Skip to main content
Log in

Assessment of Optimal Size and Location of DG/CB in Distribution Systems using Coulomb–Franklin’s Algorithm

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

In this paper, an efficient Coulomb–Franklin’s algorithm (CFA) has been applied for analyzing the best-suited location and the size of the distributed generator (DG) and capacitor bank (CB) units in the radial distribution system (RDS). CFA is a novel metaheuristic approach based on the mathematical model of Franklin and Coulomb's laws. To minimize real power loss, CFA is applied and tested on four standard RDSs, which are IEEE 15, IEEE 33, IEEE 85, and IEEE 118 bus RDS. Through simulation, the optimal size and location of DG and CB units are determined which shows reduction in real power loss and improvement of the voltage profile in all the cases. The comparison of results with other methods shows the efficacy of CFA over the others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

IVM:

Index vector method

\({R}_{i, i+1}\) :

Resistance between bus i and i + 1

\({X}_{i, i+1}\) :

Reactance between bus i and i + 1

\(m\) :

Total number of bus

\({P}_{i(\text{DG})}\) :

Real power output at bus i

\({Q}_{i(\text{Cap})}\) :

Reactive power output at bus i

\({P}_{i(\text{DG})}^\text{min}\) :

DG minimum capacity

\({P}_{i(\text{DG})}^\text{max}\) :

DG maximum capacity

\({P}_{L,i}\) :

Real power demand at bus i

\({Q}_{L,i}\) :

Reactive power demand at bus i

\({P}_{i}\) :

Real power flow between bus i and i + 1

PLI:

Power loss index

LSF:

Loss sensitive factor

\({Q}_\text{Tloss}\) :

Total reactive power loss

\({P}_{0}\) :

Slack's bus real power

\({Q}_{0}\) :

Slack’s bus reactive power

\({V}_{i}\) :

Voltage of bus i

\({Q}_{i(\text{Cap})}^\text{min}:\) :

Reactive power minimum capacity

\({Q}_{i(\text{Cap})}^\text{max}\) :

Reactive power maximum capacity

\({P}_{\text{loss}(i,i+1)}\) :

Real power loss between bus i and i + 1

\({Q}_{\text{loss}(i,i+1)}:\) :

Reactive power loss between bus i and i + 1

\({Q}_{i}\) :

Reactive power flow between bus i and i + 1

References

  1. B. Singh, D.K. Mishra, A survey on enhancement of power system performances by optimally placed DG in distribution networks. Energy Rep. 4, 129–158 (2018). https://doi.org/10.1016/j.egyr.2018.01.004

    Article  Google Scholar 

  2. P.D.P. Reddy, V.C.V. Reddy, T.G. Manohar, Ant Lion optimization algorithm for optimal sizing of renewable energy resources for loss reduction in distribution systems. J. Electrical Syst. Inf. Technol. 5(3), 663–680 (2018). https://doi.org/10.1016/j.jesit.2017.06.001

    Article  Google Scholar 

  3. P.D.P. Reddy, V.C.V. Reddy, T.G. Manohar, Optimal renewable resources placement in distribution networks by combined power loss index and whale optimization algorithms. J. Electrical Syst. Inf. Technol. 5(2), 175–191 (2018). https://doi.org/10.1016/j.jesit.2017.05.006

    Article  Google Scholar 

  4. M.M. Aman, G.B. Jasmon, A.H. Bakar, H. Mokhlis, M. Karimi, Optimum shunt capacitor placement in distribution system—a review and comparative study. Renew. Sustain. Energy Rev. 30, 429–439 (2014). https://doi.org/10.1016/j.rser.2013.10.002

    Article  Google Scholar 

  5. M.G. Hemeida, A.A. Ibrahim, A.A. Mohamed, S. Alkhalaf, A.M. El-Dine, Optimal allocation of distributed generators DG based Manta Ray Foraging Optimization algorithm (MRFO). Ain Shams Eng. J. (2020). https://doi.org/10.1016/j.asej.2020.07.009

    Article  Google Scholar 

  6. S.K. Injeti, N.P. Kumar, A novel approach to identify optimal access point and capacity of multiple DGs in a small, medium and large scale radial distribution systems. Int. J. Electrical Power Energy Syst. 45(1), 142–151 (2013). https://doi.org/10.1016/j.ijepes.2012.08.043

    Article  Google Scholar 

  7. T.P. Nguyen, D.N. Vo, Improved stochastic fractal search algorithm with chaos for optimal determination of location, size, and quantity of distributed generators in distribution systems. Neural Comput. Appl. 31(11), 7707–7732 (2019). https://doi.org/10.1007/s00521-018-3603-1

    Article  Google Scholar 

  8. C.H. Prasad, K. Subbaramaiah, P. Sujatha, Cost–benefit analysis for optimal DG placement in distribution systems by using elephant herding optimization algorithm. Renew. Wind Water Solar 6(1), 2 (2019). https://doi.org/10.1186/s40807-019-0056-9

    Article  Google Scholar 

  9. M.M. Ansari, C. Guo, M.S. Shaikh, N. Chopra, I. Haq, L. Shen, Planning for distribution system with grey wolf optimization method. J. Electrical Eng. Technol. (2020). https://doi.org/10.1007/s42835-020-00419-4

    Article  Google Scholar 

  10. K.D. Babu, A.L. Devi, Cost–benefit analysis based DG placement and sizing in practical distribution system using fuzzy and DE algorithm. J. Inst. Eng. India Ser. B 101(5), 463–73 (2020). Doi: https://doi.org/10.1007/s40031-020-00461-w

  11. S.R. Behera, B.K. Panigrahi, A multi objective approach for placement of multiple DGs in the radial distribution system. Int J Mach. Learn. Cyber. 10(8), 2027–2041 (2019). https://doi.org/10.1007/s13042-018-0851-4

    Article  Google Scholar 

  12. T.D. Pham, T.T. Nguyen, B.H. Dinh, Find optimal capacity and location of distributed generation units in radial distribution networks by using enhanced coyote optimization algorithm. Neural Comput. Appl., pp. 1–29 (2020). Doi: https://doi.org/10.1007/s00521-020-05239-1

  13. S. Kawambwa, N. Hamisi, P. Mafole, H. Kundaeli, A cloud model based symbiotic organism search algorithm for DG allocation in radial distribution network. Evol. Intel. 15(1), 545–562 (2022). https://doi.org/10.1007/s12065-020-00529-y

    Article  Google Scholar 

  14. N. Meena, A. Swankar, N. Gupta, K. Niazi, Multi-objective Taguchi approach for optimal DG integration in distribution systems. IET GenerTransmDistrib 11(9), 2418–2428 (2017). https://doi.org/10.1049/iet-gtd.2016.2126

    Article  Google Scholar 

  15. S. Sultana, P.K. Roy, Multi-objective quasi-oppositional teaching learning based optimization for optimal location of distributed generator in radial distribution systems. Int. J. Electr Power Energy Syst. 63, 534–45 (2014). Doi: https://doi.org/10.1016/j.ijepes.2014.06.031.

  16. K.H. Truong, P. Nallagownden, I. Elamvazuthi, D.N. Vo, An improved meta-heuristic method to maximize the penetration of distributed generation in radial distribution networks. Neural Comput. Appl. 32(14), 10159–10181 (2020). https://doi.org/10.1007/s00521-019-04548-4

    Article  Google Scholar 

  17. S. Kumar, K.K. Mandal, N. Chakraborty, Optimal placement of different types of DG units considering various load models using novel multiobjective quasi-oppositional grey wolf optimizer. Soft Compt 25(6), 4845–4864 (2021). https://doi.org/10.1007/s00500-020-05494-3

    Article  Google Scholar 

  18. G.V. Lakshmi, A. Jayalaxmi, V. Veeramsetty, Optimal placement of distribution generation in radial distribution system using hybrid genetic dragonfly algorithm. Technol. Econ. Smart Grids Sustain. Energy 6(1), 1–13 (2021). https://doi.org/10.1007/s40866-021-00107-w

    Article  Google Scholar 

  19. R.K. Samala, M.R. Kotapuri, Optimal allocation of distributed generations using hybrid technique with fuzzy logic controller radial distribution system. SN Appl. Sci. 2(2), 1–14 (2020). https://doi.org/10.1007/s42452-020-1957-3

    Article  Google Scholar 

  20. M.A Tolba, H. Rezk, M. Al-Dhaifallah,A. A. Eisa, Heuristic optimization techniques for connecting renewable distributed generators on distribution grids. Neural Comput. Appl. , 32(17), 14195–14225 (2020). Doi: https://doi.org/10.1007/s00521-020-04812-y

  21. K.R. Devabalaji, K. Ravi, D.P. Kothari, Optimal location and sizing of capacitor placement in radial distribution system using bacterial foraging optimization algorithm. Int. J. Electr Power Energy Syst. 71, 383–90 (2015). Doi: https://doi.org/10.1016/j.ijepes.2015.03.008.

  22. A. Sharma, H. Sharma, A. Bhargava, N. Sharma, J.C. Bansal, Optimal placement and sizing of capacitor using Limaçon inspired spider monkey optimization algorithm. Memetic Comput. 9(4), 311–331 (2017). https://doi.org/10.1007/s12293-016-0208-z

    Article  Google Scholar 

  23. O. Sadeghian, A. Oshnoei, M. Kheradmandi, B. Mohammadi-Ivatloo, Optimal placement of multi-period-based switched capacitor in radial distribution systems. Comp. Electrical Eng. 82, 106549 (2020). https://doi.org/10.1016/j.compeleceng.2020.106549

    Article  Google Scholar 

  24. S. Nojavan, M. Jalali, K. Zare, Optimal allocation of capacitors in radial/mesh distribution systems using mixed integer nonlinear programming approach. Electric Power Syst. Res. 107, 119–124 (2014). https://doi.org/10.1016/j.epsr.2013.09.019

    Article  Google Scholar 

  25. R.S. Rao, S.V. Narasimham, M. Ramalingaraju, Optimal capacitor placement in a radial distribution system using plant growth simulation algorithm. Int. J. Electr Power Energy Syst. 33(5), 1133–9 (2011). Doi: https://doi.org/10.1016/j.ijepes.2010.11.021.

  26. M.W. Saddique, S.S. Haroon, S. Amin, A.R. Bhatti, I.A. Sajjad, R. Liaqat, Optimal placement and sizing of shunt capacitors in radial distribution system using polar bear optimization algorithm. Arab. J. Sci. Eng., pp. 1–27 (2020). Doi: https://doi.org/10.1007/s13369-020-04747-5

  27. S. M. Abd Elazim, E.S. Ali, Optimal locations and sizing of capacitors in radial distribution systems using mine blast algorithm. Electrical Eng. 100(1), 1–9 (2018). Doi: https://doi.org/10.1007/s00202-016-0475-1

  28. V. Tamilselvan, T. Jayabarathi, T. Raghunathan, X.S. Yang, Optimal capacitor placement in radial distribution systems using flower pollination algorithm. Alexandria Eng. J. 57(4), 2775–2786 (2018). https://doi.org/10.1016/j.aej.2018.01.004

    Article  Google Scholar 

  29. E.S. Ali, S.M. Abd Elazim, A.Y. Abdelaziz, Improved harmony algorithm for optimal locations and sizing of capacitors in radial distribution systems. Int. J. Electr Power Energy Syst. 79, 275–284 (2016). Doi: https://doi.org/10.1016/j.ijepes.2016.01.015

  30. A.A. El-Fergany, A.Y. Abdelaziz, Capacitor allocations in radial distribution networks using cuckoo search algorithm. IET GenerTransmDistrib. 8(2), 223–232 (2014). https://doi.org/10.1049/iet-gtd.2013.0290

    Article  Google Scholar 

  31. S. Das, T. Malakar, An emission constraint capacitor placement and sizing problem in radial distribution systems using modified competitive swarm optimiser approach. Int. J. of Ambient Energy. 12, 1–24 (2019). https://doi.org/10.1080/01430750.2019.1587723

    Article  Google Scholar 

  32. J. Vuletić, M. Todorovski, Optimal capacitor placement in radial distribution systems using clustering based optimization. Int J Electr Power Energy Syst 62, 229–236 (2014). https://doi.org/10.1016/j.ijepes.2014.05.001

    Article  Google Scholar 

  33. A. Elsheikh, Y. Helmy, Y. Abouelseoud, A. Elsherif, Optimal capacitor placement and sizing in radial electric power systems. Alexandria Engg. J. 53(4), 809–816 (2014). Doi: https://doi.org/10.1016/j.aej.2014.09.012

  34. S.K. Injeti, V.K. Thunuguntla, M. Shareef, Optimal allocation of capacitor banks in radial distribution systems for minimization of real power loss and maximization of network savings using bio-inspired optimization algorithms. Int. J. Electrical Power Energy Syst. 69, 441–55 (2015). Doi: https://doi.org/10.1016/j.ijepes.2015.01.040.

  35. D.B. Prakash, C. Lakshminarayana, Optimal siting of capacitors in radial distribution network using whale optimization algorithm. Alexandria Eng. J. 56(4), 499–509 (2017). https://doi.org/10.1016/j.aej.2016.10.002

    Article  Google Scholar 

  36. A.R. Youssef, S. Kamel, M. Ebeed, J. Yu, Optimal capacitor allocation in radial distribution networks using a combined optimization approach. Electric Power Comp. Syst. 46(19–20), 2084–2102 (2018). https://doi.org/10.1080/15325008.2018.1531956

    Article  Google Scholar 

  37. A.A. El-Fergany, A.Y. Abdelaziz, Artificial bee colony algorithm to allocate fixed and switched static shunt capacitors in radial distribution networks. Electric Power Comp. Syst. 42(5), 427–438 (2014). https://doi.org/10.1080/15325008.2013.856965

    Article  Google Scholar 

  38. K. Muthukumar, S. Jayalalitha, Optimal placement and sizing of distributed generators and shunt capacitors for power loss minimization in radial distribution networks using hybrid heuristic search optimization technique. Int. J. Electr Power Energy Syst. 78, 299–319 (2016). Doi: https://doi.org/10.1016/j.ijepes.2015.11.019

  39. E.A. Almabsout, R.A. El-Sehiemy, O.N. An, O. Bayat, A hybrid local Search-Genetic algorithm for simultaneous placement of DG units and shunt capacitors in radial distribution systems. IEEE Access. 8, 54465–54481 (2020). https://doi.org/10.1109/ACCESS.2020.2981406

    Article  Google Scholar 

  40. V. Tiwari, H. M. Dubey, M. Pandit, Optimal allocation of DG and Capacitor Units Using Jellyfish Search Algorithm. In:13th IEEE PES Asia Pacific Power and Energy Engineering Conference (APPEEC), 1–6 (2021). Doi: https://doi.org/10.1109/APPEEC50844.2021.9687762

  41. M.B. Jannat, A.S. Savić, Optimal capacitor placement in distribution networks regarding uncertainty in active power load and distributed generation units production. IET GenerTransmDistrib. 10(12), 3060–3067 (2016). https://doi.org/10.1049/iet-gtd.2016.0192

    Article  Google Scholar 

  42. M. Dixit, P. Kundu, H.R. Jariwala, Incorporation of distributed generation and shunt capacitor in radial distribution system for techno-economic benefits. Int J Engg Sci Tech. 20(2), 482–493 (2017). https://doi.org/10.1016/j.jestch.2017.01.003

    Article  Google Scholar 

  43. A. A. Abou El-Ela, R.A. El-Sehiemy, A.S. Abbas, Optimal placement and sizing of distributed generation and capacitor banks in distribution systems using water cycle algorithm. IEEE Syst. J. 12(4), 3629–3636 (2018). Doi: https://doi.org/10.1109/JSYST.2018.2796847

  44. H. Khosravi, H. Samet, M. Tajdinian, Empirical mode decomposition-based algorithm for islanding detection in micro-grids. Electric Power Syst. Res., 201, 107542 (2021). Doi: https://doi.org/10.1016/j.epsr.2021.107542

  45. Y.K. Semero, J. Zhang, D. Zheng, EMD–PSO–ANFIS-based hybrid approach for short-term load forecasting in microgrids. IET Gener. Transm. Distrib. 14, 470–475 (2020). https://doi.org/10.1049/iet-gtd.2019.0869

    Article  Google Scholar 

  46. H.M. Dubey, M. Pandit, B.K. Panigrahi, An overview and comparative analysis of recent bio-inspired optimization techniques for wind integrated multi-objective power dispatch. Swarm Evol. Comp. 38, 12–34 (2018). https://doi.org/10.1016/j.swevo.2017.07.012

    Article  Google Scholar 

  47. D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol. Comp. 1(1), 67–82 (1997). https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  48. M. Ghasemi, S. Ghavidel, J. Aghaei, E. Akbari, L. Li, CFA optimizer: A new and powerful algorithm inspired by Franklin’s and Coulomb’s laws theory for solving the economic load dispatch problems. Int. Trans. Electric Energy Syst. 28(5), e2536 (2018). https://doi.org/10.1002/etep.2536

    Article  Google Scholar 

  49. V.P. Sakthivel, M. Suman, P.D. Sathya, Robust Multi-Area Economic Dispatch Using Coulomb’s and Franklin’s Laws Based Optimizer. Int. J. Engg. Technol. Innov. 10(4), 235 (2020). Doi: https://doi.org/10.46604/ijeti.2020.5447.

  50. E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009). https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  51. E. Rashedi, E. Rashedi, H. Nezamabadi-pour, A comprehensive survey on gravitational search algorithm. Swarm Evol. Compt. 41, 141–158 (2018). https://doi.org/10.1016/j.swevo.2018.02.018

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors are sincerely acknowledging the financial support of \(AICTE-RPS\) project \(File No. 8-228/RIFD/RPS/POLICY-1/2018-19\) dated 20 March 2020 and MITS, Gwalior (India), for providing necessary support to carrying out this work.

Funding

This funding was provided by the all india council for technical education (8-228/RIFD/RPS/POLICY-1/2018-19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimal Tiwari.

Ethics declarations

Conflict of interest

There is no conflict of interest from the author side.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, V., Dubey, H.M. & Pandit, M. Assessment of Optimal Size and Location of DG/CB in Distribution Systems using Coulomb–Franklin’s Algorithm. J. Inst. Eng. India Ser. B 103, 1885–1908 (2022). https://doi.org/10.1007/s40031-022-00811-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-022-00811-w

Keywords

Navigation