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Abstract This paper deals with a periodic heating into

different layers of a semi-infinite solid in order to examine

the thermal parameters influence of the different layers on

the development of the temperature oscillations. This

influence is introduced by a physical model that shows the

temperature evolution in every location into the solid layers

as a function of time. It was shown that the structure with

the larger thermal conductivity in the semi-infinite layer

has larger absolute gradient of temperature on the external

surface (the system left surface). Received at certain times

temperature distributions with extreme, maximum or

minimum temperatures values. These values actually rep-

resent adiabatic surfaces at the relevant times, meaning that

heat transfer, entry or exit occurs in the limited volume

between the constraint surface and those adiabatic surfaces.

These temperature distributions also show receiving of

identical, positive or negative values along all the medium

depth. At the start time of the time period and at the half

time of the time period, linear temperatures distributions

are obtained. These times can be seen as weakening times

in terms of supporting the transient heat transfer. The

temperature distribution in the structure of a wall made up

of real building materials shows that the wall is a retainer

for temperature fluctuations and not just is a basic resis-

tance to heat transfer.

Keywords Temperature � Oscillations � Distribution �
Transient � Steady state

Introduction

Stokes second problem described by Schlichting [1] was

and still is a basis of many research directions not only in

the specific area of the problem. The problem describes a

semi-infinite flow field which is disturbed by an oscillating

plate u 0; tð Þ ¼ U0 cos xtð Þ where u 0; tð Þ designate the plate
velocity or the bottom layer velocity of the fluid as a

function of time, U0 is the plate velocity amplitude and x is

the plate frequency. The essence of the problem is that the

fluctuations in the fluid can be seen as a kind of steady-state

condition despite the fluid velocity values do change over

time but get the same values in equal time periods. Stokes

problem has been extended to the realm of non-steady or

transient state, an example of such work being that of

Panton [2]. Nazar et al. [3] and Asghar et al. [4] expanded

the Stokes problem to the transient realm for second grade

fluids. The following are more examples of expanding the

Stokes problem. Srinivasan and Rajagopal [5] and Prusa

[6] expanded the Stokes problems to pressure dependent

viscosities. Dutta and Beskok [7] introduced an analytical

solution of time periodic electroosmotic flows, it was

shown that for some of the cases investigated the flow is

analogies to Stokes second problem.

Khaled [8] investigated the influence of combined

periodic heat flux and convective boundary condition on

heat conduction through a semi-infinite and finite media. It

was found that the temperature fluctuations in each med-

ium decreased as the Bio number was increased. Ahma-

dikia et al. [9] presented an analytical solution of transient

heat flux condition on skin tissue as a finite domain, it was

shown that by penetrating along the skin depth the tem-

perature amplitude response decreases significantly. Some

more examples of physical models developed for describ-

ing transient heat conduction in a slab or through more than
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one material layer are the works of Sadat [10], Norouzi

et al. [11] and that of Shiah and Shi [12].

Kundu [13] examined five boundary conditions in order

to determine the temperature response in a biological tissue

under Fourier and non-Fourier heat conduction. The paper

ultimate goal was to improve thermal therapy for killing

cancerous cells without side effects. The representing

equation was built according to the bioheat transfer equa-

tion for Fourier and non-Fourier heat conduction. The

thermal response of the skin tissue was solved by the

separation of variables method. It was found that the higher

temperature response was received by isothermal heating

for the non-Fourier heat conduction in the tissue. This may

be selected as a design condition for effective heating.

Kundu and Lee [14] used a semi-analytical method in order

to investigate the thermal performance of fin and tube heat

exchangers with orthotropic fin material and wet surfaces.

It was found that the fin efficiency of orthotropic materials

was always lower than that of the isotropic material and the

efficiency of wet fins decreased with increasing the relative

humidity of the air for a constant base and ambient tem-

peratures. Kundu and Lee [15] determined analytically the

temperature distribution for 2D heat conduction in a fin.

The 2D physical model was solved by using the separation

of variable method. It was found that the 2D heat con-

duction in a fin is primarily dependent upon the geometry

of the fin and base temperature.

There are several technology areas that may require a

study of heat transfer oscillations on a semi-infinite board,

for example, a material processing using laser beams and

microwave heating. The present work is actually imple-

menting the second Stokes problem for a semi-infinite heat

transfer where the oscillating velocity disturbance is

replaced by the oscillating temperature. In addition, within

the semi-infinite medium, a material layer of a finite

thickness and different thermal conductivity was inserted.

The temperature penetration or heat transfer at this strati-

fied medium is discussed in this work.

Mathematical Formulation and Solution (The
Physical Model)

The development of the physical model described here is

fully inspired by the solution of the physical model of

Stokes’ second problem. Stokes’ second problem was

presented by Schlichting [1] based on the original article

[16]. Stokes’ second problem describes the effect of forced

oscillations on the space of an incompressible fluid in a

semi-infinite medium. Although there are fluctuations in

the problem and it is time dependent, in fact this condition

is a condition that is ostensibly a steady-state condition and

therefore there are actually no initial condition but only

boundary conditions. Because the problem describes one

representative frequency that is forced into the whole space

of the problem and because the state is ostensibly a steady

state despite the oscillations, the conventional move of

searching for additional self-values and subsequent use of

the orthogonal connection is not obligatory (Fig. 1).

The drive of the temperature oscillations is expressed by

the following connection:

T 0; tð Þ ¼ Ti þ DT cos xtð Þ ð1Þ

where x is the oscillation frequency and DT is the

disturbance amplitude. Without any disturbance or while

DT ¼ 0 the temperature in every point into the materials

layers is equal to Ti. As can be seen, the maximum

temperature on the surface is received when t ¼ 0 and is

equal to Ti þ DT . Equation (1) can be written as:

T 0; tð Þ � Ti ¼ DT cos xtð Þ ð2Þ

or as:

T 0; tð Þ ¼ Ti þ T0 � Tið Þ cos xtð Þ ð3Þ

where T0 is the maximum temperature on the surface or

actually is the maximum temperature that can be received

in every point into the materials layers and is equal to

Ti þ DT .
It is signified that:

h ¼ T � Ti ð4Þ

where T denotes the temperature value in every point into

the materials layers. It can be concluded that oT=ox is

equal to oh=ox, that o2T
�
ox2 is equal to o2h

�
ox2 and that

oT=ot is equal to oh=ot.
It can be written:

h 0; tð Þ ¼ T 0; tð Þ � Ti ð5Þ

If the significance of DT is that:

DT ¼ T0 � Ti ð6Þ

The following notation can be written:

Fig. 1 The problem structure
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h0 ¼ T0 � Ti ð7Þ

and:

h 0; tð Þ ¼ h0 cos xtð Þ ð8Þ

In every layer, the heat diffusion equation for one-

dimensional coordinate xð Þ and time tð Þ dependence

without heat generation is received as:

o2h
ox2

¼ 1

a
oh
ot

ð9Þ

where a is the thermal diffusivity and equal to k
�
qcp, k is

the material thermal diffusivity, q is the material density

and cp is the material heat capacity. A trial will be done to

solve the above equation by the variable’s separation

method. The temperature parameter as a function of two

separated variables is written as:

h ¼ hx xð Þ � ht tð Þ ð10Þ

By placing the last connection into the above equation, it

may be written as:

ht tð Þ �
o2hx xð Þ
ox2

¼ 1

a
� hx xð Þ � oht tð Þ

ot
ð11Þ

After dividing the above equation by hx xð Þ � ht tð Þ, it is
received as:

1

hx xð Þ �
o2hx xð Þ
ox2

¼ 1

a
� 1

ht tð Þ
oht tð Þ
ot

ð12Þ

or as:

a � 1

hx xð Þ �
o2hx xð Þ
ox2

¼ 1

ht tð Þ
oht tð Þ
ot

ð13Þ

Since the left side of the above equation is a function of

x only and the right side is a function of t only, the two

sides of the equation have to be equal to a constant. The

following constant will be taken:

a � 1

hx xð Þ �
o2hx xð Þ
ox2

¼ 1

ht tð Þ
oht tð Þ
ot

¼ ix ð14Þ

where i is the imaginary unit. It can be written that:

1

ht tð Þ
oht tð Þ
ot

¼ ix ð15Þ

and that:

1

ht tð Þ
dht tð Þ
dt

¼ ix ð16Þ

or as:

dht tð Þ
ht tð Þ

¼ ixdt ð17Þ

The solution of the time dependence part will be

received by the continuing following steps:

ln ht tð Þ½ � ¼ ixtþ C1 ð18Þ

ht tð Þ ¼ eixtþC1 ¼ C1e
ixt ð19Þ

The temperature location dependence will be received

by developing the left side of the Eq. 13, continuing with

the following steps:

a � 1

hx xð Þ �
d2hx xð Þ
dx2

¼ ix ð20Þ

d2hx xð Þ
dx2

� ix
a
hx xð Þ ¼ 0 ð21Þ

D2 � ix
a

� �
hx xð Þ ¼ 0 ! D1;2 ¼ �

ffiffiffiffiffi
ix
a

r

ð22Þ

The full solution is received as:

h ¼ C2 exp

ffiffiffiffiffi
ix
a

r

x

 !

þ C3 exp �
ffiffiffiffiffi
ix
a

r

x

 !" #

C1e
ixt ð23Þ

or as:

h ¼ C4 exp

ffiffiffiffiffi
ix
a

r

x

 !

þ C5 exp �
ffiffiffiffiffi
ix
a

r

x

 !" #

eixt ð24Þ

where C4 ¼ C1 � C2 and C5 ¼ C1 � C3.

Using the following connection:

ffiffi
i

p
¼ 1

ffiffiffi
2

p þ i
1
ffiffiffi
2

p ð25Þ

The full solution is received as:

h ¼ C4 exp

ffiffiffiffiffi
x
2a

r
þ i

ffiffiffiffiffi
x
2a

r� �
x

� ��

þC5 exp �
ffiffiffiffiffi
x
2a

r
þ i

ffiffiffiffiffi
x
2a

r� �
x

� �	
eixt

ð26Þ

The significance of the coefficients will now be changed

according to the system structure:

h1 ¼ C1 exp

ffiffiffiffiffiffiffi
x
2a1

r
þ i

ffiffiffiffiffiffiffi
x
2a1

r� �
x

� �
þ ixt

� 	

þ C2 exp �
ffiffiffiffiffiffiffi
x
2a1

r
þ i

ffiffiffiffiffiffiffi
x
2a1

r� �
x

� �
þ ixt

� 	
ð27Þ

h2 ¼ C3 exp

ffiffiffiffiffiffiffi
x
2a2

r
þ i

ffiffiffiffiffiffiffi
x
2a2

r� �
x

� �
þ ixt

� 	

þ C4 exp �
ffiffiffiffiffiffiffi
x
2a2

r
þ i

ffiffiffiffiffiffiffi
x
2a2

r� �
x

� �
þ ixt

� 	
ð28Þ

where h1 is the relative temperature into the first layer and

h2 is the relative temperature into the second layer.
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The following boundary condition leads to knowing C3:

h2jx!1¼ 0 ! C3 ¼ 0 ð29Þ

The following boundary condition leads to the next

coefficients connection:

h1jx¼0¼ h0 exp ixtð Þ ð30Þ

It is received that:

C1 exp ixtð Þ þ C2 exp ixtð Þ ¼ h0 exp ixtð Þ ð31Þ

Dividing the above connection by expðixtÞ leads to the

following coefficients connection:

C1 þ C2 ¼ h0 ! C2 ¼ h0 � C1 ð32Þ

The third boundary condition leads to the following

coefficients connection:

h1jx¼L¼ h2jx¼L ð33Þ

or to:

C1 exp

ffiffiffiffiffiffiffi
x
2a1

r
þ i

ffiffiffiffiffiffiffi
x
2a1

r� �
L

� �
þ ixt

� 	

þ C2 exp �
ffiffiffiffiffiffiffi
x
2a1

r
þ i

ffiffiffiffiffiffiffi
x
2a1

r� �
L

� �
þ ixt

� 	
¼

¼ C4 exp �
ffiffiffiffiffiffiffi
x
2a2

r
þ i

ffiffiffiffiffiffiffi
x
2a2

r� �
L

� �
þ ixt

� 	
ð34Þ

Dividing by exp ðixtÞ the following connection is

received:

C1 exp

ffiffiffiffiffiffiffi
x
2a1

r
þ i

ffiffiffiffiffiffiffi
x
2a1

r� �
L

� �
þ C2 exp �

ffiffiffiffiffiffiffi
x
2a1

r
þ i

ffiffiffiffiffiffiffi
x
2a1

r� �
L

� �

¼ C4 exp �
ffiffiffiffiffiffiffi
x
2a2

r
þ i

ffiffiffiffiffiffiffi
x
2a2

r� �
L

� �

ð35Þ

The fourth boundary condition leads to the following

coefficients connections:

k1
oh1
ox






x¼L

¼ k2
oh2
ox






x¼L

ð36Þ

k1

C1

ffiffiffiffiffiffiffi
x
2a1

r
þ i

ffiffiffiffiffiffiffi
x
2a1

r� �� �
exp

ffiffiffiffiffiffiffi
x
2a1

r
þ i

ffiffiffiffiffiffiffi
x
2a1

r� �
x

� �
þ ixt

� 	
þ

þC2 �
ffiffiffiffiffiffiffi
x
2a1

r
þ i

ffiffiffiffiffiffiffi
x
2a1

r� �� �
exp �

ffiffiffiffiffiffiffi
x
2a1

r
þ i

ffiffiffiffiffiffiffi
x
2a1

r� �
x

� �
þ ixt

� 	

* +










x¼L

¼ k2C4 �
ffiffiffiffiffiffiffi
x
2a2

r
þ i

ffiffiffiffiffiffiffi
x
2a2

r� �� �
exp �

ffiffiffiffiffiffiffi
x
2a2

r
þ i

ffiffiffiffiffiffiffi
x
2a2

r� �
x

� �
þ ixt

� 	




x¼L

ð37Þ

It is received that:

k1

C1

ffiffiffiffiffiffiffi
x
2a1

r
þ i

ffiffiffiffiffiffiffi
x
2a1

r� �� �
exp

ffiffiffiffiffiffiffi
x
2a1

r
þ i

ffiffiffiffiffiffiffi
x
2a1

r� �
L

� �
þ ixt

� 	
þ

þC2 �
ffiffiffiffiffiffiffi
x
2a1

r
þ i

ffiffiffiffiffiffiffi
x
2a1

r� �� �
exp �

ffiffiffiffiffiffiffi
x
2a1

r
þ i

ffiffiffiffiffiffiffi
x
2a1

r� �
L

� �
þ ixt

� 	

* +

¼ k2C4 �
ffiffiffiffiffiffiffi
x
2a2

r
þ i

ffiffiffiffiffiffiffi
x
2a2

r� �� �
exp �

ffiffiffiffiffiffiffi
x
2a2

r
þ i

ffiffiffiffiffiffiffi
x
2a2

r� �
L

� �
þ ixt

� 	

ð38Þ

The above equation can be divided by exp ixtð Þ to get:

k1

C1

ffiffiffiffiffiffiffi
x
2a1

r
þ i

ffiffiffiffiffiffiffi
x
2a1

r� �� �
exp

ffiffiffiffiffiffiffi
x
2a1

r
þ i

ffiffiffiffiffiffiffi
x
2a1

r� �
L

� �
þ

þC2 �
ffiffiffiffiffiffiffi
x
2a1

r
þ i

ffiffiffiffiffiffiffi
x
2a1

r� �� �
exp �

ffiffiffiffiffiffiffi
x
2a1

r
þ i

ffiffiffiffiffiffiffi
x
2a1

r� �
L

� �

8
>>><

>>>:

9
>>>=

>>>;

¼ k2C4 �
ffiffiffiffiffiffiffi
x
2a2

r
þ i

ffiffiffiffiffiffiffi
x
2a2

r� �� �
exp �

ffiffiffiffiffiffiffi
x
2a2

r
þ i

ffiffiffiffiffiffiffi
x
2a2

r� �
L

� �

ð39Þ

By marking:

a1 ¼
ffiffiffiffiffiffiffi
x
2a1

r
þ i

ffiffiffiffiffiffiffi
x
2a1

r
ð40Þ

and:

a2 ¼
ffiffiffiffiffiffiffi
x
2a2

r
þ i

ffiffiffiffiffiffiffi
x
2a2

r
ð41Þ

The third boundary condition leads to the following

connection:

C1 exp a1Lð Þ þ C2 exp �a1Lð Þ ¼ C4 exp �a2Lð Þ ð42Þ

and the fourth boundary condition leads to the following

connections:

k1 C1a1 exp a1Lð Þ þ C2 �a1ð Þ exp �a1Lð Þ½ �
¼ k2C4 �a2ð Þ exp �a2Lð Þ ð43Þ

C1k1a1 exp a1Lð Þ � C2k1a1 exp �a1Lð Þ
¼ �C4k2a2 exp �a2Lð Þ ð44Þ

Developing the third boundary condition will lead to

following connections:

C1 exp a1Lð Þ þ h0 � C1ð Þ exp �a1Lð Þ ¼ C4 exp �a2Lð Þ
ð45Þ

C1 exp a1Lð Þ � exp �a1Lð Þ½ � þ h0 exp �a1Lð Þ
¼ C4 exp �a2Lð Þ ð46Þ

Dividing the above connection by exp �a2Lð Þ leads to

the following connection:

C4 ¼ C1 exp a1 þ a2ð ÞL½ � � exp �a1 þ a2ð ÞL½ �f g
þ h0 exp �a1 þ a2ð ÞL½ � ð47Þ

By marking:

a3 ¼ exp a1 þ a2ð ÞL½ � � exp �a1 þ a2ð ÞL½ � ð48Þ
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a4 ¼ h0 exp �a1 þ a2ð ÞL½ � ð49Þ

The following connection is received:

C4 ¼ a3C1 þ a4 ð50Þ

By placing the values of C2 and C4 as a function of C1

into the fourth boundary condition, it leads to the following

connections:

C1k1a1 exp a1Lð Þ � h0 � C1ð Þk1a1 exp �a1Lð Þ
¼ �a3C1 � a4ð Þk2a2 exp �a2Lð Þ ð51Þ

C1 ¼
h0k1a1 exp �a1Lð Þ � a4k2a2 exp �a2Lð Þ

k1a1 exp a1Lð Þ þ k1a1 exp �a1Lð Þ þ a3k2a2 exp �a2Lð Þ
ð52Þ

The exact temperature can be calculated by the

following simple connection:

T ¼ real hð Þ þ Ti ð53Þ

Results and Discussion

In all the following figures titles, the density q is desig-

nated as d, the specific heat cp is designated as c, and the

thermal diffusivity a is designated as al, all with the lower

index indicates belonging to layer 1 or 2.

Figures 2, 3 and 4 introduce a principally plots to show

the effect of the thermal conductivities on the temperature

distribution. The boundary layer between the two layers is

at x ¼ 1. The lines plot in the figure designates the relative

temperature distribution every eighth period time. The

frequency of the temperature oscillations was taken as x ¼
1 and so the period time is equal to 2p=x ¼ 2p. Plot t1

designates the relative temperature distribution at t ¼ 0 and

plot t8, for example, designates the temperature distribu-

tion after seven eighth of the period time

7� 2p=8 ¼ 5:4978ð Þ. Index 1 designates the physical

parameters relate to layer 1 and index 2 designates the

physical parameters relate to layer 2, ‘k’ kð Þ is the thermal

conductivity, ‘d’ dð Þ is the material density, ‘c’ cð Þ is the
specific heat capacity, and ‘al’ að Þ is the thermal

diffusivity.

Fig. 2 Relative temperatures distributions in accordance to the

parameters listed in the figure title. t1 to t8 note the temperature

distribution plots at time intervals of the eighth time period. Since the

oscillations frequency was taken as x ¼ 1, the time period is received

as T ¼ 2p=1 ¼ 2p. t1 plot notes the temperature distribution at t ¼ 0

or at t ¼ 2p. t2 plot notes the temperature distribution at

t ¼ 2p=8 ¼ 0:7854. t3 plot notes the temperature distribution at t ¼
2� 2p=8 ¼ 1:5708 and so on. t8 plot notes the temperature distri-

bution at t ¼ 7� 2p=8 ¼ 5:4978

Fig. 3 Relative temperatures distributions in accordance to the

parameters listed in the figure title. t1 to t8 note the temperature

distribution plots at time intervals of the eighth time period. Since the

oscillations frequency was taken as x ¼ 1, the time period is received

as T ¼ 2p=1 ¼ 2p. t1 plot notes the temperature distribution at t ¼ 0

or at t ¼ 2p. t2 plot notes the temperature distribution at

t ¼ 2p=8 ¼ 0:7854. t3 plot notes the temperature distribution at t ¼
2� 2p=8 ¼ 1:5708 and so on. t8 plot notes the temperature distri-

bution at t ¼ 7� 2p=8 ¼ 5:4978

Fig. 4 Relative temperatures distributions in accordance to the

parameters listed in the figure title. t1 to t8 note the temperature

distribution plots at time intervals of the eighth time period. Since the

oscillations frequency was taken as x ¼ 1, the time period is received

as T ¼ 2p=1 ¼2p. t1 plot notes the temperature distribution at t ¼ 0

or at t ¼ 2p. t2 plot notes the temperature distribution at

t ¼ 2p=8 ¼ 0:7854. t3 plot notes the temperature distribution at t ¼
2� 2p=8 ¼ 1:5708 and so on. t8 plot notes the temperature distri-

bution at t ¼ 7� 2p=8 ¼ 5:4978
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Figure 2 shows the effect of the increased thermal

conductivity into the right slab on the relative temperature

distribution. It is shown that at x ¼ 5 the maximum relative

temperature is equal to 0:0968 and at x ¼ 1 the maximum

relative temperature is equal to 0:2395.

Figure 3 shows the effect of the decreased conductivity

or smaller equal thermal conductivities into the two layers

on the relative temperature distribution. It is shown that at

x ¼ 5 the maximum relative temperature is equal to 0:0269

and at x ¼ 1 the maximum relative temperature is equal to

0:4916:

By examining and comparing the two Figs. 2 and 3 and

the above data, it is shown as was expected that the relative

temperature oscillations in Fig. 2 where the second slab has

the larger thermal conductivity restrained along the longer

distance. But, it is noteworthy to be written and clearly was

not expected that in the boundary between the two slabs,

the figure with the reduced thermal conductivity shows

larger oscillations. This result can be explained by energy

conservation insight. On the left surface, the surface where

x ¼ 0, there are the same oscillations and amplitudes in the

two structures represented by the two Figs. 2 and 3. The

structure represented by Fig. 2 has an overall thermal

resistance smaller than that represented Fig. 3 as a result of

larger thermal conductivities along the two layers. So, it

has to be concluded that the heat flux on the external sur-

face of Fig. 2 structure at x ¼ 0 need to be larger than

Fig. 3 structure and since that layer 1 of the two structures

has identical values, the absolute gradient of Fig. 2 struc-

ture has to be larger than Fig. 3 structure. Also, according

to an overall insight based on the larger conductivity of

Fig. 2 structure in layer 2 and smaller overall thermal

resistance, the temperature oscillations of Fig. 2 structure

restrained along larger distance which can be clearly seen

on the external left surfaces at x ¼ 5, the maximum relative

temperature value at Fig. 2 is larger than the maximum

relative temperature value at Fig. 3.

Figure 4 introduce a principally plot to show the effect

of the increased thermal conductivity into the left slab on

the relative temperature distribution. It is shown that at

x ¼ 5 the maximum relative temperature is equal to 0:0538

and at x ¼ 1 the maximum relative temperature is equal to

0:9234. The relative temperature gradient on the external

surface at x ¼ 0 is smaller than the relative temperature

gradients shown at Fig. 3. This can be explained as a result

of the larger conductivity of layer 1 in Fig. 4, a large

conductivity does not need a large temperature gradient to

transfer the heat flux.

Along all the lines plot in Figs. 2, 3 and 4, it is shown

that related to the two layers the temperature absolute value

decreases along the depth coordinate xð Þ.
In Figs. 2 and 4, where there is a change in the thermal

conductivity there is a change in the temperature gradient

at the separating surface at x ¼ 1. When the thermal con-

ductivity increases as in Fig. 2, the absolute value of the

temperature gradient decreases. When the thermal con-

ductivity decreases as in Fig. 4, the absolute value of the

temperature gradient increases. This is of course due to the

identity in the calculation of the heat flux along the sepa-

rating surface based on layer 1 or based on layer 2,

�k1oT1=oxjx¼1¼ �k2oT2=oxjx¼1 or

k1oT1=oxjx¼1¼ k2oT2=oxjx¼1. This physical condition leads

to either temperature drop or to either a sharp rise in

temperature.

It can be seen in Fig. 2, 3 and 4 that except in the

constraint surface at x ¼ 0 where their value is zero and

there are certain times when the temperatures are all either

positive or either negative along all medium depth. These

times are indicated by the plots t3 and t7. These are the

times that indicate the temperature distribution after a

quarter period time and after a three-quarter period time,

respectively. This description is most clearly shown in

Fig. 3 which represent an equal thermal conductivity in

layer 1 and in layer 2. Plot t3 and plot t7 represent the last

times before a negative or a positive trend change is

imposed on the surface constraint at x = 1.

Plots t3 and t7 in Fig. 2, 3 and 4 show also acceptance of

extreme temperature or extreme surfaces where the tem-

perature is maximum or minimum. It is worth noting that

these surfaces indicate the existence of adiabatic surfaces at

these times. It can be noted that the heat enters along the

medium depth until that adiabatic surfaces and does not

pass on. On the other hand, heat exits from the area or

volume defined by the constraint surface at x ¼ 0 to those

adiabatic surfaces.

In Fig. 2, at times t1 and t5, it can be seen that the

temperature distribution is linear along all the medium

depth, both in the first and in the second layer. There are

two factors that may contribute to this distribution kind.

One factor is the lower thermal conductivity of the first

layer which in fact is a resistance to heat transfer or to

temperature change within the medium. The second factor

relates to times t1 and t5, these times are the extremes of

the temperature constraint because they indicate the start

time period and the half time period. These times can be

estimated as weakened times in terms of transient heat

transfer and in fact strengthen the closeness to a steady heat

transfer, plus the assumptions that exist here, no heat

generation, one-dimensional heat transfer and constant

thermal conductivity. All these may support the linear

temperature distribution result. In Fig. 3, in which the

thermal conductivity is uniform, there is no discontinuity in

the thermal conductivity in both layers 1 and 2. In fact, one

uniform layer is obtained. Here, there is no breaking in the

temperature distribution and no temperature distribution of

straight lines. Probably where possible, the temperature
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distribution would be a natural continuity with no straight

lines.

Figure 5 shows a real plot related to real parameters that

was taken from a structural building materials list suited to

a part of house wall composition. Layer 1 made of gypsum

plaster was taken as the external layer exposed to the

temperature environment. The gypsum plaster parameters

are: material density q1 ¼ 1680 kg/m3, material thermal

conductivity k1 ¼ 0:22W=m �� C and specific heat capacity

cp1 ¼ 1085 J=kg �� C. Layer 2 which is the main building

material of the wall was taken as common brick. The brick

parameters are: material density q2 ¼ 1920 kg=m3, mate-

rial thermal conductivity k2 ¼ 0:72W=m �� C and specific

heat capacity cp2 ¼ 835 J=kg �� C. Layer 1 thickness was

taken as 2 cm, and Layer 2 thickness was taken as 8 cm.

The temperature amplitude between day and night was

taken as h0 ¼ 10 �C. Twenty-four hours were taken for the

period time and so the frequency is received as

x ¼ 2p
�
24houres ¼ 7:2722� 10�5 rad/s. The parameters

dimensions shown in the figure are: h �C½ �, x m½ �,
k kg=m �� C½ �, d � q kg

�
m3

� �
, c � cp J=kg �� C½ �,

al � a m2
�
s

� �
. The figure shows the relative temperature

oscillations along this part of the wall. The oscillations

restraint after the plaster layer or at x ¼ 2 cm is received as

5:4490 �C=10 �C ¼0:5449 ¼ 54:490% and the oscillations

restraint after the brick or at x ¼ 10 cm is received as

2:6268 �C=10 �C ¼0:26268 ¼ 26:268%. The brick restraint

only is 2:6268 �C=5:4490 �C ¼ 0:4821 ¼ 48:21%. It

should be noted that, in addition to the fact that the wall

prevents heat transfer to a cold environment, it also acts as

a retainer for the temperature fluctuations or at an equal

inference to the heat transfer oscillations.

A comparison of the amplitude absolute value between

Figs. 5 and 2, 3, 4 indicates something about the validation

of the physical model. It can be seen that the values of the

temperatures along all the medium relative to the ampli-

tude value decrease with decreasing the amplitude value.

Another small move to validate the model was made by

selecting a constant forced temperature by setting a zero

value for amplitude. The temperature values obtained

along the entire medium were zero as expected. There was

no point in presenting this plot result.

Summary

The physical model presented in this work for a finite

material thickness inserted within the semi-infinite medium

can be applied for an additional number of material layers.

It was shown that the structure with the overall smaller

thermal resistance due to a larger conductivity in the semi-

infinite medium leads to a larger absolute gradient of

temperature value at the external surface at x ¼ 0. At the

times after a quarter period time and after a three-quarter

period time, temperature distributions with extreme, max-

imum or minimum temperatures values are received. These

values actually represent adiabatic surfaces at these times,

meaning that heat transfer, entry or exit occurs in the

limited volume between the constraint surface and those

adiabatic surfaces. These temperature distributions also

show receiving of identical, positive or negative values

along all the medium depth. At the start time of the time

period and at the half time of the time period, linear tem-

peratures distributions are obtained. These times can be

seen as weakening times in terms of supporting the tran-

sient heat transfer. The temperature distribution in the

structure of a wall made up of real building materials

shows that the wall is a retainer for temperature fluctua-

tions and not just is a basic resistance to heat transfer.

Using complex numbers are a very efficient tool for ana-

lysing such research directions. Linear physical models

have very high capacity of describing most important

physical phenomena.
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