Skip to main content

Advertisement

Log in

An Oscillating Water Column (OWC): The Wave Energy Converter

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

Ocean waves are a valuable resource of renewable energy that can make a significant contribution to the supply of electricity to countries situated offshore when used in great measure. An extensive range of innovations was proposed, investigated, and assessed in some cases under actual ocean conditions. OWC devices are an important class of wave energy method. The majority of designs used in the conversion of wave energy into the sea are OWC. There is a fixed or floating hollow structure in an OWC under the water surface, which pits the air over the inner free zone. The wave action alternately compresses and separates the air that is forced to flow into a turbine together with a generator. A detailed analysis of OWC technologies is discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Turkdogan, Design and optimization of a solely renewable based hybrid energy system for residential electrical load and fuel cell electric vehicle. Eng. Sci. Technol. Int. J. (2020). https://doi.org/10.1016/j.jestch.2020.08.017

    Article  Google Scholar 

  2. W. Liu, X. Xu, F. Chen, Y. Liu, S. Li, L. Liu, Y. Chen, A review of research on the closed thermodynamic cycles of ocean thermal energy conversion. Renew. Sustain. Energy Rev. (2019). https://doi.org/10.1016/j.rser.2019.109581

    Article  Google Scholar 

  3. E. Mendoza, D. Lithgow, P. Flores, A. Felix, T. Simas, R. Silva, A framework to evaluate the environmental impact of OCEAN energy devices. Renew. Sustain. Energy Rev. 112, 440–449 (2019). https://doi.org/10.1016/j.rser.2019.05.060

    Article  Google Scholar 

  4. S. Qiu, K. Liu, D. Wang, J. Ye, F. Liang, A comprehensive review of ocean wave energy research and development in China. Renew. Sustain. Energy Rev. 113, 109271 (2019). https://doi.org/10.1016/j.rser.2019.109271

    Article  Google Scholar 

  5. S. Draycott, B. Sellar, T. Davey, D.R. Noble, V. Venugopal, D.M. Ingram, capture and simulation of the ocean environment for offshore renewable energy. Renew. Sustain. Energy Rev. 104, 15–29 (2019). https://doi.org/10.1016/j.rser.2019.01.011

    Article  Google Scholar 

  6. S. Doyle, G.A. Aggidis, Development of multi-oscillating water columns as wave energy converters. Renew. Sustain. Energy Rev. 107, 75–86 (2019). https://doi.org/10.1016/j.rser.2019.02.021

    Article  Google Scholar 

  7. A.F.O. Falcão, J.C.C. Henriques, The spring-like air compressibility effect in oscillating-water-column wave energy converters: Review and analyses. Renew. Sustain. Energy Rev. 112, 483–498 (2019). https://doi.org/10.1016/j.rser.2019.04.040

    Article  Google Scholar 

  8. D.L. Bruschi, J.C.S. Fernandes, A.F.O. Falcão, C.P. Bergmann, Analysis of the degradation in the wells turbine blades of the Pico oscillating-water-column wave energy plant. Renew. Sustain. Energy Rev. 115, 109368 (2019). https://doi.org/10.1016/j.rser.2019.109368

    Article  Google Scholar 

  9. S. Kushwah et al., Optimization of coil spring by finite element analysis method of automobile suspension system using different materials. Mater. Today. Proc. 42, 827–831 (2021)

    Article  Google Scholar 

  10. S. Kushwah, A. Rajpurohit, J. Darji et al., Determination of acrylic sheet fracture toughness using EWF approach. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2021.03.077

    Article  Google Scholar 

  11. R.A.A.C. Gonçalves, P.R.F. Teixeira, E. Didier, F.R. Torres, Numerical analysis of the influence of air compressibility effects on an oscillating water column wave energy converter chamber. Renew. Energy (2020). https://doi.org/10.1016/j.renene.2020.02.080

    Article  Google Scholar 

  12. M. Kharati-Koopaee, A. Fathi-Kelestani, Assessment of oscillating water column performance: Influence of wave steepness at various chamber lengths and bottom slopes. Renew. Energy (2019). https://doi.org/10.1016/j.renene.2019.09.110

    Article  Google Scholar 

  13. F.R. Torres, P.R.F. Teixeira, E. Didier, A methodology to determine the optimal size of a wells turbine in an oscillating water column device by using coupled hydro-aerodynamic models. Renew. Energy 121, 9–18 (2018). https://doi.org/10.1016/j.renene.2018.01.003

    Article  Google Scholar 

  14. J.-M. Zhan, Q. Fan, W.-Q. Hu, Y.-J. Gong, Hybrid realizable k−ε/laminar method in the application of 3D heaving OWCs. Renew. Energy 155, 691–702 (2020). https://doi.org/10.1016/j.renene.2020.03.140

    Article  Google Scholar 

  15. K. Rezanejad, C. Guedes Soares, Enhancing the primary efficiency of an oscillating water column wave energy converter based on a dual-mass system analogy. Renew. Energy 123, 730–747 (2018). https://doi.org/10.1016/j.renene.2018.02.084

    Article  Google Scholar 

  16. A.C. Kelly, J.A. Merritt, Hybrid systems: a review of current and future feasibility. Electr. J. 27(9), 97–104 (2014). https://doi.org/10.1016/j.tej.2014.10.008

    Article  Google Scholar 

  17. S.S.B. Nowlan, Adverse report on the east river bridge. Sci. Am. 21(6), 85–86 (1869)

    Article  Google Scholar 

  18. N. Vedachalam, M.A. Atmanand, An assessment of energy storage requirements in the strategic Indian electricity sector. Electr. J. (2018). https://doi.org/10.1016/j.tej.2018.08.003

    Article  Google Scholar 

  19. K. Thandayutham, A. Samad, A. Salam et al., Performance analysis of an air turbine for ocean energy extraction using CFD technique. J. Inst. Eng. India Ser. C 100, 523–530 (2019). https://doi.org/10.1007/s40032-018-0487-x

    Article  Google Scholar 

  20. R.K. Kavade, P.M. Ghanegaonkar, Performance evaluation of small-scale vertical axis wind turbine by optimized best position blade pitching at different tip speed ratios. J. Inst. Eng. India Ser. C 100, 1005–1014 (2019). https://doi.org/10.1007/s40032-018-0482-2

    Article  Google Scholar 

  21. A.K. Singh, A.H. Idrisi, Evolution of renewable energy in india: wind and solar. J. Inst. Eng. India Ser. C 101, 415–427 (2020). https://doi.org/10.1007/s40032-019-00545-7

    Article  Google Scholar 

  22. P. Tiwari, M. Manas, P. Jan et al., A review on microgrid based on hybrid renewable energy sources in south-asian perspective. Technol Econ Smart Grids Sustain Energy 2, 10 (2017). https://doi.org/10.1007/s40866-017-0026-5

    Article  Google Scholar 

  23. U. Agarwal, N. Jain, Distributed energy resources and supportive methodologies for their optimal planning under modern distribution network: a review. Technol. Econ. Smart Grids Sustain. Energy 4, 3 (2019). https://doi.org/10.1007/s40866-019-0060-6

    Article  Google Scholar 

  24. S. Srinivasan, Power relationships: marginal cost pricing of electricity and social sustainability of renewable energy projects. Technol Econ Smart Grids Sustain Energy 4, 13 (2019). https://doi.org/10.1007/s40866-019-0070-4

    Article  Google Scholar 

  25. B.F. De Cal, Application of vibration monitoring to the detection of early misalignment and rub failures in a tidal turbine. Technol. Econ. Smart Grids Sustain. Energy 4, 9 (2019). https://doi.org/10.1007/s40866-019-0065-1

    Article  Google Scholar 

  26. D.V.N. Ananth, G.V.N. Kumar, Design of DFIG converters to overcome grid faults using improved stator flux based field oriented control and STATCOM controller. Technol. Econ. Smart Grids Sustain. Energy 3, 12 (2018). https://doi.org/10.1007/s40866-018-0049-6

    Article  Google Scholar 

  27. A.A. Razmjoo, A. Davarpanah, A. Zargarian, The role of renewable energy to achieve energy sustainability in iran an economic and technical analysis of the hybrid power system. Technol. Econ. Smart Grids Sustain. Energy (2019). https://doi.org/10.1007/s40866-019-0063-3

    Article  Google Scholar 

  28. K. Anant Chatorikar, New offshore approach to reduce impact of tsunami waves. J. Inst. Eng. India Ser. C 97, 493–496 (2016). https://doi.org/10.1007/s40032-016-0225-1

    Article  Google Scholar 

  29. V. Kumar, M. Singh, M. Thangadurai et al., Effect of free stream turbulence on flow past a circular cylinder at low reynolds numbers. J. Inst. Eng. India Ser. C 100, 43–58 (2019). https://doi.org/10.1007/s40032-017-0422-6

    Article  Google Scholar 

  30. S. Kumar, D. Singh, N.S. Kalsi, Investigating the effect of approach angle and nose radius on surface quality of inconel 718. J. Inst. Eng. India Ser. C 100, 121–128 (2019). https://doi.org/10.1007/s40032-017-0411-9

    Article  Google Scholar 

  31. S.S. Arefin, N. Das, Optimized hybrid wind-diesel energy system with feasibility analysis. Technol. Econ. Smart Grids Sustain. Energy 2, 9 (2017). https://doi.org/10.1007/s40866-017-0025-6

    Article  Google Scholar 

  32. R. Bhattacharyya, M.E. McCormick, Wave Power Activities in Northern Europe (Elsevier, 2003), pp. 95–123

    Google Scholar 

  33. A. Khaligh, O.C. Onar, Energy sources. Power Electron. Handb. (2018). https://doi.org/10.1016/b978-0-12-811407-0.00025-8

    Article  Google Scholar 

  34. Sundar, V., Moan, T. & Hals, J. (2010). Conceptual Design of OWC Wave Energy Converters Combined with Breakwater Structures. Proceedings of the ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering OMAE2010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagarsingh Kushwah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kushwah, S. An Oscillating Water Column (OWC): The Wave Energy Converter. J. Inst. Eng. India Ser. C 102, 1311–1317 (2021). https://doi.org/10.1007/s40032-021-00730-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-021-00730-7

Keywords

Navigation