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Abstract Currently, the main objective of oil operating

companies is to increase drilling efficiency and minimize

drilling costs; this can be achieved in several ways. One of

them is the curtailment of downhole events associated with

trouble time by obtaining the key factors that drive the best

proactive solutions in terms of cost and effectiveness. From

this perspective, the core focus of this paper is to present a

detailed description to develop an integrated decision tool

that will assist well planner engineers in evaluating mul-

tiple solutions considered to address a downhole problem

anticipated during the well construction process. The tool

presented here provides the means of assessing a particular

solution’s cost and anticipated effectiveness by generating

an evaluation matrix based on two intercorrelated decision-

driving indices, technical and monetary. To theoretically

validate the concept, an artificial case study was created to

find the best solution in mitigating a bit balling problem.

The results of the case study reveal that: the concept is

indeed theoretically applicable. However, a real life case

study must be performed to prove the concept practically.

Keywords Decision Tools � Downhole Drilling Problems �
Decision Quality � Drilling Trouble Time

Introduction

To meet the global demand for a steady supply of energy at

affordable prices, the industry is now faced with the choice

of developing technologies that can withstand a new era of

drilling challenges. As the drilling costs significantly con-

tribute to the cost per barrel, the industry is pressured into

finding ways to lower the cost per foot drilled. Further-

more, hydrocarbon reservoirs are depleting faster than ever

before, and the remaining plays are becoming technically

more and more difficult to access. Well, construction

becomes more and more complex as more extreme profiles

like Deepwater subsalt plays, extended reach, high-pres-

sure high temperature, and remote arctic environments are

being explored. To better plan for potential overruns,

operators sometimes earmark up to 25% of the Autho-

rization for Expenditures (AFE) to cover unexpected costs,

which can significantly impact drilling budgets [1]. In

understanding potential problems, the anticipation and

planning for a solution becomes essential to control overall

well cost and succeed in reaching the intended target [2].

The possibility of the aforementioned threats may be slight

in a particular well design, but there are configurations

where potential drilling problems can be easily foreseen

during the planning stage due to for instance, geological

context [3]. To compete in narrow economic windows,

operators should aim to mitigate difficult drilling condi-

tions and improve the wells economics by employing the

most effective solutions for a particular cause and avoid

reaching the contingency fund within a well‘s AFE. Due to

the ubiquitous oil price fluctuations and complicated

engineering applications, the selection of downhole deci-

sion tools and tuning drilling decisions should be harmo-

nized to diminish downhole problems and failures while

minimizing non-productive time (NPT).
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Proactive solutions for combating downhole drilling

problems are considered more favorable as they reduce the

likelihood of occurrence rather than minimize the impact of

an unanticipated problem [4, 5]. However, when multiple

proactive solutions are available for a given downhole

drilling problem, the considered solutions should be risk-

weighted for determining the most economical option [6].

Therefore, Over the last decade, various methodologies

emerged as decision tools helping to obtain the optimum

proactive solution for encountering operational problems.

In the next section, the most relevant tools are discussed.

Knowledge-intensive Case-Based Reasoning (KiCBR)

is a problem-solving and decision-making approach. The

encountered problem is solved by finding a set of similar

previously solved problems, called cases, and reuse them to

solve the newly faced problem [7]. The KiCBR was

recently applied in a case study to determine the root cause

of poor hole cleaning episodes [2]. However, the proposed

methodology acts as an advisor in retrieving similar cases

and listing the results to enable root cause prediction.

Incorporating an extensive database to successfully estab-

lish similarities between matched well sections, as well as a

lack of risk and cost assessment on a particular decision, is

considered as the main drawback.

The first application of machine learning in cotext of

real time drilling decision support was presented in 2013.

The proposed approach utilized machine learning to con-

struct a KiCBR platform for comparing a real-time situa-

tion with historical cases where problems occurred to

differentiate between best drilling practices and building a

fast, practical, real-time solutions. Although the approach

can provide fast solutions, it fails in evaluating the solu-

tions in terms of expected cost and effectiveness [8].

Other concepts used in support of drilling decisions are

so-called Influence diagrams or Bayesian networks. Over

time, the usage of Bayesian Networks prevailed over

classic decision trees, providing a level of insight and

transparency in more complex decisions [9]. The use of

influence diagrams based on the mathematical apparatus of

Bayesian networks (BN) allows a combination of graphical

representations with its probabilistic nature and evaluation

of a decision utility. Unlike KiCBR methods, the apparatus

of BN provides a theoretical approach and a mathemati-

cally proven method that is sufficiently accurate in extre-

mely complex situations and conditions with predominant

uncertainty [10].

In 2017, a method to identify, assess, prioritize, and

manage drilling risks based on engineering judgment and

expertise was presented. It implemented the analytical

hierarchy process to rank previously filtered hazards, ter-

med Risk Influencing Factors, consequently adducing total

risk exposure for a particular problem without any cost-

effective criterion [11].

Another widely used methodology for drilling decisions

is quantitative risk assessment. Although this method has

shown its applicability within risk assessment, it cannot be

considered idealistic due to the following: A lack of sys-

tematic approach to rank the possible solutions in terms of

effectiveness and efficiency, unconsidered uncertainty

associated with cost estimation for implementing a par-

ticular solution for a specific downhole problem, and a

methodology to estimate the impact of potential solutions

during the well construction planning phase [12].

An approach based on game theory was recently intro-

duced as a stochastic decision analysis model to estimate

the risk of downhole tool failures. The presented work

assesses the tool reliability and replacement risk and sim-

ulates the possible outcomes with different drilling plans

and tool maintenance schedules. The stochastic approach

was shown helpful in identifying high-risk tools and their

components by generating Pay-off tables for a planned

drilling run based on the replacement cost, the probability

of failure (PoF), and the extra incurred cost due to occurred

failure. It can be stated that the authors credibly argued a

possible usage of game theory to minimize downhole tool

failures. However, a limited spectrum of applications and

low relation arise when considering the overall drilling

costs, which is the main disadvantage of the proposed

concept [13].

With the encompassing digitalization of the upstream

sector, many machine learning tools for predictive methods

to identify possible NPT-related events during well con-

struction are developed. However, these software tools

likely cannot fully replace manual analysis by subject

matter experts (SME) in real-time; instead, they augment

the SME’s ability to identify the correlations in a large

volume of data. As these systems are being developed, an

SME can benefit from a centralized database that contains

the ever-increasing amount of digital data collected during

well construction. Although the decision-makers are pro-

vided with data-supported recommendations at crucial

junctures, these recommendations typically involve costly

rig time with ongoing drilling activity. The trade-off

between added rig time and benefits gained from the

‘‘machine’’ recommendation is difficult to quantify.

Undoubtedly, operators will benefit from addressing

downhole problems yet due to robust pre-planning. The

emphasis should be put on avoiding or preventing the

problem rather than early detection. One cannot disregard

that such tools can augment the well construction process

in real-time by supporting the recommendation. However,

as a more thorough assessment is conducted during the

planning phase, the less inherent uncertainty there will be,

which will, in turn, reduce the likelihood of crucial junc-

tures, thus causing less rig downtime [9, 14, 15 and 16].
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This papers aim is to introduce a new decision tool to

enhance the decision-making process and deliver more

positive results during the well planning phase; by

employing semi-quantitative and stochastic methods, the

evaluation matrix is developed comprising two indices to

provide a quantitative basis for selecting the most foreseen

optimal drilling solution from technical and economic

perspectives.

Background

Overlooking particular risks or failing to address all the

possible outcomes during the well planning process can

bring significant errors in the cost and time estimation of

the performed drilling operation. Eventually, this may

impact the overall project economics to a considerable

extent. The uncertainty associated with cost estimation for

a particular solution during the planning phase is very high.

The solution impact can be measured only once the solu-

tion has practically been implemented. To determine the

optimum proactive solution in terms of costs and effec-

tiveness, the presented integrated decision-making tool

relies on using two indices, a Technical indices (TI) and a

Monetary indices (MI), to rank the possible proactive

solutions for a given downhole problem.

Technical Indices predict how well the nominated

proactive solution combats a particular downhole problem.

It reflects only the technical aspect of the solution.

Although different tools may be adapted to estimate the

technical indices, due to its simplicity and aptness for

making complex decisions Weighted Matrix Method

(WMM) was selected to be used in this study. In contrast,

the Monetary Indices assesses the anticipated cost and

benefit of the studied solutions. Ultimately, the two gen-

erated indices can be plotted against each other in a 2D

evaluation matrix, which provides the final score one could

use to screen multiple solutions in terms of cost and

effectiveness. Figure 1 depicts the illustration workflow of

the proposed methodology.

Downhole Problem Recognition and Solutions

Identification

The most commonly used approach for identifying the

likely downhole problems and their root causes is by

analyzing historical data ( offset well trouble time). The

trouble time analysis process helps outline critical down-

hole problems that could cause delays in planned drilling

operations. Once the problems are defined, the involved

person can move to the second step, in which the search for

idealistic proactive solutions is started. Based on the nature

of the problems and the causes, several potential solutions

might be available. However, the question still open here is

which solution will be more effective in terms of cost and

competence.

Comparative Criteria Selection

The suggested criteria used in the rating of the TI and MI

are listed below. Bear in mind that the authors propose the

indicated list of criteria, but is not limited to; thus, the list

could be extended further based on the expected downhole

problems and the possible solutions. However, only a few

criteria have been introduced here, selected based on the

hypothetical case study, which will be explained later.

Criteria Proposed to Develop Technical Indice

I. Enhanced Rate of Penetration (EROP) represents the

applied solution’s effect on ROP enhancement. Due to

that, some applied downhole solutions might have

either a negative or positive influence on ROP.

II. Method Reliability (MR) represents the expected

success rate while tackling the anticipated downhole

problem. The solution is considered 100% effective if

it is expected to reduce the NPT associated with the

drilling problem to a minimum.

III. Downhole Impact (DI) indicates a level of impact

delivered to the downhole performance in the overall

drilling process. The values assigned to this criterion

can be obtained only based on practical experience.

IV. Improved Wellbore Stability (IWS) shows the impact

each solution will have on the wellbore stability.

Precisely, studied solutions might have either positive

or negative impacts on wellbore stability.

V. Solution Complexity (SC) accounts for the effort

required to implement a particular solution. Higher

the effort, higher the personnel’s pressure, which may

negatively affect flat time operations and increase

overall drilling cost. Compared with other criteria in

use, a simple ranking was used to assess the valueFig. 1 Main processes followed to develop an integrated decision-

making tool
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entered into the WMM. SC is considered to harm the

considered solution as opposed to other criteria,

meaning the lower the weighted score, the better.

Criteria Proposed to Develop Monetary Indice

I. NPT Reduction Savings (NPTRS) This indicates the

expected reduction in NPT that could be achieved by

implementing the solution. It is calculated by multi-

plying the expected reduction in NPT by the estimated

drilling rig hourly rate.

II. Extra Incurred Expense (EIE) refers to the direct

expenditure required to implement the selected solu-

tion. By expressing incurred expense in unit cost, the

total expense can easily be calculated by multiplying

the unit price with the quantity required.

III. Enhanced Penetration Savings (EPS) indicates addi-

tional savings obtained through an increase in

average ROP, which will eventually reduce total

Invisible Lost Time (ILT). It can be estimated by

multiplying predicted saved hours by the estimated

drilling rig hourly rate.

IV. Implementation Estimated Time (IET) indirectly costs

incurred due to time consumed while implementing a

specific solution. It can be computed by using the

estimated drilling rig hourly rate.

Development of the Technical Indice (TI)

As mentioned earlier, the Weighted Matrix (WM) is a

simple semi-quantitative method used to manage or make a

set of complex decisions. A filtering criterion can be

established with numerous alternatives to rank all the

accounted alternatives to the primary reference.

Using the known WM procedures for developing the TI

is not possible. Consequently, additional steps are required

to make the implementation of this tool applicable. The

modified steps are outlined below:

1. Construct a list of all possible solutions for a particular

downhole risk or hazard

2. Define a set of criteria using the appropriate bench-

mark that will allow comparison between different

solutions

3. Evaluate each of the considered solutions separately

for every introduced criterion

4. Assess the impact of each considered solution against a

particular criterion, i.e., compare the impact of the

individual solution score to benchmark within a set of

listed solutions

5. To obtain a rating scale, assign a normalized weighted

factor based on each criterion‘s importance and

influence on bottom-line decision

6. Calculate weighted scores by multiplying the score of

each solution by the weighted factor assigned

7. Provide a final comparison score for each alternative

by adding all the calculated weighted scores for a

particular drilling solution.

8. By using a Weighted Matrix with a pre-defined set of

comparative criteria, TI can be computed.

Development of Monetary Indices (MI)

Before commencing the process of developing MI, the

continuous probability distribution of each involved vari-

able has to be defined. Two stochastic functions can

describe the continuous probability distribution of any

variable. The first one is the Probability Density Function

(PDF), showing variables of interest with its frequencies.

PDF is used to specify the probability of the random

variable falling within a particular range of values instead

of taking on any value. This probability is given by the

integral of this variable’s PDF over that range, viz, it is

given by the area under the density function and between

the lowest and greatest values of the range. Another

function to describe the distribution of random variables is

the Cumulative Density Function (CDF), denoting the

probability the variate will take the value x. A scalar

continuous distribution is given by the area under the

probability density function from minus infinity to x or

simply by calculating the area leftward from the variable of

interest under the curve in the probability density function

diagram. In the proposed tool, triangular distribution, often

called ‘‘lack of knowledge distribution,’’ was employed to

reasonably represent the probability density function.

Defined as a continuous probability distribution with a

lower limit a, upper limit b, and mode c, where a\ b and

a B c B b, it is based on a knowledge of the minimum and

maximum and an ‘‘inspired guess.’’ Thus, the assumption is

made that the project planning team guessed for at least

three values to define the triangular distribution [17].

In order to compute MI, two different target groups are

set based on the summation of comparative criteria. The

first group consists of criteria that represent the potential to

reduce the associated costs. Since they are considered to

add value to the selected method, they will be referred to as

Positive Indicators (PI), while their summation can be

considered as Foreseen Savings Potential. These include

NPTRS and EPS (Fig. 2, blue-filled squares). In contrast,

the second group comprises criteria that cause additional

costs are referred to as Negative Indicators (NI). These

include EIE and IET (Fig. 2, white squares); collectively,

they will be used to express the Expected Expenses. The

Summation costs are calculated by multiplying a unit cost

and the effect each criterion has on the solution cost in
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terms of hours reduced/incurred. Figure 2 schematically

summarizes criteria taken into developing MI. Once the

target groups are set as Monte Carlo simulation (MCS)

output, one can calculate the probability distribution for

Foreseen Savings Potential and Expected Expenses. CDF is

defined for Expected Expenses by simple multiplication of

discrete probability values, ranging from 0–1, and inferred

from MCS to assess the MI value.

Similarly, however in the opposite range, i.e., 1–0,

Reverse Density Function (RDF) is defined for the Fore-

seen Savings Potential. Such arrangement allows inferring

the probability at which both functions coincide, thus

representing the probability that the required cost for a

particular solution will equal the savings cost. An example

can be seen in Fig. 3.

It is essential to mention that there might be situations

where the concurring probability may not be estimated

from MCS output. Here, the following may be the causes:

1. A relatively small economic impact, meaning the

implemented solution will certainly be paid off

(Fig. 4).

2. Expected Expenses increase to an extent where no

Foreseen Savings will equal incur costs regardless of

probability (Fig. 5).

The main steps to develop the MI are summarized in

Fig. 6.

Assessing the Decision Quality (Solution Matrix)

By plotting rated indices against each other, a 2D evalua-

tion matrix for the studied downhole problem. As illus-

trated in Fig. 7, users can distinguish between four areas,

where each is labeled in terms of Technical Impact and

Pay-off Probability.

The upper rightmost quadrant is of the highest interest,

showing both the highest performance and pay-off proba-

bility. Conversely, with properly evaluated solutions, the

drilling team should avoid any solution(s) positioned in the

lower leftmost quadrant, representing alternatives with

poor performance and high economic uncertainty. Using

such a visualization technique simplifies the overall eval-

uation of the different solutions. It must be stated that

having a highly rated Indice does not necessarily mean the

proposed solution is adequate. For instance, if the solution

has a very high Technical Indice but a low Monetary

Indice, that indicates a costly solution, regardless of its

technical impact, and vice versa. On the contrary, having a

highly rated solution with both indices will ensure its

Fig. 2 Comparative criteria included in economic impact (Monetary

Indice) assessment

Fig. 3 Graphical method of assessing Monetary Indice (MI);

statistical functions‘ plot to estimate the concurring probability

Fig. 4 Plot with no concurring probability to demonstrate the small

economic impact (cause 1)
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performance is most likely to be technically successful and

economically feasible.

However, the planning team may come into a situation

where proposed solutions will be clustered in the right-

uppermost section. As displayed in Fig. 8, the most

appropriate should be found among multiple alternatives.

As shown in Fig. 8, solution A is the most cost-effective

solution for this particular situation, although other solu-

tions show outstanding performance. Due to the highest

value of TI and MI, solution A should perform best not just

from the technical point of view, i.e., mitigating anticipated

problems, but also with the highest probability that the total

incurred cost will equal foreseen savings. To conclude,

evaluating possible drilling solutions and understanding

compromise between the options themselves enables the

team to prearrange the most appropriate and efficient

technological solution for a particular cause.

Result and Discussion

A made-up case study related to bit balling was performed

using a synthetic dataset to identify the shortcomings and

added values of the developed tool. All the processes were

conducted using open-source Model-Risk Software [18].

Assumptions

To develop a solutions matrix for the bit balling issue,

several assumptions were made:

• Rig Hourly Rate (RHR) of 1250 $ used to calculate

relevant savings/costs while rating MI

• recorded total NPT of 130 h in which bit balling

accounts for 60 h (46%). This assumption was neces-

sary to evaluate different solutions in terms of NPT

reduction and attributed savings

• assumed invisible lost time (ILT) of 87 h in which ROP

accounts for 15 h (17%) was used while rating MI to

assess the savings made through reduced penetration

time or simply, EPS

Fig. 5 Plot with no concurring probability to demonstrate the

extensive economic impact (cause 2)

Fig. 6 Steps developed to

compute Monetary Indice
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• total drilling fluids Volume of 2000 bbl, used to

estimate implementation expenses (EIE) related to

drilling mud design

• the length over which bit balling can be encountered

was set across the interval of 1600 m,

• a varying number of bits to be modified, thus affecting

PDF assigned to EIE

• Min, Mean, and Max estimate for triangular distribu-

tion were obtained conferring people from the industry

to obtain reasonable output throughout the Integrated

Decision-Making Tool

• P50 used as a statistical indicator to evaluate TI

Proposed Solutions

Several proactive solutions were introduced in the last

decade to mitigate the bit billing-related problems. How-

ever, only the most practical ones will be evaluated here;

these are [19 and 20]:

• Bit Modifications (BM) represents upgrading from

conventional PDC bits design to bits with a more

aggressive penetration profile and geometry suitable to

sticky formations. Features such as large open face

volume and junk slot area, optimized nozzle placement,

adequate hydraulic horsepower will minimize the bit

balling effect. In addition, sharp polished cutters,

aggressive rake angles, and edge geometry may

Fig. 7 Schematic Display of the

Integrated Decision-Making

Tool Solution Matrix

Fig. 8 Integrated decision-

making tool solution matrix

illustrative example
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significantly enhance chip management. However, this

requires modifications that add substantial cost to bit

procurement.

• Hydraulics Optimization (HO) This is referred to as an

increase of Hydraulic Power delivered to the bit.

Through the optimization, induced zones of high

vortices will quickly and effectively remove cuttings

beneath the bit, preventing bit balling.

• Improved Water-Based-Mud (IWBM) accounts for

design improvement of deployed mud. The aim is to

mitigate problems induced by sensitive shales’ behav-

ior such as sticking, agglomeration, and accretion

through optimization of the mud chemistry.

• Oil Based Mud (OBM) This solution presenting the

change of the entire drilling fluid from water-based to

oil-based.

• Anti-balling Coating (AbC) indicates special coatings

used to prevent adhesion of shales on the bit surface,

such as Electro-Osmosis or Enforced Fluoropolymer

coating.

Development of Technical Indices

Five different criteria were selected to evaluate the men-

tioned solutions. Weighted Scores were calculated

accordingly to Eqs. (1) and (2) (Refer to the Appendix).

The TI value was assessed by summing the Weighted

Scores as shown in the Sum (TI) column (See Fig. 9). Each

of the scores was rated based on the P50 output from the

MCS, performed using the ModelRisk Software. It is

important to emphasize that, to make the assigned factors

suitable for TI rating, Min–Max Feature Scaling was used

to bring all values into the normalized range from 0 to 1. In

contrast, the scale used in ranking the solutions was arbi-

trarily set in the range from 1 to 10. A schematic display

was added to the leftmost column to ease the visualization

within the rows presenting different solutions. Considering

a defined set of Comparative Criteria and WF assigned, the

highest value of the Technical Indice being 0.83. indicate

OBM to be the most appropriate drilling solution to tackle

the bit balling problem. Conversely, Bit Modification has

the smallest TI; thus, it is considered the least effective in

mitigating the same problem.

Development of Monetary Indices

According to the criteria outlined in the Comparative

Criteria Selection, group constituents used in MI rating

were set as given by Fig. 2. Each indicator was estimated

over the reasonable range of costs incurred/deducted to/

from the overall well construction process. By summing

the criteria over each group, two target groups, Expected

Expenses, and Foreseen Savings Potential, were defined for

simulation. The simulation was run for 10,000 trials to

yield accurate PDF and CDF for both pre-defined target

groups. This allows assessment of the percentage of

Expected Expenditures and Foreseen Savings in its fre-

quency distribution equal to or lower than its value. The

visual representation of simulation results is given through

Pareto Plots (Fig. 10).

The Foreseen Savings Potential had to be inverted to

find the concurring probability, thus allowing one to esti-

mate the point at which the value of a particular solution’s

total incurred cost will be equal to the value of the expected

savings (a bit modification Monetary Indice). Monetary

Indice can be easily found through the iterative procedure

using MCS output; however, a graphical solution was

proposed to ease the reader‘s comprehension.

As shown in Fig. 11., having both CDF and RDF plotted

at the same graph, MI was assessed from a crossing of both

Fig. 9 A Bit Balling Weighted Matrix and TI values for considered solutions

32 J. Inst. Eng. India Ser. D (January–June 2022) 103(1):25–36

123



curves. The same approach was implemented to develop

MI for other solutions.

Constructing Solution Matrix

Using the described procedure for every individual solution

will yield values for the TI and MI listed in Table 1. The

solution matrix can be constructed once all the values are

known, as shown in Fig. 12.

Based on the results shown in the solution matrix, it is

clear that OBM has the highest impact on the bit balling

mitigation, thus making it the most appropriate solution

from the technical aspect. However, considering its

Monetary Indice, it becomes clear that OBM is the least

viable solution. Considering a slight difference in technical

impact, AbC arises as a much better solution. On the other

extreme, modifying hydraulics may not fail in preventing

the Bit Balling at a high success rate as OBM or AbC;

nevertheless, it can be considered as a preferable solution

in terms of economic impact. Given the assumptions out-

lined in 4.1, it is hard to define the most appropriate

solution for a particular root cause, mainly as this depends

Fig. 10 Pareto Plots developed by ModelRisk for Bit Modifications Solution
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on the well-planning team’s preferences. However, it has

been seen on the synthetic example that it is possible to

vastly enhance the decision-making process while bringing

clarity and certainty to the preferred output.

Tool Limitations

The main limitations of the proposed tool based on the

performed case study are summarized in the following

points.

1. Indice values are pretty susceptible to input data and

should be thoroughly examined for oversight before

developing them.

2. Triangular distribution may not correctly represent

real-life data distribution, which may be overcome by

choosing a different PDF or fitting historical data to

yield adequate distribution for calculation purposes.

3. All of the assigned variables, like distribution esti-

mates and Weighted Factors, can easily be biased and

thus mask the actual technical performance of pro-

posed solutions. Incorporating more estimates into the

PDF model and adopting specific weighted factors for

different criteria from the operator‘s side may help

reduce errors in finding the optimum solution for a

particular problem.

4. Solutions considered are limited to the user input, i.e.,

failing to outline all possible solutions for a given

problem may leave out the most optimum one.

Conclusion

During the well-planning phase, the primary purpose of

evaluating possible proactive solutions for a given down-

hole problem is to obtain the most robust and reliable

solution among the alternatives. Nevertheless, the selection

process is challenging due to the considerable uncertainty

associated with the available data at the planning phase,

leading to increased risk and non-productive time rather

than reducing the overall drilling cost.

This paper introduced a method to rank all possible

proactive solutions for a given downhole problem, which

can help the drilling engineer to generate an effective plan

for combating the downhole issues. The advantages of the

presented tool over others are: (1) two key aspects (tech-

nical impact, and pay-off probability) are used to assess the

Fig. 11 Visual representation

of MI for Bit modification

solution

Table 1 Tabular Display of The Technical and Monetary Indices for

The Considered Drilling Solutions

Solution Method Technical Indice

(TI)

Monetary Indice

(MI)

Bit Modifications (BM) 0.42 0.27

Hydraulics Optimization (HO) 0.59 1

Improved Water-Based-Mud

(IWBM)

0.74 0.11

Oil Based Mud (OBM) 0.83 0

Ant-iballing Coating (AbC) 0.81 0.24
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expected performance of the available solutions, (2)

uncertainties associated with input data is reduced by uti-

lizing Monte Carlo Simulation in the construction of

decision-driving indices, (3) the results are expressed in the

form of an evaluation matrix, which comprises a quanti-

tative basis for selecting the optimal drilling solution in

terms of both cost and effectiveness among the alternatives,

allowing users to easily rank all the considered solutions

just through the end-line visualization.

Despite the pointed-out shortcomings, the tool’s theo-

retical applicability was validated through the performed

case study, where several solutions were evaluated in their

success and viability to mitigate the Bit Balling issue.

Appendix

Weighted Score formulas

WS1 ¼
CCmin

CC

� �
� CCWF ð1Þ

WS2 ¼
CC

CCmax

� �
� CCWF ð2Þ

where:

WS1 – Weighted Score for a group of criteria defined

with the minimum value.

WS2—Weighted Score for a group of criteria defined

with the maximum value.

CCWF – Comparative Criteria weighting factor.

CCmin – minimum Comparative Criteria value.

CCmax – maximum Comparative Criteria value.
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