Skip to main content
Log in

Analytical relationship between sound relaxational absorption and sound speed dispersion in excitable gases

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Whether sound relaxational absorption and sound speed dispersion can be used as two independent acoustic parameters for gas sensing or not is still uncertain. In this paper, the analytical relationship between the frequency-dependent sound relaxational absorption and sound speed dispersion in excitable gases is derived and analyzed. First, the coefficient of compressibility in the Newton–Laplace equation of sound speed is extended to an effective one for relaxing gas. Second, using the relationship between the effective coefficient of compressibility and the effective wave number, we obtain the analytical relationship between sound relaxational absorption and sound speed dispersion from the high-frequency and the low-frequency sound speeds, respectively. The derivation and the simulation results for gas mixtures, including carbon dioxide, methane, and nitrogen, demonstrate that the ratio of the high-frequency sound speed to the low-frequency sound speed determines the amplitude of acoustic relaxation absorption peak, that the inflection frequency of sound speed dispersion is consistent with the relaxation frequency of sound relaxational absorption, and that sound speed dispersion contains all molecular information carried by sound relaxational absorption and is more applicable to acquiring the molecular geometry, the vibration frequency, and other gas molecular characteristics. This paper provides a more theoretical basis on using acoustic speed dispersion for gas sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.D. Lambert, Vibrational and Rotational Relaxation in Gases (Clarendon, Oxford, 1977).

    Google Scholar 

  2. A.G. Petculescu, R.M. Lueptow, J. Acoust. Soc. Am. 117, 175 (2005)

    Article  ADS  Google Scholar 

  3. T.T. Liu, S. Wang, M. Zhu, J. Acoust. Soc. Am. 141, 1844 (2017)

    Article  ADS  Google Scholar 

  4. A.G. Petculescu, R.M. Lueptow, Sens. Actuators B Chem. 169, 121 (2012)

    Article  Google Scholar 

  5. K.S. Zhang, X.Q. Zhang, F. Shao, Acta Acoust. 45, 394 (2020)

    Google Scholar 

  6. Y. Hu, S. Wang, M. Zhu, K.S. Zhang, T.T. Liu, D.Y. Xu, Sens. Actuators B Chem. 203, 1 (2014)

    Article  Google Scholar 

  7. M. Zhu, T.T. Liu, S. Wang, K.S. Zhang, Meas. Sci. Technol. 28(1), 085008 (2017)

    Article  ADS  Google Scholar 

  8. X.Q. Zhang, S. Wang, M. Zhu, K.S. Zhang, T.T. Liu, G.W. Peng, IEEE Access 7, 115774 (2019)

    Article  Google Scholar 

  9. M. Zhu, T.T. Liu, X.Q. Zhang, C.Y. Li, Meas. Sci. Technol. 29, 015109 (2018)

    Article  ADS  Google Scholar 

  10. X.Q. Zhang, S. Wang, M. Zhu, Meas. Sci. Technol. 31, 115001 (2020)

    Article  ADS  Google Scholar 

  11. E. Griffiths, Proc. Phys. Soc. 39, 300 (1926)

    Article  ADS  Google Scholar 

  12. M. Joos, H. Muller, G. Lindner, Sens. Actuators B Chem. 16, 413 (1993)

    Article  Google Scholar 

  13. R.M. Lueptow, S. Phillips, Meas. Sci. Technol. 5, 1375 (1994)

    Article  ADS  Google Scholar 

  14. J.E. Carlson, P.E. Martinsson, J. Acoust. Soc. Am. 117, 2961 (2005)

    Article  ADS  Google Scholar 

  15. J.H. Terhune, S.J. Calif, United States Patent, 4520654 (1985)

  16. S. Philliips, Y. Dain, R.M. Lueptow, Meas. Sci. Technol. 14, 70 (2003)

    Article  ADS  Google Scholar 

  17. M. Zhu, S. Wang, S.T. Wang, D.H. Xia, Acta Phys. Sin. 57, 5749 (2008)

    Google Scholar 

  18. K.S. Zhang, W.H. Ou, X.Q. Jiang, F. Long, M.Z. Hu, J. Korean Phys. Soc. 65, 1028 (2014)

    Article  ADS  Google Scholar 

  19. K.S. Zhang, S. Wang, M. Zhu, Y. Hu, Y.Q. Jia, Acta Phys. Sin. 61, 174301 (2012)

    Google Scholar 

  20. Y. Dain, R.M. Lueptow, J. Acoust. Soc. Am. 109, 1955 (2001)

    Article  ADS  Google Scholar 

  21. K.S. Zhang, S. Wang, M. Zhu, Y. Ding, Y. Hu, Chin. Phys. B 22, 014305 (2013)

    Article  ADS  Google Scholar 

  22. K.S. Zhang, Y. Ding, M. Zhu, M.Z. Hu, S. Wang, Y.Q. Xiao, Appl. Acoust. 116, 195 (2017)

    Article  Google Scholar 

  23. W.P. Mason, Physical Acoustics, Pt. A, vol. 2 (Academic Press, New York, 1965).

    Google Scholar 

  24. A.G. Petculescu, R.M. Lueptow, Phys. Rev. Lett. 94, 94238301 (2005)

    Article  Google Scholar 

  25. K.S. Zhang, M. Zhu, W.Y. Tang, W.H. Ou, X.Q. Jiang, Acta Phys. Sin. 65, 134302 (2016)

    Google Scholar 

  26. P.M. Morse, K.U. Ingard, Theoretical Acoustics (McGraw-Hill, New York, 1968).

    Google Scholar 

  27. K.S. Zhang, X.Q. Zhang, W.Y. Tang, Y.Q. Xiao, X.Q. Jiang, Acta Acoust. 43, 309 (2018)

    Google Scholar 

  28. F.D. Shields, J. Acoust. Soc. Am. 47, 1262 (1970)

    Article  ADS  Google Scholar 

  29. S.G. Ejakov, S. Phillips, Y. Dain, R.M. Lueptow, J.H. Visser, J. Acoust. Soc. Am. 113, 1871 (2003)

    Article  ADS  Google Scholar 

  30. K.S. Zhang, S. Wang, M. Zhu, Y. Ding, Meas. Sci. Technol. 24, 055002 (2013)

    Article  ADS  Google Scholar 

  31. A. Petculescu, B. Hall, R. Fraenzle, S. Phillips, R.M. Lueptow, J. Acoust. Soc. Am. 120, 1779 (2006)

    Article  ADS  Google Scholar 

  32. K.S. Zhang, L.K. Chen, W.H. Ou, J.X. Qing, F. Long, Acta Phys. Sin. 64, 054302 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their constructive and insightful comments for further improving the quality of this work. This work is supported by the National Natural Science Foundation of China (Grant nos. 62071189, 61461008, 11764007), the National Science Foundation of Guizhou Province, China (Grant no. Qian Ke He Ji Chu-ZK[2021] Yi Ban 318), the National Science Foundation of Henan Provincial Department of Science (Grant no. 212102310906), and the Recruitment Program of Guizhou Institute of Technology (Grant No. XJGC20140601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Zhang, S., Ding, Y. et al. Analytical relationship between sound relaxational absorption and sound speed dispersion in excitable gases. J. Korean Phys. Soc. 78, 1038–1046 (2021). https://doi.org/10.1007/s40042-021-00158-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00158-3

Keywords

Navigation