Skip to main content
Log in

Synthesis and Characterization of TiB2 Reinforced Aluminium Matrix Composites: A Review

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

Aluminium–matrix composites (AMCs) are developed to meet the demands of light weight high performance materials in aerospace, automotive, marine and other applications. The properties of AMCs can be tailored suitably by combinations of matrix, reinforcement and processing route. AMCs are one of the most attractive alternatives for the manufacturing of light weight and high strength parts due to their low density and high specific strength. There are various techniques for preparing the AMCs with different reinforcement particles. In AMCs, the reinforcements are usually in the form of metal oxides, carbides, borides, nitrides and their combination. Among the various reinforcements titanium di-boride (TiB2) is of much interest due to its excellent stiffness, hardness, and wear resistance. This paper attempts to provide an overview to explore the possibilities of synthesizing titanium di-boride reinforced AMCs with different techniques. The mechanical and tribological properties of these composites have been emphasized to project these as tribo-materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. N. Chawla, K.K. Chawla, Metal Matrix Composites (Springer, New York, 2006)

    Book  MATH  Google Scholar 

  2. T. Miyajima, Y. Iwai, Effects of reinforcements on sliding wear behavior of aluminium matrix composites. Wear 255, 606 (2003)

    Article  Google Scholar 

  3. G.B. Veeresh Kumar, C.S.P. Rao, N. Selvaraj, Mechanical and tribological behavior of particulate reinforced aluminium metal matrix composites—a review. J. Miner. Mater. Charact. Eng. 10, 59 (2011)

    Google Scholar 

  4. R.L. Deuis, C. Subramanian, J.M. Yellup, Abrasive wear of aluminium composites—a review. Wear 201, 132 (1996)

    Article  Google Scholar 

  5. S. Basavarajappa, G. Chandramohan, R. Subramanian, A. Chandrasekar, Dry sliding wear behavior of Al 2219/SiC metal matrix composites. Mater. Sci. Pol. 24, 357 (2006)

    Google Scholar 

  6. S.M. Seyed Reihani, Processing of squeeze cast Al6061–30 vol% SiC composites and their characterization. Mater. Des. 27, 216 (2006)

    Article  Google Scholar 

  7. A. Onat, Mechanical and dry sliding wear properties of silicon carbide particulate reinforced aluminium–copper alloy matrix composites produced by direct squeeze casting method. J. Alloys Compd. 489, 119 (2010)

    Article  Google Scholar 

  8. R. Mitra, Y.R. Mahajan, Interfaces in discontinuously reinforced metal–matrix composites. Def. Sci. J. 43, 397 (2013)

    Article  Google Scholar 

  9. N. Wang, Z. Wang, G.C. Weatherly, Formation of magnesium aluminate (spinel) in cast SiC particulate-reinforced Al (A356) metal matrix composites. Metall. Trans. A 23A, 1423 (1992)

    Article  Google Scholar 

  10. H. Ribes, M. Suery, G. L’esperance, J.G. Legoux, Microscopic examination of the interface region in 6061-Al/SiC composites reinforced with as-received and oxidized SiC particles. Metall. Trans. A 21A, 2489 (1990)

    Article  Google Scholar 

  11. S.K. Thakur, B.K. Dhindaw, The influence of interfacial characteristics between SiCp and Mg/Al metal matrix on wear, coefficient of friction and microhardness. Wear 247, 191 (2001)

    Article  Google Scholar 

  12. H. Nami, H. Adgi, M. Sharifitabar, H. Shamabadi, Microstructure and mechanical properties of friction stir welded Al/Mg2Si metal matrix cast composite. Mater. Des. 32, 976 (2011)

    Article  Google Scholar 

  13. M. Sharifitabar, A. Sarani, S. Khorshahian, M. Sharfiee Afarani, Fabrication of 5052Al/Al2O3 nanoceramic particle reinforced composite via friction stir processing route. Mater. Des. 32, 4164 (2011)

    Article  Google Scholar 

  14. S.A. Alidokht, A. Abdollah-Zadeh, S. Soleymani, H. Assadi, Microstructure and tribological performance of an aluminium alloy based hybrid composite produced by friction stir processing. Mater. Des. 32, 2727 (2011)

    Article  Google Scholar 

  15. H.B. Michael Rajan, S. Ramabalan, I. Dinaharan, S.J. Vijay, Synthesis and characterization of in situ formed titanium diboride particulate reinforced AA7075 aluminium alloy cast composites. Mater. Des. 44, 438 (2013)

    Article  Google Scholar 

  16. N. Kumar, R.K. Gautam, S. Mohan, In-situ development of ZrB2 particles and their effect on microstructure and mechanical properties of AA5052 metal–matrix composites. Mater. Des. 80, 129 (2015)

    Article  Google Scholar 

  17. D.J. Lloyd, Particle reinforced aluminium and magnesium matrix composites. Int. Mater. Rev. 39, 1 (1994)

    Article  Google Scholar 

  18. A.M. Hassan, A. Alrashdan, M.T. Hayajneh, A.T. Mayyas, Wear behavior of Al–Mg–Cu-based composites containing SiC particles. Tribol. Int. 42, 1230 (2009)

    Article  Google Scholar 

  19. R.N. Rao, S. Das, Effect of applied pressure on the tribological behavior of SiCp reinforced AA2024 alloy. Tribol. Int. 44, 454 (2011)

    Article  Google Scholar 

  20. Y. Sahin, Preparation and some properties of SiC particle reinforced aluminium alloy composites. Mater. Des. 24, 671 (2003)

    Article  Google Scholar 

  21. D. Mandal, S. Viswanathan, Effect of re-melting on particle distribution and interface formation in SiC reinforced 2124Al matrix composite. Mater. Charact. 86, 21 (2013)

    Article  Google Scholar 

  22. H. Mindivan, Reciprocal sliding wear behavior of B4C particulate reinforced aluminium alloy composites. Mater. Lett. 64, 405 (2010)

    Article  Google Scholar 

  23. A. Baradeswaran, A. Elaya Perumal, Influence of B4C on the tribological and mechanical properties of Al 7075–B4C composites. Composites B 54, 146 (2013)

    Article  Google Scholar 

  24. S.N. Chou, J.L. Huang, D.F. Lii, H.H. Lu, The mechanical properties of Al2O3/aluminium alloy A356 composite manufactured by squeeze casting. J. Alloys Compd. 419, 98 (2006)

    Article  Google Scholar 

  25. H. Wang, G. Li, Y. Zhao, G. Chen, In situ fabrication and microstructure of Al2O3 particles reinforced aluminium matrix composites. Mater. Sci. Eng. A 527, 2881 (2010)

    Article  Google Scholar 

  26. I. Kerti, Production of TiC reinforced-aluminium composites with the addition of elemental carbon. Mater. Lett. 59, 3795 (2005)

    Article  Google Scholar 

  27. A. Kumar, M.M. Mahapatra, P.K. Jha, Modelling the abrasive wear characteristics of in situ synthesized Al–4.5 % Cu/TiC composites. Wear 306, 170 (2013)

    Article  Google Scholar 

  28. F. Akhlaghi, A. Zare-Bidaki, Influence of graphite content on the dry sliding and oil impregnated sliding wear behavior of Al 2024–graphite composites produced by in situ powder metallurgy method. Wear 266, 37 (2009)

    Article  Google Scholar 

  29. S.K. Chaudhury, S.C. Panigrahi, Role of processing parameters on microstructural evolution of spray formed Al–2Mg alloy and Al–2Mg–TiO2 composite. J. Mater. Process. Technol. 182, 343 (2007)

    Article  Google Scholar 

  30. J. Hemanth, Action of chills on soundness and ultimate tensile strength (UTS) of aluminium–quartz particulate composite. J. Alloys Compd. 296, 193 (2000)

    Article  Google Scholar 

  31. H. Arik, Effect of mechanical alloying process on mechanical properties of α-Si3N4 reinforced aluminium-based composite materials. Mater. Des. 29, 1856 (2008)

    Article  Google Scholar 

  32. C.S. Ramesh, R. Keshavamurthy, Slurry erosive wear behavior of Ni–P coated Si3N4 reinforced Al6061 composites. Mater. Des. 32, 1833 (2011)

    Article  Google Scholar 

  33. M.A. Moghaddas, S.F. Kashani-Bozorg, Effects of thermal conditions on microstructure in nanocomposite of Al/Si3N4 produced by friction stir processing. Mater. Sci. Eng. A 559, 187 (2013)

    Article  Google Scholar 

  34. K.B. Lee, H.S. Sim, S.W. Heo, H.R. Yoo, S.Y. Cho, H. Kwon, Tensile properties and microstructures of Al composite reinforced with BN particles. Composites A 33, 709 (2002)

    Article  Google Scholar 

  35. J. Wang, D. Yi, X. Su, F. Yin, H. Li, Properties of submicron AlN particulate reinforced aluminium matrix composite. Mater. Des. 30, 78 (2009)

    Article  Google Scholar 

  36. J.D.R. Selvam, D.R. Smart, I. Dinaharan, Microstructure and some mechanical properties of fly ash particulate reinforced AA6061 aluminium alloy composites prepared by compocasting. Mater. Des. 49, 28 (2013)

    Article  Google Scholar 

  37. H. Yi, N. Ma, X. Li, Y. Zhang, H. Wang, High-temperature mechanics properties of in situ TiB2p reinforced Al–Si alloy composites. Mater. Sci. Eng. A 419, 12 (2006)

    Article  Google Scholar 

  38. N. Kumar, R.K. Gautam, S. Mohan, Wear and friction behavior of in situ AA5052/ZrB2 composites under dry sliding conditions. Tribol. Ind. 37(2), 244 (2015)

    Google Scholar 

  39. K.L. Tee, L. Lu, M.O. Lai, Synthesis of in situ Al–TiB2 composites using stir cast route. Compos. Struct. 47, 589 (1999)

    Article  Google Scholar 

  40. K.L. Tee, L. Lu, M.O. Lai, Wear performance of in situ Al/TiB2 composite. Wear 240, 59 (2000)

    Article  Google Scholar 

  41. K. Niranjan, P.R. Lakshminarayanan, Dry sliding wear behavior of in situ Al–TiB2 composites. Mater. Des. 47, 167 (2013)

    Article  Google Scholar 

  42. I. Maxwell, A. Hellawell, The constitution of the system Al–Ti–B with reference to aluminium-base alloys. Metall. Trans. 3, 1487 (1972)

    Article  Google Scholar 

  43. K.T. Kashyap, T. Chandrashekar, Effects and mechanisms of grain refinement in aluminium alloys. Bull. Mater. Sci. 24, 345 (2001)

    Article  Google Scholar 

  44. S. Kumar, V. Subramanya Sarma, B.S. Murty, A statistical analysis on erosion wear behavior of A356 alloy reinforced with in situ formed TiB2 particles. Mater. Sci. Eng. A 476, 333 (2008)

    Article  Google Scholar 

  45. J. Xue, J. Wang, Y. Han, P. Li, B. Sun, Effects of CeO2 additive on the microstructure and mechanical properties of in situ TiB2/Al composite. J. Alloys Compd. 509, 1573 (2011)

    Article  Google Scholar 

  46. L. Lu, M.O. Lai, F.L. Chen, Al–4 wt% Cu composite reinforced with in situ TiB2 particles. Acta Mater. 45, 4297 (1997)

    Article  Google Scholar 

  47. S. Lakshmi, L. Lu, M. Gupta, In situ preparation of TiB2 reinforced Al based composite. J. Mater. Process. Technol. 73, 160 (1998)

    Article  Google Scholar 

  48. R. Asthana, Reinforced cast metals Part II evolution of the interface. J. Mater. Sci. 33, 1959 (1998)

    Article  Google Scholar 

  49. C.A. Leon, R.A.L. Drew, Preparation of nickle-coated powders as precursors to reinforce MMCs. J. Mater. Sci. 35, 4763 (2000)

    Article  Google Scholar 

  50. K.S. Foo, W.M. Banks, A.J. Craven, A. Hendry, Interface characterization of an SiC particulate/6061 aluminium alloy composite. Composites 25, 677 (1994)

    Article  Google Scholar 

  51. S. Ren, X. He, X. Qu, Y. Li, Effect of controlled interfacial reaction on the microstructure and properties of the SiCp/Al composites prepared by pressureless infiltration. J. Alloys Compd. 455, 424 (2008)

    Article  Google Scholar 

  52. S. Kumar, M. Chakraborty, V. Subramanya Sarma, B.S. Murty, Tensile and wear behavior of in situ Al–7Si/TiB2 particulate composites. Wear 265, 134 (2008)

    Article  Google Scholar 

  53. G. Gautam, A. Mohan, Effect of ZrB2 particles on the microstructure and mechanical properties of hybrid (ZrB2 + Al3Zr)/AA5052 in situ composites. J. Alloys Compd. 649, 174 (2015)

    Article  Google Scholar 

  54. C.S. Ramesh, S. Pramod, R. Keshavamurthy, A study on microstructure and mechanical properties of Al 6061–TiB2 in situ composites. Mater. Sci. Eng. A 528, 4125 (2011)

    Article  Google Scholar 

  55. Z.Y. Ma, J.H. Li, M. Luo, X.G. Ning, Y.X. Lu, J. Bi, Y.Z. Zhang, In situ formed Al2O3 and TiB2 particulates mixture reinforced aluminium composite. Scr. Metall. Mater. 31, 635 (1994)

    Article  Google Scholar 

  56. L. Christodoulou, D. Charles, J.M. Brupbacher, International Patent No. WO86/06366, 1986

  57. J.M. Brupbacher, L. Christodoulou, D.C. Nagle, Process for forming metal-second phase composites and product thereof, US Patent 4,751,048, 1988

  58. J.M. Brupbacher, L. Christodoulou, D.C. Nagle, Rapid solidification of metal second phase composites, US Patent 4,836,982, 1989

  59. S.C. Tjong, Z.Y. Ma, Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng. R 29, 49 (2000)

    Article  Google Scholar 

  60. A.K. Kuruvilla, K.S. Prasad, V.V. Bhanuprasad, Y.R. Mahajan, Microstructure–property correlation in AlTiB2 (XD) composites. Scr. Metall. Mater. 24, 873 (1990)

    Article  Google Scholar 

  61. C.A. Caracostas, W.A. Chiou, M.E. Fine, H.S. Cheng, Wear mechanisms during lubricated sliding of XD™ 2024–AlTiB2 metal matrix composites against steel. Scr. Metall. Mater. 27, 167 (1992)

    Article  Google Scholar 

  62. A.B. Pandey, R.S. Mishra, Y.R. Mahajan, On the anomalous creep behavior of an XD Al–TiB2 composites. Scr. Metall. Mater. 29, 1199 (1993)

    Article  Google Scholar 

  63. Z.Y. Ma, J. Bi, Y.X. Lu, H.W. Shen, Y.X. Gao, Microstructure and interface of the in situ forming TiB2 reinforced aluminium composite. Compos. Interfaces 1, 287 (1993)

    Google Scholar 

  64. S.C. Tjong, G.S. Wang, Y.W. Mai, Low-cycle fatigue behavior of Al-based composites containing in situ TiB2, Al2O3 and Al3Ti reinforcements. Mater. Sci. Eng. A 358, 99 (2003)

    Article  Google Scholar 

  65. S.C. Tjong, G.S. Wang, L. Geng, Y.W. Mai, Cyclic deformation behavior of in situ aluminium–matrix composites of the system Al–Al3Ti–TiB2–Al2O3. Compos. Sci. Technol. 64, 1971 (2004)

    Article  Google Scholar 

  66. S.C. Tjong, G.S. Wang, Y.W. Mai, High cycle fatigue response of in situ Al-based composites containing TiB2 and Al2O3 submicron particles. Compos. Sci. Technol. 65, 1537 (2005)

    Article  Google Scholar 

  67. K.L. Tee, L. Lu, M.O. Lai, In situ processing of Al–TiB2 composite by stir-casting technique. J. Mater. Process. Technol. 89–90, 513 (1999)

    Article  Google Scholar 

  68. S. Ray, MTech Dissertation, IIT Kanpur, India, 1969

  69. S. Ray, Synthesis of cast metal matrix particulate composites. J. Mater. Sci. 28, 5397 (1993)

    Article  Google Scholar 

  70. N.B. Dhokey, S. Ghule, K. Rane, R.S. Ranade, Effect of KBF4 and K2TiF6 on precipitation kinetics of TiB2 in aluminium matrix composite. J. Adv. Mater. Lett. 2, 210 (2011)

    Article  Google Scholar 

  71. K.L. Tee, L. Lu, M.O. Lai, Improvement in mechanical properties of in situ Al–TiB2 composite by incorporation of carbon. Mater. Sci. Eng. A 339, 227 (2003)

    Article  Google Scholar 

  72. L. Lu, M.O. Lai, Y. Su, H.L. Teo, C.F. Feng, In situ TiB2 reinforced Al alloy composites. Scr. Mater. 45, 1017 (2001)

    Article  Google Scholar 

  73. F. Wang, J. Xu, J. Li, X. Li, H. Wang, Fatigue crack initiation and propagation in A356 alloy reinforced with in situ TiB2 particles. Mater. Des. 33, 236 (2012)

    Article  Google Scholar 

  74. S. Kumar, V.S. Sarma, B.S. Murty, Influence of in situ formed TiB2 particles on the abrasive wear behavior of Al–4Cu alloy. Mater. Sci. Eng. A 465, 160 (2007)

    Article  Google Scholar 

  75. N.R. Rajasekaran, V. Sampath, Effect of in situ TiB2 particle addition on the mechanical properties of AA 2219 Al alloy composite. J. Miner. Mater. Charact. Eng. 10, 527 (2011)

    Google Scholar 

  76. M. Zhao, G. Wu, Z. Dou, L. Jiang, TiB2P/Al composite fabricated by squeeze casting technology. Mater. Sci. Eng. A 374, 303 (2004)

    Article  Google Scholar 

  77. J. Kellie, J.V. Wood, Reaction processing in the metals industry. Mater. World 3, 10 (1995)

    Google Scholar 

  78. J.V. Wood, P. Davies, J.L.F. Kellie, Properties of reactively cast aluminium–TiB2 alloys. Mater. Sci. Technol. 9, 833 (1993)

    Article  Google Scholar 

  79. M. Huang, X. Li, H. Yi, N. Ma, H. Wang, Effect of in situ TiB2 particle reinforcement on the creep resistance of hypoeutectic Al–12Si alloy. J. Alloys Compd. 389, 275 (2005)

    Article  Google Scholar 

  80. X. Wang, R. Brydson, A. Jha, J. Ellis, Microstructural analysis of Al alloys dispersed with TiB2 particulate for MMC applications. J. Microsc. 196, 137 (1999)

    Article  Google Scholar 

  81. C. Bartels, D. Raabe, G. Gottstein, U. Huber, Investigation of the precipitation kinetics in an Al6061/TiB2 metal matrix composite. Mater. Sci. Eng. A 237, 12 (1997)

    Article  Google Scholar 

  82. M.F. Forster, R.W. Hamilton, R.J. Dashwood, P.D. Lee, Centrifugal casting of aluminium containing in situ formed TiB2. Mater. Sci. Technol. 19, 1215 (2003)

    Article  Google Scholar 

  83. C.S. Ramesh, A. Ahamed, B.H. Channabasappa, R. Keshavamurthy, Development of Al 6063–TiB2 in situ composites. Mater. Des. 31, 2230 (2010)

    Article  Google Scholar 

  84. M. Emamy, M. Mahta, J. Rasizadeh, Formation of TiB2 particles during dissolution of TiAl3 in Al–TiB2 metal matrix composite using an in situ technique. Compos. Sci. Technol. 66, 1063 (2006)

    Article  Google Scholar 

  85. C. Wang, M. Wang, B. Yu, D. Chen, P. Qin, M. Feng, Q. Dai, The grain refinement behavior of TiB2 particles prepared with in situ technology. Mater. Sci. Eng. A 459, 238 (2007)

    Article  Google Scholar 

  86. J.S. Benjamin, Dispersion strengthened super alloys by mechanical alloying. Metall. Trans. 1, 2943 (1970)

    Google Scholar 

  87. J.S. Benjamin, T.E. Volin, The mechanism of mechanical alloying. Metall. Trans. 5, 1929 (1974)

    Article  Google Scholar 

  88. J.S. Benjamin, Mechanical alloying. Sci. Am. 234, 40 (1976)

    Article  Google Scholar 

  89. P.S. Gilman, J.S. Benjamin, Mechanical alloying. Annu. Rev. Mater. Sci. 13, 279 (1983)

    Article  Google Scholar 

  90. G. Frommeyer, S. Beer, K. Von Oldenburg, Microstructure and mechanical properties of mechanically alloyed intermetallic Mg2Si–Al alloys. Z. Metallkd. 85, 372 (1994)

    Google Scholar 

  91. O. Balci, D. Agaogullari, G. Hasan, D. Ismail, M. Lutfi Ovecoglu, Influence of TiB2 particle size on the microstructure and properties of Al matrix composites prepared via mechanical alloying and pressureless sintering. J. Alloys Compd. 586, S78 (2014)

    Article  Google Scholar 

  92. S.C. Tjong, K.F. Tam, Mechanical and thermal expansion behavior of hipped aluminium–TiB2 composites. Mater. Chem. Phys. 97, 91 (2006)

    Article  Google Scholar 

  93. I. Gotman, M.J. Koczak, E. Shtessel, Fabrication of Al matrix in situ composites via self-propagating synthesis. Mater. Sci. Eng. A 187, 189 (1994)

    Article  Google Scholar 

  94. K.L. Tee, L. Lu, M.O. Lai, In-situ stir cast Al TiB2 composite: matrix modification. Z. Metallkd. 91, 251 (2000)

    Google Scholar 

  95. Y. Taneoka, O. Odawara, Y. Kaieda, Combustion synthesis of the titanium–aluminium–boron system. J. Am. Ceram. Soc. 72, 1047 (1989)

    Article  Google Scholar 

  96. R.Z. Yuan, Z.Y. Fu, Z. Munir, Fabrication of dense TiB2–Al composites by the self-propagating high-temperature synthesis (SHS) method. J. Mater. Synth. Process. 1, 153 (1993)

    Google Scholar 

  97. Z.Y. Fu, R.Z. Yuan, A.Z. Munir, Structure and structure formation of SHS Al metal matrix composites. Int. J. SHS 2, 261 (1993)

    Google Scholar 

  98. Z.Y. Fu, R.Z. Yuan, Z.A. Munir, Z.L. Yang, Fundamental study on SHS preparation of TiB2–Al composites. Int. J. SHS 1, 119 (1992)

    Google Scholar 

  99. H.J. Brinkman, J. Duazczyk, L. Katgerman, In-situ formation of TiB2 in a PM aluminium matrix. Scr. Mater. 37, 293 (1997)

    Article  Google Scholar 

  100. H.J. Brinkman, J. Duazczyk, L. Katgerman, Influence of matrix alloying elements on reactive synthesis of 2124 aluminium alloy metal matrix composites. Mater. Sci. Technol. 14, 873 (1998)

    Article  Google Scholar 

  101. Z.Y. Chen, Y.Y. Chen, Q. Shu, G.Y. An, D. Li, D.S. Xu, Y.Y. Liu, Solidification and interfacial structure of in situ Al–4.5Cu/TiB2 composite. J. Mater. Sci. 35, 5605 (2000)

    Article  Google Scholar 

  102. D.G. Zhao, X.F. Liu, Y.C. Pan, Y.X. Liu, X.F. Bian, Microstructure and mechanical behavior of AlSiCuMgNi piston alloys reinforced with TiB2 particles. J. Mater. Sci. 41, 4227 (2006)

    Article  Google Scholar 

  103. K. Sivaprasad, S.P. Babu, S. Natarajan, R. Narayanasamy, B. Anil Kumar, G. Dinesh, Study on abrasive and erosive wear behavior of Al 6063/TiB2 in situ composites. Mater. Sci. Eng. A 498, 495 (2008)

    Article  Google Scholar 

  104. D.G. Zhao, X.F. Liu, Y.C. Pan, X.F. Bian, X.J. Liu, Microstructure and mechanical properties of in situ synthesized (TiB2 + Al2O3)/Al–Cu composites. J. Mater. Process. Technol. 189, 237 (2007)

    Article  Google Scholar 

  105. S. Natarajan, R. Narayanasamy, S.P. Kumaresh Babu, G. Dinesh, B. Anil Kumar, K. Sivaprasad, Sliding wear behavior of Al 6063/TiB2 in situ composites at elevated temperatures. Mater. Des. 30, 2521 (2009)

    Article  Google Scholar 

  106. E.M. Usurelu, P. Moldovan, M. Butu, I. Ciuca, V. Dragut, On the mechanism and thermodynamics of the precipitation of TiB2 particles in 6063 matrix aluminium alloy. UPB Sci. Bull. B 73, 205 (2011)

    Google Scholar 

  107. Z.Y. Chen, Y.Y. Chen, Q. Shu, G.Y. An, D. Li, Y.Y. Liu, Microstructure and properties of in situ Al/TiB2 composite fabricated by in melt reaction method. Metall. Mater. Trans. A 31, 1959 (2000)

    Article  Google Scholar 

  108. Y. Han, X. Liu, X. Bian, In situ TiB2 particulate reinforced near eutectic Al–Si alloy composites. Composites A 33, 439 (2002)

    Article  Google Scholar 

  109. H. Yi, N. Ma, Y. Zhang, X. Li, H. Wang, Effective elastic moduli of Al–Si composites reinforced in situ with TiB2 particles. Scr. Mater. 54, 1093 (2006)

    Article  Google Scholar 

  110. Y. Zhang, N. Ma, H. Wang, Effect of particulate/Al interface on the damping behavior of in situ TiB2 reinforced aluminium composite. Mater. Lett. 61, 3273 (2007)

    Article  Google Scholar 

  111. C. Mallikarjuna, S.M. Shashidhara, U.S. Mallik, K.I. Parashivamurthy, Grain refinement and wear properties evaluation of aluminium alloy 2014 matrix–TiB2 in situ composites. Mater. Des. 32, 3554 (2011)

    Article  Google Scholar 

  112. T.V. Christy, N. Murugan, S. Kumar, A comparative study on the microstructure and mechanical properties of Al6061 alloy and the MMC Al 6061/TiB2/12P. J. Miner. Mater. Charact. Eng. 9, 57 (2010)

    Google Scholar 

  113. B.K. Prasad, Investigation into sliding wear performance of zinc-based alloy reinforced with SiC particles in dry and lubricated conditions. Wear 262, 262 (2007)

    Article  Google Scholar 

  114. M.D. Bermudez, G. Martinez-Nicolas, F.J. Carrion, I. Martinez-Mateo, J.A. Rodriguez, E.J. Herrera, Dry and lubricated wear resistance of mechanically-alloyed aluminium-base sintered composites. Wear 248, 178 (2001)

    Article  Google Scholar 

  115. A. Mandal, B.S. Murty, M. Chakraborty, Wear behavior of near eutectic Al–Si alloy reinforced with in situ TiB2 particles. Mater. Sci. Eng. A 506, 27–33 (2009)

    Article  Google Scholar 

  116. A. Mandal, R. Maiti, M. Chakraborty, B.S. Murty, Effect of TiB2 particles on aging response of Al–4Cu alloy. Mater. Sci. Eng. A 386, 296 (2004)

    Article  Google Scholar 

  117. I.G. Siddhalingeshwar, M.A. Herbert, M. Chakraborty, R. Mitra, Effect of mushy state rolling on age-hardening and tensile behavior of Al–4.5Cu alloy and in situ Al–4.5Cu–5TiB2 composite. Mater. Sci. Eng. A 528, 1787 (2011)

    Article  Google Scholar 

  118. J. Xue, J. Wang, Y. Han, C. Chen, B. Sun, Behavior of CeO2 additive in in situ TiB2 particles reinforced 2014 Al alloy composite. Trans. Nonferrous Met. Soc. China 22, 1012 (2012)

    Article  Google Scholar 

  119. S. Gorsse, D.B. Miracle, Mechanical properties of Ti–6Al–4V/TiB composites with randomly oriented and aligned TiB reinforcements. Acta Mater. 51, 2427 (2003)

    Article  Google Scholar 

  120. M.E. Smagorinski, P.G. Tsantrizos, S. Grenier, A. Cavasin, T. Brzezinski, G. Kim, The properties and microstructure of Al-based composites reinforced with ceramic particles. Mater. Sci. Eng. A 244, 86 (1998)

    Article  Google Scholar 

  121. Z. Zhang, D.L. Chen, Contribution of Orowan strengthening effect in particulate reinforced metal matrix nanocomposites. Mater. Sci. Eng. A 483–484, 148 (2008)

    Article  Google Scholar 

  122. T. Cheng, B. Cantor, Improvement of ductility of NiAl at room temperature and manufacturing of NiAl–TiB2 composites by melt spinning. Mater. Sci. Eng. A 153, 696 (1992)

    Article  Google Scholar 

  123. A. Mandal, M. Chakraborty, B.S. Murty, Ageing behavior of A356 alloy reinforced with in situ formed TiB2 particles. Mater. Sci. Eng. A 489, 220 (2008)

    Article  Google Scholar 

  124. L.T. Jiang, G.Q. Chen, X.D. He, M. Zhao, Z.Y. Xiu, R.J. Fan, G. Wu, Microstructure and tensile properties of TiB2p/6061Al composites. Trans. Nonferrous Met. Soc. China 19, s542 (2009)

    Article  Google Scholar 

  125. Y. Liu, B. Xu, W. Li, X. Cai, Z. Yang, The effect of rare earth CeO2 on microstructure and properties of in situ TiC/Al–Si composite. Mater. Lett. 58, 432 (2004)

    Article  Google Scholar 

  126. Y. Han, K. Li, J. Wang, D. Shu, B. Sun, Influence of high-intensity ultrasound on grain refining performance of Al–5Ti–1B master alloy on aluminium. Mater. Sci. Eng. A 405, 306 (2005)

    Article  Google Scholar 

  127. P.S. Mohanty, J.E. Gruzleski, Mechanism of grain refinement in aluminium. Acta Metall. Mater. 43, 2001 (1995)

    Article  Google Scholar 

  128. K.R. Ravi, M. Saravanan, R.M. Pillai, A. Mandal, B.S. Murty, M. Chakraborty, B.C. Pai, Equal channel angular pressing of Al–5 wt.% TiB2 in situ composite. J. Alloys Compd. 459, 239 (2008)

    Article  Google Scholar 

  129. J. Fjellstedt, A.E. Jarfors, On the precipitation of TiB2 in aluminium melts from the reaction with KBF4 and K2TiF6. Mater. Sci. Eng. A 413–414, 527 (2005)

    Article  Google Scholar 

  130. T.C. Tszeng, The effects of particle clustering on the mechanical behavior of particle reinforced composites. Composites B 29, 299 (1998)

    Article  Google Scholar 

  131. I.G. Watson, M.F. Forster, P.D. Lee, R.J. Dashwood, R.W. Hamilton, A. Chirazi, Investigation of the clustering behavior of titanium diboride particles in aluminium. Composites A 36, 1177 (2005)

    Article  Google Scholar 

  132. A. Jha, C. Dometakis, The dispersion mechanism of TiB2 ceramic phase in molten aluminium and its alloys. Mater. Des. 18, 297 (1997)

    Article  Google Scholar 

  133. Y.M. Youssef, R.J. Dashwood, P.D. Lee, Effect of clustering on particle pushing and solidification behavior in TiB2 reinforced aluminium PMMCs. Composites A 36, 747 (2005)

    Article  Google Scholar 

  134. M.J. Tan, X. Zhang, Powder metal matrix composites: selection and processing. Mater. Sci. Eng. A 244, 80 (1998)

    Article  Google Scholar 

  135. Z. Liu, Q. Han, J. Li, W. Huang, Effect of ultrasonic vibration on microstructural evolution of the reinforcements and degassing of in situ TiB2p/Al–12Si–4Cu composites. J. Mater. Process. Technol. 212, 365 (2012)

    Article  Google Scholar 

  136. P.J. Blau, Fifty years of research on the wear of metals. Tribol. Int. 30, 321 (1997)

    Article  Google Scholar 

  137. U. Sanchez-Santana, C. Rubio-Gonzalez, G. Gomez-Rosas, J.L. Ocana, C. Molpeceres, J. Porro, M. Morales, Wear and friction of 6061-T6 aluminium alloy treated by laser shock processing. Wear 260, 847 (2006)

    Article  Google Scholar 

  138. A. Mandal, B.S. Murty, M. Chakraborty, Sliding wear behavior of T6 treated A356–TiB2 in situ composites. Wear 266, 865 (2009)

    Article  Google Scholar 

  139. C.A. Caracostas, W.A. Chiou, M.E. Fine, H.S. Cheng, Tribological properties of aluminium alloy matrix TiB2 composite prepared by in situ processing. Metall. Mater. Trans. A 28, 491 (1997)

    Article  Google Scholar 

  140. M.J. Ghazali, W.M. Rainforth, H. Jones, Dry sliding wear behavior of some wrought, rapidly solidified powder metallurgy aluminium alloys. Wear 259, 490 (2005)

    Article  Google Scholar 

  141. M.A. Herbert, R. Maiti, R. Mitra, M. Chakraborty, Wear behavior of cast and mushy state rolled Al–4.5Cu alloy and in situ Al4.5Cu–5TiB2 composite. Wear 265, 1606 (2008)

    Article  Google Scholar 

  142. K.M. Shorowordi, A.S.M.A. Haseeb, J.P. Celis, Velocity effects on the wear, friction and tribochemistry of aluminium MMC sliding against phenolic brake pad. Wear 256, 1176 (2004)

    Article  Google Scholar 

  143. C.S. Ramesh, A. Ahamed, Friction and wear behavior of cast Al 6063 based in situ metal matrix composites. Wear 271, 1928 (2011)

    Article  Google Scholar 

  144. S. Kumar, V.S. Sarma, B.S. Murty, Effect of temperature on the wear behavior of Al–7Si–TiB2 in situ composites. Metall. Mater. Trans. A 40, 223 (2009)

    Article  Google Scholar 

  145. H.B. Michael Rajan, S. Ramabalan, I. Dinaharan, S.J. Vijay, Effect of TiB2 content and temperature on sliding wear behavior of AA7075/TiB2 in situ aluminium cast composites. Arch. Civ. Mech. Eng. 14, 72 (2014)

    Article  Google Scholar 

  146. M. Roy, B. Venkataraman, V.V. Bhanuprasad, Y.R. Mahajan, G. Sundarajan, The effect of particulate reinforcement on the sliding wear behavior of aluminium matrix composites. Metall. Trans. A 23, 2833 (1992)

    Article  Google Scholar 

  147. C.Y. Sheu, S.J. Lin, Particle size effects on the abrasive wear of 20 vol% SiC/7075Al composites. Scr. Mater. 35, 1271 (1996)

    Article  Google Scholar 

  148. I.G. Siddhalingeshwar, D. Deepthi, M. Chakraborty, R. Mitra, Sliding wear behavior of in situ Al–4.5Cu–5TiB2 composite processed by single and multiple roll passes in mushy state. Wear 271, 748 (2011)

    Article  Google Scholar 

  149. M.A. Herbert, G. Das, R. Maiti, M. Chakraborty, R. Mitra, Tensile properties of cast and mushy state rolled Al–4.5Cu alloy and in situ Al–4.5Cu–5TiB2 composite. Int. J. Cast Met. Res. 23, 216 (2010)

    Article  Google Scholar 

  150. K. Pavitra, R. Mitra, Effect of age hardening on dry sliding wear behaviour of mushy state rolled in situ Al–4.5Cu–5TiB2 composites. Mater. Sci. Eng. A 557, 84 (2012)

    Article  Google Scholar 

  151. R. Antoniou, D.W. Borland, Mild wear of Al–Si binary alloys during lubricated sliding. Mater. Sci. Eng. A 93, 57 (1987)

    Article  Google Scholar 

  152. S. Wilson, A.T. Alpas, Wear mechanism maps for metal matrix composites. Wear 212, 41 (1997)

    Article  Google Scholar 

  153. R.K. Uyyuru, M.K. Surappa, S. Brusethaug, Effect of reinforcement volume fraction and size distribution on the tribological behavior of Al-composite/brake pad tribocouple. Wear 260, 1248 (2006)

    Article  Google Scholar 

  154. F. Gul, M. Acilar, Effect of the reinforcement volume fraction on the dry sliding wear behaviour of Al–10Si/SiCp composites produced by vacuum infiltration technique. Compos. Sci. Technol. 64, 1959 (2004)

    Article  Google Scholar 

  155. A. Ravikiran, M.K. Surappa, Effect of sliding speed on wear behavior of A356 Al–30 wt.% SiCP MMC. Wear 206, 33 (1997)

    Article  Google Scholar 

  156. X.Y. Li, K.N. Tandon, Microstructural characterization of mechanically mixed layer and wear debris in sliding wear of an Al alloy and an Al based composite. Wear 245, 148 (2000)

    Article  Google Scholar 

  157. D.A. Rigney, Wear, transfer, mixing and associated chemical and mechanical processes during sliding of ductile metals. Wear 245, 1 (2000)

    Article  Google Scholar 

  158. M.F. Najafabadi, M.A. Golozar, A. Saidi, H. Edris, Wear behavior of aluminium matrix TiB2 composite prepared by in situ processing. Mater. Sci. Technol. 19, 1531 (2003)

    Article  Google Scholar 

  159. F.P. Bowden, D. Tabor, The Influence of Surface Films on the Friction and Deformation of Surfaces in Properties of Metallic Surfaces (Institute of Metals, London, 1953). 197

    Google Scholar 

  160. R.L. Deuis, C. Subramanian, J.M. Yellup, Dry sliding wear of aluminium composites—a review. Compos. Sci. Technol. 57, 415 (1997)

    Article  Google Scholar 

  161. A.T. Alpas, J. Zhang, Effect of microstructure (particulate size and volume fraction) and counterface material on the sliding wear resistance of particulate reinforced aluminium matrix composites. Metall. Mater. Trans. A 25, 969 (1994)

    Article  Google Scholar 

  162. A. Ravikiran, M.K. Surappa, Oscillations in coefficient of friction during dry sliding of A356 Al–30 wt.% SiCp MMC against steel. Scr. Mater. 36, 95 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

The corresponding author gratefully acknowledges A.I.C.T.E., New Delhi, India for providing financial assistance under its QIP Scheme to carry out this research. Author also acknowledges Director, BIET, Jhansi for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Gautam, G., Gautam, R.K. et al. Synthesis and Characterization of TiB2 Reinforced Aluminium Matrix Composites: A Review. J. Inst. Eng. India Ser. D 97, 233–253 (2016). https://doi.org/10.1007/s40033-015-0091-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40033-015-0091-7

Keywords

Navigation