Article  Google Scholar 

  24. K.M. Meek, R.H. Newton, J. Refract. Surg. 15, 695 (1999)

    Article  Google Scholar 

  25. C.W. Hong et al., Investig. Ophthalmol. Vis. Sci. 53, 2321 (2012)

    Article  Google Scholar 

  26. M. Kaliske, Comput. Methods Appl. Mech. Eng. 185, 225 (2000)

    Article  ADS  Google Scholar 

  27. W. Waseem, M. Sulaiman, A. Alhindi, H. Alhakami, IEEE. Acc. 8, 61576–61592 (2020)

    Article  Google Scholar 

  28. R. Lee et al., J. Eye. 34, 1737 (2020)

    Article  Google Scholar 

  29. Y. Liu et al., Eur. J. Ophthalmol. 31, 976–987 (2020)

    Article  Google Scholar 

  30. T. Ono et al., Sci. Rep. 10, 1 (2020)

    Article  Google Scholar 

  31. A. Pandofi, Eye Vis. 7, 15 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) (NRF-2020R1A2C3010322 and NRF-2018M3A9D7079485).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honggu Chun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joo, J., Kim, B. & Chun, H. Application of computational modeling to improve cornea transplant surgery. J. Korean Phys. Soc. 79, 874–881 (2021). https://doi.org/10.1007/s40042-021-00279-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00279-9

Keywords

Navigation