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Abstract
A one-dimensional p-wave topological superconductor deformed by a sine-square-deformation is studied in the framework 
of machine learning. A supervised learning algorithm is applied with a convolutional neural network to discern the existence 
of a Majorana zero mode, which is the hallmark of topological superconductivity. The machine learning algorithm learns 
features of the Majorana zero mode, and the neural network trained with the dataset from the link deformed case turns out 
to be the most effective.
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1  Introduction

Machine learning (ML) is playing an increasingly important 
role in various fields of physics [1–3]. ML itself is a subfield 
of artificial intelligence and aims at developing algorithms 
that can learn from data automatically.

The methods of ML can be broadly divided into three 
main categories: supervised learning, unsupervised learn-
ing, and reinforcement learning. A hybrid of the above three 
approaches is also possible, e.g., semi-supervised learning 
falls between supervised and unsupervised learning. In 
supervised learning, the input training data are paired to 
the corresponding target output (the label), and the trained 
algorithm makes prediction to certain test dataset or a new 
input. Classification and regression are typical problems 
addressed in supervised learning. In unsupervised learning, 
the training input data are not paired with the target output 
(unlabelled). As such, it aims at finding hidden structures (or 
patterns) of a given data. A typical problem treated in unsu-
pervised learning is the clustering problem. In reinforcement 
learning, the algorithm seeks to find a set of actions that 
maximize (numerical) reward by essentially trial and error. 

Famous examples are the Deep Mind Go and its important 
applications to quantum computation.

Ass there are numerous types of ML algorithms, the 
applications are extremely diverse, and here, we mention 
just a few which are the most relevant to condensed matter 
physics: (1) the ML phases of matter [4], (2) the relation 
ML to the renormalization group [5], (3) the representation 
of quantum states using a neural network [6, 7] and (4) the 
relations among quantum entanglement, tensor network, and 
ML [8].

In this paper, we employ a supervised learning algorithm 
in the context of the ML phases of matter as studied in Ref. 
[4] and apply it to the deformed one-dimensional topological 
superconductor [9–12]. We focus on understanding how ML 
discerns the topological character of a physical system [13].

Topological materials possess properties that are robust 
against certain continuous deformations. These properties 
of topological materials can be characterized by topologi-
cal invariants, such as the Chern number for the topologi-
cal insulator with broken time reversal symmetry or the �2 
index for the topological insulator with time reversal sym-
metry. These topological invariants defined above manifest 
themselves as gapless excitations living on boundaries. For 
example, the Chern number is identical to the number of 
edge states, and the �2 index can be identified with the �2 
parity of the number of edge/surface states [9–11].

For the one-dimensional p-wave superconductor, such 
topological boundary states associated with particle-hole 
symmetry are the Majorana fermions of zero energy with 
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1/2 fractional fermion number [14] localized at the ends of 
the superconductor [12]. In other words, the superconductor 
is topologically nontrivial if the Majorana zero modes exist 
at the ends, and vice versa.

The authors have studied the influences of the sine-square 
deformation (SSD) [15–18] on a one-dimensional p-wave 
superconductor [19]. SSD was designed to suppress the finite 
size and the boundary effects so that it can simulate an infinite 
size or a periodic boundary condition for finite systems with 
a boundary. As such investigating the effects of SSD on the 
boundary states of topological materials is very interesting.

The goal of this paper is to understand how ML deline-
ates the effects of SSD on the Majorana zero modes of one-
dimensional topological superconductors, using a classifica-
tion model, to analyze the associated topological phase. We 
emphasize that our focus is on understanding the operating 
mechanism of ML applied to a physical system rather than 
building a highly accurate prediction model. The main result 
of this paper is presented in Fig. 8.

We convert particular combinations of eigenvectors of 
the deformed Hamiltonian of the topological superconduc-
tor into image formats and implement a supervised learning 
algorithm via the convolutional neural network (CNN). The 
CNN was specifically designed with translational invariance 
and locality highlighted [1] so that it can classify images 
very efficiently. This feature has also been exploited in the 
classification of the phases of the matter [4, 20–22].

We have built a CNN structure which perceived the 
features of the Majorana zero mode (the spinor structure 
and the spatial profile), and the CNN trained with a dataset 
extracted from the link-deformed Hamiltonian (see below) 
turns out to be most effective in prediction.

This paper is organized as follows: we review the basic 
properties of the deformed one-dimensional p-wave super-
conductors in Sect. 2. Data preparation and the CNN struc-
ture are described in Sects. 3 and 4, respectively. The results 
are presented in Sect. 5, and we conclude this paper with 
discussions and summary in Sect. 6.

MATLAB is used as a computing platform [23].

2 � Deformed one‑dimensional p‑wave 
topological superconductor

To set the stage, we review our work on the deformed one-
dimensional, p-wave, topological superconductor in Ref. 
[19]. The second quantized lattice model of the spin-polar-
ized, one-dimensional, p-wave superconductor in the Bogo-
liubov-de-Gennes formalism (BdG) is given by [10, 12]

where t(t > 0) , � , and Δ are the hopping amplitude, the 
chemical potential, and the pairing amplitude, respectively. 
For the sake of physical relevance, we assume t > |Δ| . The 
p-wave pairing symmetry is reflected in the nearest-neighbor 
coupling of the pairing term. By introducing the Nambu 
spinor on lattice site j

one can recast the BdG Hamiltonian in Eq.(1) as

where N is the number of sites, and �1,2,3 are the Pauli matri-
ces. An irrelevant constant term is dropped. If a periodic 
boundary condition is imposed on the lattice, the Hamilto-
nian �BdG can be diagonalized in momentum space:

where �k = −2t cos k − � . The energy spectrum is given by

The energy spectrum is particle-hole symmetric, and the 
energy gap exists for � ≠ ±2t . If � = ±2t , the energy gap 
closes at k = 0,� . For the gapful cases with a periodic 
boundary condition, there are no midgap states such as zero 
energy states (zero modes).

The Hamiltonian in Eq. (3) can be expressed in terms of the 
single-particle Hamiltonian as
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From now on, we impose the open boundary condition and 
assume that Δ is real and positive.

Now, we introduce the SSD into our system. The SSD 
spatially modulates the energy scales of the Hamiltonian for 
one-dimensional systems with the following profile function:

The SSD can be applied to both the interaction defined on 
the lattice link (the first two terms of Eq. (6)) and the local 
site interaction (the last term of Eq. (6)). Because the charac-
ters of these two interactions are very different, we will con-
sider two types of SSDs: (I) an SSD applied only to the link 
interaction and (II) an SSD applied to both the link and the 
local site interaction. The case of a SSD applied only to local 
site interaction is not considered, because it is similar to an 
ordinary system with a spatially varying potential energy.

Then, the single particle BdG Hamiltonian of type (I) is 
given by

and the single-particle BdG Hamiltonian of type (II) is given 
by

The energy eigenvalues and the eigenvectors of the Hamil-
tonians Eqs. (6), (8), and (9) comprise the dataset of the ML 
study of this paper.

To understand the physics of the above Hamiltonians, it 
is instructive to consider the continuum limit of Eq. (4) near 
k = 0 ( with negative � ) in the low-energy limit, where it 
reduces to the one-dimensional Dirac Hamiltonian:

where �c = � + 2t . The topological nature of this Dirac 
Hamiltonian can be revealed by considering a spatially vary-
ing �c(x) of the kink (or domain wall) profile [14, 19]. Then, 
it can be readily shown that Eq. (10) has only one normaliz-
able zero mode solution:
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which demonstrates that the zero mode is localized at the 
location of the kink. Furthermore, this zero mode is a Majo-
rana fermion satisfying the Majorana condition

where �c is the charge conjugated spinor given by �c = �1�
∗ 

in our convention of Dirac matrices. Also, this zero mode is 
well-known to carry 1/2 (fractional) fermion number [14]. 
We quickly add that a similar analysis can be done for the 
anti-kink, and in that case, the spinor part becomes (1,−1)t 
(t denotes the matrix transpose).

For an open boundary condition, the exterior of the super-
conductor plays the role of topologically trivial state so that 
the boundaries (two ends of the wire) effectively become a 
kink and an anti-kink. In view of the discussions of the con-
tinuum model, the Majorana zero mode localized at the ends 
of the wire should exist if the superconductor is topologically 
nontrivial. Kitaev [12] showed, by the representing electron 
operator cj as a (complex) sum of two Majorana fermions, 
which manifests the fractional nature of a Majorana zero 
mode, that a Majorana zero mode localized at the end exists 
for −2 < 𝜇∕t < 2 . (Hence, the superconductor is topological.).

3 � Data preparation

The energy spectrum and the eigenvectors of the Hamilto-
nians in Eqs. (6), (8), and (9) have been obtained by direct 
diagonalization using MATHEMATICA, and these data are 
exported to MATLAB for the actual running of ML.

In the absence of a SSD, we find that the Majorana zero 
mode is localized at one end for the range −2 < 𝜇∕t < 2 (see 
panel (a) of Figs. 1 and 2), confirming the result obtained 
by Kitaev [12]. However, for smaller values of Δ and N, the 
criterion for the zero mode becomes ambiguous (see Fig. 1). 
An SSD makes the demarcation between the zero and the 
non-zero modes even more challenging (see Fig. 3), which 
implies that the detection of topological superconductivity 
becomes very nontrivial. This is where ML comes into play. 
We want to understand how ML responds to the topological 
nontriviality of topological superconductors if it is given 
input data with certain ambiguities.

We employ supervised learning based on the CNN, which 
means that we need labelled data, namely, zero mode or non-
zero mode, for our binary classification problem. Because 
we are interested in Majorana fermions (which are charge 
neutral), presenting the data in a form that exploits the par-
ticle–hole symmetry of the Hamiltonians is advantageous. 
For this purpose, let us re-express the eigenvalue problem 
in the following form (temporarily assuming complex Δ for 
generality):

(12)�c
zero

(x) = �zero(x),
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Fig. 1   Energy spectrum of the NoSSD case as a function of �∕t in the vicinity of zero energy. The number of lattice sites N is 40, 20 (left, right), 
and Δ∕t = 0.4, 0.2 (top to bottom). Note the different energy scale in (d)

Fig. 2   Typical examples of �
E
± �−E for the NoSSD case. (a) and (b) are the Majorana zero modes, while (c) and (d) are the Majorana non-zero 

modes. N = 40 and Δ∕t = 0.4 . Each case is labeled by the energy and by �∕t . Eupper = 0.1t , and Ethreshold = 0.001t (cf. Fig. 1a)
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where u and v denote the spatial parts of the spinor (with N 
components). Then, the spinor (+v∗, u∗)t is seen to have −E 
as an eigenvalue. Let us choose the phases of the eigenvec-
tors to be real and take the following combinations of the 
eigenvectors �E,�−E with the energy eigenvalues +E and 
−E:

Thus, the spinor parts become identical with those of the 
Majorana zero modes discussed in Section 2. In fact, the 
above shows that the zero modes should be doubly degener-
ate. Because we are looking for the zero energy states, that 
the most relevant data would be a set of eigenvectors with 
energy lower than a certain upper bound ( Eupper ) is evident: 
then, Eq. (14) is the proper combination to compare with the 
fractionalized Majorana zero-mode state. The combinations 
of Eq. (14) turn out to actually be equivalent to taking com-
binations of even- and odd-parity eigenvectors [24] owing 
to the parity symmetry of the Hamiltonians.

The data we use to train and test our deep learning algo-
rithm are made up of the combination of the eigenvectors 
Eq. (14), where the eigenvectors with (the absolute value of 
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(14)�E + �−E = (u + v, u + v) = (u + v)(1, 1), �E − �−E = (u − v, v − u) = (u − v)(1,−1).

) energy below Eupper are chosen for our dataset. Also, practi-
cally the energy of the zero mode is not strictly zero, so we 
have to introduce a certain threshold energy Ethreshold such 
that the states with energies lower than Ethreshold are regarded 
to be zero modes. Eupper and Ethreshold are adjusted according 
to both the type of SSD and the parameters Δ∕t and N. We 
designate the types of SSD as NoSSD (Eq. (6)), LinkSSD 
(Eq. (8)), and AllSSD (Eq. (9)). The data are selected by 
picking out 2000 random values of �∕t in the range of [–3, 

3] for three different values of Δ∕t (0.2, 0.3, and 0.4), and all 
the corresponding eigenvector combinations are labelled as 
either a zero mode or a non-zero mode. The combinations 
are labeled as Majorana zero mode states only when �∕t is 
within the topologically non-trivial range and when they 
have the lowest eigenvalues for the �∕t in consideration. 
We note that because only one zero mode exists for a given 
value of �∕t (for |𝜇∕t| > 2 , none exist), the non-zero mode 
data tend to be more than zero mode data for the LinkSSD 
and the AllSSD cases. The numbers of extracted data are 
presented in Table 1.

Now, let us examine the data for the NoSSD case. The 
spectrum of the eigenvalues with energy less than Eupper and 

Fig. 3   Energy spectrum of the LinkSSD case as a function of �∕t in the vicinity of near zero energy. Note the different energy scale in (d)
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the combinations of the eigenvectors are presented in Figs. 1 
and 2, respectively.

The Majorana zero mode is clearly visible in the range 
−2 < 𝜇∕t < 2 . The eigenvectors of the Majorana zero modes 
are depicted in Fig. 2. For the case of � = 0 , the combina-
tions of the zero-mode eigenvectors are well localized at one 
end only while as �∕t approaches the critical value ±2 , the 
localized nature weakens, for the exponent �c0∕Δ of Eq. (11) 
becomes smaller near the critical point. As is evident from 
Fig. 2, away from the critical points �∕t = ±2 , the Majorana 
zero modes can be clearly distinguished from the non-zero 
modes.

Because we are focusing on the zero energy states, the 
influence coming from the energy fluctuation caused by the 
finite size effect should be taken into account. The input data 
taken from the simulated data are subject to the finite-size 
effect, as is demonstrated in Fig. 1 by comparing the left 

and the right panels. Clearly, for smaller lattice size, the 
criterion for the zero mode becomes blurry, and this affects 
the performance of ML. Interestingly, the finite-size effect 
becomes weaker as Δ increases. This is because at smaller 
Δ , the topological stability of the topological superconductor 
becomes weaker.

Next, we examine the case of LinkSSD. The eigenval-
ues with energies below Eupper and the combinations of the 
eigenvectors are presented in Fig. 3 and Fig. 4, respectively. 
Comparing Fig. 3 with Fig. 1, we conclude that LinkSSD 
diminished the stability domain for the zero mode. In par-
ticular, the demarcation between non-zero modes and 
zero modes becomes ambiguous around the critical points 
�∕t = ±2.

As for �E ± �−E , we have to note that the combinations 
in panels (a) and (b) (the zero mode) of Fig. 4 are localized 
at only one end while in the panels (c) and (d) (the non-zero 

Table 1   Number of data used in 
the ML training and the test of 
the zero mode

Δ∕t NoSSD LinkSSD AllSSD

0.2 0.3 0.4 0.2 0.3 0.4 0.2 0.3 0.4

Zero mode 2676 2530 2514 2526 2332 2386 2702 2572 2694
non-Zero mode 1978 1598 1242 4200 10938 12348 41546 40188 39336

Fig. 4   Typical examples of �
E
± �−E for the LinkSSD case. a and b are the Majorana zero modes while c and d are the Majorana non-zero 

modes. Δ∕t = 0.4 , and N = 40 . Eupper = 0.2t , and Ethreshold = 0.004t (cf. Fig. 3a)
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mode), they appear to be localized at both ends. These fea-
tures will be learned by the ML algorithm. A qualitative 
explanation for the eigenvectors in panel (b) of Fig. 4 can 
be found in Ref. [19].

Finally, we examine the case of AllSSD. The eigenvalue 
spectrum and the combinations of the eigenvectors are pre-
sented in Figs. 5 and 6, respectively. For the AllSSD case, 
the difference between the Majorana zero modes and non-
zero modes is significantly robust, compared to the LinkSSD 
and the NoSSD cases. The Majorana zero mode is clearly 
visible in the range −2 < 𝜇∕t < 2 and is well localized at one 
end shown in panel a of Fig. 6. A qualitative explanation for 
this behavior is given in Ref. [19]. Also, finite size effects 
are seen to be strongly suppressed compared to the LinkSSD 
case. In particular, we must note that the wavefunction of 
panel c of Fig. 6 (at � = 2 ) is labelled as a non-zero mode 
even though it is very similar to that of panel b.

4 � Neural network structure

A neural network is one of the most powerful techniques 
used by supervised learning algorithms. From diverse neural 
networks, we choose to deploy the CNN, which was specifi-
cally designed for image processing. The idea is to convert 

the raw labelled data of the combinations of the eigenvectors 
into image formats and to let CNN classify the image dataset 
into two categories: zero mode (topological superconduc-
tor) or non-zero mode (non-topological superconductor). 
A schematic of the data processing and CNN structure is 
presented in Fig. 7.

The �E ± �−E combinations of eigenvectors, which have 
80 components ( N = 40 ), are divided into 8 equal compo-
nents and stacked from top to bottom and left to right, result-
ing in a dataset of 8 × 10 matrices. Next, these matrices are 
converted into gray images and augmented by a factor of five 
in order to make training smoother and more flexible. The 
CNN consists of two convolution layers: the first layer hav-
ing 16 5 × 5 sized filters, and the second having 32 3 × 3 sized 
filters. A maximum pooling layer with a pooling size of 4 × 5 
is placed between the two convolution layers. Although 
not shown in the figure, a batch normalization layer exists 
between the convolution layer and the activation function, 
which is chosen to be the leaky rectified linear unit (leaky 
ReLU). The last convolution layer is followed by a fully con-
nected layer and a softmax classifier with two neurons each 
representing a zero or a non-zero mode.

We to implement the above CNN use MATLAB’s in-
built algorithm provided by the Deep Learning Toolbox. 
The Stochastic Gradient Descent method using momen-
tum optimization is used in the training process [25]. Our 

Fig. 5   Spectrum of the energy eigenvalues for the AllSSD case as a function of �∕t in the vicinity of zero energy. Note the different energy scale 
in (d)
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image data are relatively simple and intuitive (even though 
the data for the deformed cases can be quite ambiguous), 
so a small number of features (such as the numbers of fil-
ters and epochs) will suffice for our purposes. This allows, 
and actually forces, us to set the network parameters lower 
than those that would be used to prevent over-fitting. A 

network consisting of two convolution layers performs 
well while preventing the network from become too deep 
and complex. In fact, the CNN with three layers does 
not yield a significant improvement of the classification 
accuracy. We also comment that for prototypical networks 
with a single convolution layer, adding a pooling layer 

Fig. 6   Typical examples of �
E
± �−E for the AllSSD case. a and b are for Majorana zero modes, while c and d are the Majorana non-zero 

modes. N = 40 , and Δ∕t = 0.4 . Eupper = 0.1t , and Ethreshold = 0.0001t (cf. Fig. 5a)

Fig. 7   Schematic of the data processing and the main structure of the CNN employed in this paper
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reduces the prediction accuracy for other SSD case data 
substantially.

L2 regularization has been employed throughout the 
whole training process, and the maximum number of train-
ing epoch is kept at 10, with the Validation Patience 
parameter set at 10 [25]. Such measures were necessary, 
because the training accuracy reaches almost 100%, while 
the loss function also rapidly converges to almost 0% within 
the first epoch. Normally, such behaviors imply either over-
fitting or an easy dataset compared to the complexity of the 
CNN model, which indicates that most of the important fea-
tures are learned during the first few iterations.

We also tried a simpler network consisting of one convo-
lution layer with a limited number of filters (1, 2, 4). The rest 
of the network structure were held fixed. The performance 
of the simpler network was compared with that of the main 
two-layered network model. Even though the loss function 
died out substantially within the first epoch, a complete pla-
teau toward zero value was reached only after several more 
runs, in contrast with the main two-layered network. Despite 
such improvements, the critical downside is that compared 
to the two-layer network, the simpler networks yield worse 
classification accuracy for datasets obtained from different 
SSD cases.

In view of these observations, retaining the slightly more 
complicated overall network structure of two convolution 
layers with limited iterations and epochs appears to be the 
optimal choice. The input data are extracted with labels from 
three cases, NoSSD, LinkSSD, and AllSSD, independently, 
as discussed in Sect. 3. These data are input into our neural 
network separately without mixture.

5 � Results

The labeled dataset obtained in Sect. 3 is the input to the 
CNN developed in Sect. 4. We randomly split each dataset 
into train, validation, and test datasets in the approximate 
ratio of 70% , 15% , and 15% , respectively. The training dataset 
are selected only from the eigenvectors with Δ∕t = 0.4 to 
reduce the finite-size effects.

Once the training procedure has been completed using the 
train and the validation datasets, evaluation on the model is 
provided by the remaining test dataset. Once this cycle is 
finished, the final CNN is applied to various datasets of the 
Majorana combination of eigenvectors for topological phase 
classifications.

The result of the CNN and a schematic of the training and 
the classification processes are presented in Fig. 8.

The accuracy of the results is defined as the percentage of 
eigenvectors classified as a corresponding mode that belong 
to the actual labeled state. Note that the total average accu-
racy plotted on the main graphs of Fig. 8 may be biased due 

to the fact that the initial datasets contain many more non-
zero modes than zero modes (see Table 1), which, in fact, 
may reflect the experimental difficulties in obtaining the true 
zero-mode Majorana fermions.

To address this point, we provide the inset plots of 
Fig. 8 to assess the performance of the three trained net-
works in classifying the zero modes as zero modes and the 
non-zero modes as non-zero modes. The dotted lines in 
the inset data are obtained from classifying test data made 
up of zero modes only, and similarly, the semi-dotted line 
data are obtained for the non-zero modes. These results 
demonstrate that the trained CNN accurately predicts zero 
mode data as zero mode and non-zero mode data as non-
zero mode, so that no bias is caused by the overwhelming 
abundance of non-zero mode data.

Comparing panels a–c of Fig.8, we find that, evidently, 
the CNN trained with LinkSSD data performs the best 
in distinguishing between zero and non-zero modes of 
the test datasets from the NoSSD, LinkSSD, and AllSSD 
cases. Because the structure of the CNN is fixed as of 
Fig. 7, such a difference in performance implies that the 
LinkSSD training data set is a most diverse and flexible 
dataset, which is in line with what we discussed in Sect. 2. 
In terms of bias-variance tradeoff, given a finite amount 
of training data, we can restate the above result by saying 
that the LinkSSD-trained CNN is less dependent on the 
particular realization of the training data, i.e., has a lower 
variance.

On the contrary, the two other models display poorer 
performances in classifying other types of datasets. For 
the NoSSD case, this may stem from the fact that it is pro-
vided with a smaller amount of data compared to the other 
cases (see Table 1) and is, thus, more liable to finite-size 
sampling noise. The NoSSD data with wide error bars sup-
port this observation in general. Additionally, all the zero 
modes in the NoSSD dataset have the highest peak at one 
end of the wire. From the inset of Fig. 8c, we confirm that 
the NoSSd-trained model cannot perceive the zero modes 
of the LinkSSD (see the dotted lines with the star marker) 
while successfully picking out those of the AllSSD with 
almost 100% accuracy (see the dotted lines with the square 
markers). Comparing Figs. 2a, 4b, and 6a, we can infer that 
such an inflexibility in the training data creates a model with 
high variance.

This behavior is also seen in the AllSSD case, despite 
the fact that it is provided with the largest training dataset. 
The rigidity of the zero-mode eigenvector combinations is 
the strongest in AllSSD due to the suppression of the finite 
size effect by the SSD; i.e., all the zero modes (except for the 
ones in the vicinity of the boundaries of the critical range of 
�∕t ) of the AllSSD have a single sharply localized peak at 
one end of the wire. From the inset of Fig. 8b, we confirm 
that AllSSD trained models have low performance rates for 
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classifying zero modes of other SSD data (see the two dot-
ted lines).

Also, returning to the inset of Fig. 8c, the non-zero mode 
prediction for the AllSSD case is also quite low at about 50% 
no matter the value of Δ∕t (see the semi-dotted lines with 
the square markers), because the data with two narrow peaks 
positioned at both ends of the wire, such as in Fig. 6d, were 
inaccurately predicted as zero modes.

Thus, we conclude that when images consisting of a 
localized peak at one end are provided as the only zero 
modes, the algorithm learns the following: zero mode data 
have peaks that must be localized at the ends of the wire, 
and the number of peaks does not matter as long as the high-
est peaks are located at the ends. On the other hand, when 
the CNN is trained with data that has a wavefunction local-
ized away from the ends, as in the zero-mode LinkSSD data 
(Fig. 4b), then the network finally learns to seek out the 

number of peaks while being flexible to the actual location 
and width of the distribution, thus achieving generalization, 
i.e., a lower variance.

Additionally, in Fig. 8a and b, the prediction accuracy for 
the NoSSD test set is higher for datasets corresponding to 
larger value of Δ∕t (see the diamond shaped markers). Such 
behavior is manifest in the total accuracy, as well as the 
accuracy for only zero modes, in the inset graph. Because 
the accuracy for the test data consisting only of non-zero 
modes always reaches near 100%, that the strong correlation 
between Δ∕t and the accuracy of the NoSSD data classifica-
tion originates from the properties of the zero-mode dataset 
is evident. To put it in simpler terms, the trained networks in 
Fig. 8a and b are less effective in predicting the zero modes 
with smaller values of Δ∕t while being perfectly capable for 
non-zero modes.

Fig. 8   Average accuracy for the classification of zero and non-zero 
Majorana modes at each value of Δ∕t . The vertical error bars rep-
resent the standard errors of the mean over twelve separate runs of 
the training process. From a–c, each figure shows the performance of 

three separate CNNs that are trained with data extracted from three 
different cases; LinkSSD, AllSSD, and NoSSD, all with Δ∕t = 0.4 . d 
Schematic of the training and the classification processes
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As explained in Sect. 2, at lower Δ∕t values, the eigen-
values and the eigenvectors become more susceptible to the 
finite size effects and perturbations. In particular, our test 
dataset becomes more rapidly ambiguous near the critical 
boundaries of �∕t = ±2 (namely, the localization behav-
ior weakens). Considering that Fig. 8a and b are trained by 
using the LinkSSD and the AllSSD train datasets, where the 
zero-mode data display a single sharp peak at the edges or a 
single bell-shaped localization, their inability to discern the 
zero-mode states with a broad profile, such as in Fig. 2b, is 
understandable.

6 � Discussion and summary

As an extension of the result in Sect. 5, the performance of 
our model can be further improved if the network is trained 
using mixed types of data from different SSD cases rather 
than just using the dataset from one case. However, our focus 
does not lie in building a network that operates at high accu-
racy, but rather in understanding what attributes the network 
learns when provided with specific types of data.

For example, when we train the CNN by using entire 
AllSSD dataset together with zero-mode images from the 
LinkSSD, the classification accuracy for NoSSD zero mode 
improved substantially to about 91%. This implies that the 
addition of diverse zero-mode data of LinkSSD enables the 
algorithm to learn about more generalized attributes; thus, 
it becomes a model with lower variance.

Recall that for one convolution layer network having 1, 
2, or 4 filters (discussed in Sect. 3), the overall classification 
accuracy for other SSD cases was low. However, when we 
increase the number of filters up to 16, the network trained 
with the LinkSSD dataset only, exhibits a better prediction 
accuracy (nearly 95% on average) with smaller standard 
errors for the NoSSD zero-mode images while it performs 
poorly on AllSSD zero modes, 58% on average. In contrast, 
our main CNN in Fig. 7 classifies the AllSSD test dataset 
with almost 100% accuracy while its performance is rela-
tively low (nearly 89%) for NoSSD zero-mode data, as can 
be seen in Fig. 8a. The comparison of these reversed behav-
iors causes us to speculate that the addition of an extra con-
volution layer, i.e., increasing the depth of the CNN, enables 
the network to learn smaller-range localized features. This 
is in line with the general fact that CNN with multiple lay-
ers can probe more detailed and localized features of input 
images.

Although in our paper ML processed the data from theo-
retical models, it can truly excel is in the analysis of complex 
experimental data subject to noise and other (undesirable 
or interesting) perturbations. In our study, such perturba-
tions are simulated through the SSD and the finite size of 
our system. From the perspective of our theoretical work 

on topological superconductors, the tunneling microscopy 
experiments [26] were particularly relevant, because they 
give direct information on the local density of states.

In summary, we have applied a supervised machine 
learning algorithm in the neural network architecture to the 
problem of classifying the topological phase of a SSD one-
dimensional topological superconductor. Our study clearly 
illuminates the aspects of the operating mechanism of the 
CNN when applied to physical systems.
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