Skip to main content
Log in

Effect of Relative Waviness on Low Re Wavy Microchannel Flow

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

A 3-D, steady, conjugate numerical model is used to study the effect of waviness on laminar fluid flow and heat transfer characteristics associated with microsized wavy channels. The numerical model has been validated against available experimental data. It is observed that transition Re and average Nu are functions of waviness of the channel; however, friction factor remained constant at higher waviness. The augmentation of Nu with waviness is found to be resulting from increased levels of recirculation and secondary flows. Peak vorticity levels showed an increase of six times when relative waviness increased from 0.03 to 0.3 and is about 2.5 times when Re increased from 100 to 200. The effect of chaotic advection is not observed even for higher waviness channels at Re = 100.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

A :

Amplitude of the wave (μm)

f :

Friction factor

k :

Conductivity of the solid (W/m2K)

q″ :

Boundary heat flux (W/m2)

Nu:

Nusselt number

Re:

Reynolds number

w :

Width of the microchannel (μm)

x, y & z :

Cartesian coordinates

γ :

Relative waviness of the microchannel

λ :

Wavelength of the microchannel (μm)

ζ :

Vorticity strength (s−1)

References

  1. Y. Chen, L. Okajima, J. Iga, Y. Komiya, A. Fu, W.S. Maruyama, Design and feasibility analysis of microscale bumped channel with supersonic flow for electronics cooling. J. Microelectromech. Syst. 25(6), 1033–1040 (2016)

    Article  Google Scholar 

  2. B. Indulakshmi, G. Madhu, Heat transfer modeling and simulations for electronic cooling systems embedded with phase changing materials. Heat Transf. Asian Res. 47(1), 185–202 (2018)

    Article  Google Scholar 

  3. Y. Zhu, D.S. Antao, K.H. Chu, S. Chen, T.J. Hendricks, T. Zhang, E.N. Wang, Surface structure enhanced microchannel flow boiling. J. Heat Transf. 138(9), 091501 (2016)

    Article  Google Scholar 

  4. M. Dehghan, M. Daneshipour, M.S. Valipour, R. Rafee, S. Saedodin, Enhancing heat transfer in microchannel heat sinks using converging flow passages. Energy Convers. Manag. 92, 244–250 (2015)

    Article  Google Scholar 

  5. O.A. Akbari, D. Toghraie, A. Karimipour, M.R. Safaei, M. Goodarzi, H. Alipour, M. Dahari, Investigation of rib’s height effect on heat transfer and flow parameters of laminar water—Al2O3 nanofluid in a rib-microchannel. Appl. Math. Comput. 290, 135–153 (2016)

    MathSciNet  MATH  Google Scholar 

  6. L. Chai, G.D. Xia, H.S. Wang, Numerical study of laminar flow and heat transfer in microchannel heat sink with offset ribs on sidewalls. Appl. Therm. Eng. 92, 32–41 (2016)

    Article  Google Scholar 

  7. A. Ebrahimi, E. Roohi, S. Kheradmand, Numerical study of liquid flow and heat transfer in rectangular microchannel with longitudinal vortex generators. Appl. Therm. Eng. 78, 576–583 (2015)

    Article  Google Scholar 

  8. L.Y. Zhang, Y.F. Zhang, J.Q. Chen, S.L. Bai, Fluid flow and heat transfer characteristics of liquid cooling microchannels in LTCC multilayered packaging substrate. Int. J. Heat Mass Transf. 84, 339–345 (2015)

    Article  Google Scholar 

  9. M.R. Safaei, M. Goodarzi, O.A. Akbari, M. Safdari Shadloo, M., Dahari, Performance evaluation of nanofluids in an inclined ribbed microchannel forelectronic cooling applications, in Electronics cooling ed. by Sohel Murshed, S.M. (InTech, Rijeka, Croatia, 2016) https://doi.org/10.5772/62898

    Chapter  Google Scholar 

  10. C.A. Rubio-Jimenez, A. Hernandez-Guerrero, J.G. Cervantes, D. Lorenzini-Gutierrez, C.U. Gonzalez-Valle, CFD study of constructal microchannel networks for liquid-cooling of electronic devices. Appl. Therm. Eng. 95, 374–381 (2016)

    Article  Google Scholar 

  11. G. Colangelo, E. Favale, M. Milanese, A. de Risi, D. Laforgia, Cooling of electronic devices: nanofluids contribution. Appl. Therm. Eng. 127, 421–435 (2017)

    Article  Google Scholar 

  12. A. Syed-Khaja, A.P. Freire, C. Kaestle, J. Franke, Feasibility investigations on selective laser melting for the development of microchannel cooling in power electronics. in 2017 IEEE 67th Electronic Components and Technology Conference (ECTC). IEEE (2017), pp. 1491–1496

  13. Y. Sui, C.J. Teo, P.S. Lee, Y.T. Chew, C. Shu, Fluid flow and heat transfer in wavy microchannels. Int. J. Heat Mass Transf. 53(13–14), 2760–2772 (2010)

    Article  MATH  Google Scholar 

  14. L. Gong, K. Kota, W. Tao, Y. Joshi, Parametric numerical study of flow and heat transfer in microchannels with wavy walls. J. Heat Transf. 133(5), 051702 (2011)

    Article  Google Scholar 

  15. J. Rostami, A. Abbassi, M. Saffar-Avval, Optimization of conjugate heat transfer in wavy walls microchannels. Appl. Therm. Eng. 82, 318–328 (2015)

    Article  Google Scholar 

  16. J.C. Burns, T. Parkes, Peristaltic motion. J. Fluid Mech. 29(4), 731–743 (1967)

    Article  Google Scholar 

  17. L. Goldstein, E.M. Sparrow, Heat/mass transfer characteristics for flow in a corrugated wall channel. J. Heat Transf. 99(2), 187–195 (1977)

    Article  Google Scholar 

  18. J.E. O’Brien, E.M. Sparrow, Corrugated-duct heat transfer, pressure drop, and flow visualization. J. Heat Transf. 104(3), 410–416 (1982)

    Article  Google Scholar 

  19. N. Saniei, S. Dini, Heat transfer characteristics in a wavy-walled channel. J. Heat Transf. 115(3), 788–792 (1993)

    Article  Google Scholar 

  20. G.V. Wang, S.P. Vanka, Convective heat transfer in periodic wavy passages. Int. J. Heat Mass Transf. 38(17), 3219–3230 (1995)

    Article  MATH  Google Scholar 

  21. T.A. Rush, T.A. Newell, A.M. Jacobi, An experimental study of flow and heat transfer in sinusoidal wavy passages. Int. J. Heat Mass Transf. 42(9), 1541–1553 (1999)

    Article  Google Scholar 

  22. G. Fabbri, Heat transfer optimization in corrugated wall channels. Int. J. Heat Mass Transf. 43(23), 4299–4310 (2000)

    Article  MATH  Google Scholar 

  23. H.M. Metwally, R.M. Manglik, Enhanced heat transfer due to curvature-induced lateral vortices in laminar flows in sinusoidal corrugated-plate channels. Int. J. Heat Mass Transf. 47(10–11), 2283–2292 (2004)

    Article  Google Scholar 

  24. R.M. Manglik, J. Zhang, A. Muley, Low Reynolds number forced convection in three-dimensional wavy-plate-fin compact channels: fin density effects. Int. J. Heat Mass Transf. 48(8), 1439–1449 (2005)

    Article  MATH  Google Scholar 

  25. N.R. Rosaguti, D.F. Fletcher, B.S. Haynes, Low-Reynolds number heat transfer enhancement in sinusoidal channels. Chem. Eng. Sci. 62(3), 694–702 (2007)

    Article  Google Scholar 

  26. P.E. Geyer, D.F. Fletcher, B.S. Haynes, Laminar flow and heat transfer in a periodic trapezoidal channel with semi-circular cross-section. Int. J. Heat Mass Transf. 50(17–18), 3471–3480 (2007)

    Article  MATH  Google Scholar 

  27. F. Oviedo-Tolentino, R. Romero-Méndez, A. Hernández-Guerrero, B. Girón-Palomares, Experimental study of fluid flow in the entrance of a sinusoidal channel. Int. J. Heat Fluid Flow 29(5), 1233–1239 (2008)

    Article  Google Scholar 

  28. H.A. Mohammed, P. Gunnasegaran, N.H. Shuaib, Numerical simulation of heat transfer enhancement in wavy microchannel heat sink. Int. Commun. Heat Mass Transf. 38(1), 63–68 (2011)

    Article  Google Scholar 

  29. Y. Sui, P.S. Lee, C.J. Teo, An experimental study of flow friction and heat transfer in wavy microchannels with rectangular cross section. Int. J. Therm. Sci. 50(12), 2473–2482 (2011)

    Article  Google Scholar 

  30. Z. Zheng, D.F. Fletcher, B.S. Haynes, Chaotic advection in steady laminar heat transfer simulations: periodic zigzag channels with square cross-sections. Int. J. Heat Mass Transf. 57(1), 274–284 (2013)

    Article  Google Scholar 

  31. A. Sakanova, C.C. Keian, J. Zhao, Performance improvements of microchannel heat sink using wavy channel and nanofluids. Int. J. Heat Mass Transf. 89, 59–74 (2015)

    Article  Google Scholar 

  32. I.A. Ghani, The significant effect of secondary flow in wavy microchannel for augmentation of heat transfer. J. Adv. Res. Fluid Mech. Therm. Sci. 25, 1–18 (2016)

    Google Scholar 

  33. J. Zhou, M. Hatami, D. Song, D. Jing, Design of microchannel heat sink with wavy channel and its time-efficient optimization with combined RSM and FVM methods. Int. J. Heat Mass Transf. 103, 715–724 (2016)

    Article  Google Scholar 

  34. K.L. Kirsch, K.A. Thole, Heat transfer and pressure loss measurements in additively manufactured wavy microchannels. J. Turbomach. 139(1), 011007 (2017)

    Article  Google Scholar 

  35. A. Sivakumar, N. Alagumurthi, T. Senthilvelan, Investigation of heat transfer in serpentine shaped microchannel using Al2O3/water nanofluid. Heat Transf. Asian Res. 45(5), 424–433 (2016)

    Article  Google Scholar 

  36. B.H. Salman, H.A. Mohammed, K.M. Munisamy, A.S. Kherbeet, Three-dimensional numerical investigation of nanofluids flow in microtube with different values of heat flux. Heat Transf. Asian Res. 44(7), 599–619 (2015)

    Article  Google Scholar 

  37. A. Sivakumar, N. Alagumurthi, T. Senthilvelan, Effect of serpentine grooves on heat transfer characteristics of microchannel heat sink with different nanofluids. Heat Transf. Asian Res. 46(3), 201–217 (2017)

    Article  Google Scholar 

  38. R. Kumar, S.P. Mahulikar, Physical effects of variable fluid properties on laminar gas microconvective flow. Heat Transf. Asian Res. 46(7), 1029–1040 (2017)

    Article  Google Scholar 

  39. J. Szumbarski, J.M. Floryan, A direct spectral method for determination of flows over corrugated boundaries. J. Comput. Phys. 153(2), 378–402 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. A. Cabal, J. Szumbarski, J.M. Floryan, Numerical simulation of flows over corrugated walls. Comput. Fluids 30(6), 753–776 (2001)

    Article  MATH  Google Scholar 

  41. S. Kakaç, R.K. Shah, W. Aung (eds.), Handbook of single-phase convective heat transfer (Wiley, New York, 1987)

    Google Scholar 

  42. A. Muley, J.B. Borghese, R.M. Manglik, J. Kundu, Experimental and numerical investigation of thermal-hydraulic characteristics of a wavy-channel compact heat exchanger. in International Heat Transfer Conference Digital Library. Begel House Inc. (2002)

  43. M. Asadi, G. Xie, An experimental study on heat transfer surface area of wavy-fin heat exchangers. J. Therm. Sci. Eng. Appl. 6(3), 031012 (2014). https://doi.org/10.1115/1.4026816

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Shine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna, M., Deepu, M. & Shine, S.R. Effect of Relative Waviness on Low Re Wavy Microchannel Flow. J. Inst. Eng. India Ser. C 101, 661–670 (2020). https://doi.org/10.1007/s40032-020-00575-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-020-00575-6

Keywords

Navigation