Skip to main content
Log in

Feature Extraction of Partial Discharge Signal Based on Local Mean Decomposition and Multi-scale Singular Spectrum Entropy

  • ORIGINAL CONTRIBUTION
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

Feature extraction of partial discharge signal is a key step in pattern recognition and fault diagnosis of insulation defects in power equipment. The singular-spectrum entropy (SSE) theory can study the complexity and irregularity of partial discharge signals but cannot fully reflect the inherent nonlinear characteristics of signals. On this basis, the covariance matrix of SSE is replaced by the Hankel matrix of partial discharge signals, and the local mean decomposition (LMD) theory is introduced to realize the multi-scale method. Then, a multi-scale Hankel singular spectrum entropy (MULTI-HSSE) method for partial discharge signals is proposed. Through the analysis of the simulated partial discharge signals, the entropy eigenvectors extracted by this method can effectively improve the noise suppression ability and enhance the robustness of phase space reconstruction parameters. Finally, three typical partial discharge defects are designed in an outdoor substation environment. The UHF signal entropy eigenvectors using this method are achieved and the RBF neural network is used to classify the defects. Through the experiments, the high recognition accuracy is verified, showing the validity and applicability of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Xu, W.D. Liu, W.J. Chen, J.G. Yang, K. Zhao, Y. Liu, Partial discharge characteristics of metal particles on spacer surface in GIS based on high sensitivity measurement. High Volt. Eng. 45(9), 2707–2714 (2019). https://doi.org/10.13336/j.1003-6520.hve.20190831003

    Article  Google Scholar 

  2. H. Guo, F.F. Lü, K.F. Ren, Simulation and measurement of PD-induced electromagnetic wave leakage in GIS with metal. IEEE Trans. Dielectr. Electr. Insul. 21(4), 1942–1949 (2014). https://doi.org/10.1109/TDEI.2014.004390

    Article  Google Scholar 

  3. D. Wang, A.J. Ma, Y. Gui, C. Zhang, B. Wang, Q.S. Zhang, Diagnosis of partial discharge insulation fault fusion based on P-CNN. High Volt. Eng. 46(8), 2897–2905 (2020). https://doi.org/10.13336/j.1003-6520.hve.20190118

    Article  Google Scholar 

  4. L.W. Wang, Z.Q. Zhou, L. Lin, J.J. Han, Review on artificial intelligence in substation operation and maintenance management. High Volt. Eng. 46(1), 1–13 (2020). https://doi.org/10.13336/j.1003-6520.hve.20191227001

    Article  Google Scholar 

  5. Y. Wang, J. Yan, Z. Yang, Y. Zhao, T. Liu, GIS partial discharge pattern recognition via lightweight convolutional neural network in the ubiquitous power internet of things context. IET Sci. Meas. Technol. 14(8), 864–871 (2020). https://doi.org/10.1049/iet-smt.2019.0542

    Article  Google Scholar 

  6. H. Ji, X. Lei, Q. Xu, C. Huang, T. Ye, S. Yuan, Research on characteristics of acoustic signal of typical partial discharge models. Glob. Energy Interconnect. 5(1), 118–130 (2022). https://doi.org/10.1016/j.gloei.2022.04.010

    Article  Google Scholar 

  7. W. Sun, Z. Li, S. Cheng, A real time on-line method for automatic signal feature recognition of fault discharge in generator and its application. Power Syst. Technol. 39(2), 543–549 (2015). https://doi.org/10.13335/j.1000-3673.pst.2015.02.038

    Article  Google Scholar 

  8. V. Samaitis, L. Mažeika, A. Jankauskas, R. Rekuvienė, Detection and localization of partial discharge in connectors of air power lines by means of ultrasonic measurements and artificial intelligence models. Sensors 21(1), 20 (2020). https://doi.org/10.3390/s21010020

    Article  Google Scholar 

  9. R. Rostaminia, M. Saniei, M. Vakilian, S.S. Mortazavi, V. Parvin Darabad, An efficient partial discharge pattern recognition method using texture analysis for transformer defect models. Int. Trans. Electr. Energy Syst. 28(7), e2558 (2018). https://doi.org/10.1002/etep.2558

    Article  Google Scholar 

  10. K. Wang, R. Liao, L. Yang, J. Li, S. Grzybowski, J. Hao, Optimal features selected by NSGA-II for partial discharge pulses separation based on time frequency representation and matrix decomposition. IEEE Trans. Dielectr. Electr. Insul. 20(3), 825–836 (2013). https://doi.org/10.1109/TDEI.2013.6518952

    Article  Google Scholar 

  11. R. Rostaminia, M. Saniei, M. Vakilian, S.S. Mortazavi, Evaluation of transformer core contribution to partial discharge electromagnetic waves propagation. Int. J. Electr. Power Energy Syst. 83, 40–48 (2016). https://doi.org/10.1016/j.ijepes.2016.03.054

    Article  Google Scholar 

  12. H. Uehara, T. Okamoto, Modeling and analysis of partial discharge phenomena using integral equations. IEEE Trans. Dielectr. Electr. Insul. 27(6), 1915–1923 (2020). https://doi.org/10.1109/TDEI.2020.009075

    Article  Google Scholar 

  13. F. Yang, G. Sheng, Y. Xu, Y. Qian, X. Jiang, Application of EEMD and high-order singular spectral entropy to feature extraction of partial discharge signals. IEEJ Trans. Electr. Electron. Eng. 13(7), 1002–1010 (2018). https://doi.org/10.1002/tee.22657

    Article  Google Scholar 

  14. X. Luo, H.Q. Niu, T.H. Song, X.L. Zhuang, S transform and probabilistic neural network based partial discharge feature extraction and discharge recognition method. South. Power Syst. Technol. 14(7), 17–23 (2020). https://doi.org/10.13648/j.cnki.issn1674-0629.2020.07.003

    Article  Google Scholar 

  15. F.C. Lv, H. Jin, Z.J. Wang, B. Zhang, GIS partial discharge pattern recognition based on principal component analysis and multiclass relevance vector machine. Trans. China Electrotech. Soc. 30(6), 225–231 (2015). https://doi.org/10.19595/j.cnki.1000-6753.tces.2015.06.028

    Article  Google Scholar 

  16. Q.Q. Zhang, H. Song, Y. Jiang, Y.F. Chen, G.H. Sheng, X.C. Jiang, Partial discharge pattern recognition of transformer based on OS-ELM. High Volt. Eng. 44(4), 1122–1130 (2018). https://doi.org/10.13336/j.1003-6520.hve.20180329011

    Article  Google Scholar 

  17. M.H. Wang, S.D. Lu, M.L. Huang, H.W. Sian, C.C. Hsieh, S.E. Wei, Hybrid methodology based on extension theory for partial discharge fault diagnosis of power capacitors. IEICE Electron. Express 17(18), 20200250 (2020). https://doi.org/10.1587/elex.17.20200250

    Article  Google Scholar 

  18. J.Y. Koo, S.Y. Jung, C.H. Ryu, S.W. Lee, B.W. Lee, Identification of insulation defects in gas-insulated switchgear by chaotic analysis of partial discharge. IET Sci. Meas. Technol. 4(3), 115–124 (2010). https://doi.org/10.1049/iet-smt.2009.0028

    Article  Google Scholar 

  19. J. Dai, Y. Teng, Z. Zhang, Z. Yu, G. Sheng, X. Jiang, Partial discharge data matching method for GIS case-based reasoning. Energies 12(19), 3677 (2019). https://doi.org/10.3390/en12193677

    Article  Google Scholar 

  20. C. Barile, C. Casavola, G. Pappalettera, V. Paramsamy Kannan, Acoustic emission waveforms for damage monitoring in composite materials: shifting in spectral density, entropy and wavelet packet transform. Struct. Health Monit. 21(4), 1768–1789 (2022). https://doi.org/10.1177/14759217211044692

    Article  Google Scholar 

  21. Y. Li, X. Wang, Z. Liu, X. Liang, S. Si, The entropy algorithm and its variants in the fault diagnosis of rotating machinery: a review. IEEE Access 6, 66723–66741 (2018). https://doi.org/10.1109/ACCESS.2018.2873782

    Article  Google Scholar 

  22. C.P. Gandhi, A. Kumar, G. Vashist, H. Tang, A. Rai, J. Xiang, Maximal overlap discrete wavelet packet transforms and variants of neutrosophic cubic cross-entropy-based identification of rotor defects. Meas. Sci. Technol. 33(8), 085107 (2022). https://doi.org/10.1088/1361-6501/ac6001

    Article  Google Scholar 

  23. H.B. Xie, Y.P. Zheng, J.Y. Guo, Classification of the mechanomyogram signal using a wavelet packet transform and singular value decomposition for multifunction prosthesis control. Physiol. Meas. 30(5), 441 (2009)

    Article  Google Scholar 

  24. J. Tang, Y.L. Dong, L. Fan, L.P. Li, Feature information extraction of partial discharge signal with complex wavelet transform and singular value decomposition based on Hankel matrix. Proc. CSEE 35(7), 1808–1817 (2015). https://doi.org/10.13334/j.0258-8013.pcsee.2015.07.031

    Article  Google Scholar 

  25. P. Gupta, B. Singh, Ensembled local mean decomposition and genetic algorithm approach to investigate tool chatter features at higher metal removal rate. J. Vib. Control 28(1–2), 30–44 (2022). https://doi.org/10.1177/1077546320971157

    Article  Google Scholar 

  26. Y. Li, S. Si, Z. Liu, X. Liang, Review of local mean decomposition and its application in fault diagnosis of rotating machinery. J. Syst. Eng. Electron. 30(4), 799–814 (2019). https://doi.org/10.21629/JSEE.2019.04.17

    Article  Google Scholar 

  27. W.T. Silva, F.D. Borges, Genetic algorithms to determine the optimal parameters of an ensemble local mean decomposition. Acta Polytechnica 61(3) (2021). http://hdl.handle.net/10467/98353

  28. P.P. Pagano, E.J. Ciaccio, H. Garan, Separation of cardiogenic oscillations from airflow waveforms using singular spectrum analysis. Comput. Methods Programs Biomed. 220, 106803 (2022). https://doi.org/10.1016/j.cmpb.2022.106803

    Article  Google Scholar 

  29. Y. Yang, C. Li, Discharge current filtering of high voltage pulse power supply based on singular value decomposition of Toeplitz Matrix, in 2021 40th Chinese Control Conference (CCC), Shanghai, China, IEEE, pp. 2935–2939 (2021). https://doi.org/10.23919/CCC52363.2021.9549578

  30. S. Sun, Y. Sun, G. Xu, L. Zhang, Y. Hu, P. Liu, Partial discharge pattern recognition of transformers based on the gray-level co-occurrence matrix of optimal parameters. IEEE Access 9, 102422–102432 (2021). https://doi.org/10.1109/ACCESS.2021.3096287

    Article  Google Scholar 

  31. J. Zheng, Z. Chen, Q. Wang, H. Qiang, W. Xu, GIS partial discharge pattern recognition based on time-frequency features and improved convolutional neural network. Energies 15(19), 7372–7372 (2022). https://doi.org/10.3390/EN15197372

    Article  Google Scholar 

  32. F. Dai, X. Chen, L.X. Wang, H.Z. Ma, Partial discharge recognition of GIL based on Teager energy spectrum ELM. Electric Drive 52(22), 73–80 (2022). https://doi.org/10.19457/j.1001-2095.dqcd23165

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbo Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Wang, W., Fang, M. et al. Feature Extraction of Partial Discharge Signal Based on Local Mean Decomposition and Multi-scale Singular Spectrum Entropy. J. Inst. Eng. India Ser. B 105, 265–275 (2024). https://doi.org/10.1007/s40031-023-00981-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-023-00981-1

Keywords

Navigation