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Abstract Motion blur and defocus blur are common

cause of image degradation. Blind restoration of such

images demands identification of the accurate point spread

function for these blurs. The identification of joint blur

parameters in barcode images is considered in this paper

using logarithmic power spectrum analysis. First, Radon

transform is utilized to identify motion blur angle. Then we

estimate the motion blur length and defocus blur radius of

the joint blurred image with generalized regression neural

network (GRNN). The input of GRNN is the sum of the

amplitudes of the normalized logarithmic power spectrum

along vertical direction and concentric circles for motion

and defocus blurs respectively. This scheme is tested on

multiple barcode images with varying parameters of joint

blur. We have also analyzed the effect of joint blur when

one blur has same, greater or lesser extents to another one.

The results of simulation experiments show the high pre-

cision of proposed method and reveals that dominance of

one blur on another does not affect too much on the applied

parameter estimation approach.

Keywords Blind image restoration � Defocus blur �
Motion blur � Radon transform � Generalized regression

neural network

1 Introduction

Barcodes are commonly used system of encoding of

machine understandable information on most commercial

services and products [1]. In Comparison to 1D barcode,

2D barcode has high density, capacity, and reliability.

Therefore, 2D barcodes have been progressively more

adopted these days. For example, a consumer can access

essential information from the web page of the magazine or

book, when he reads it, by just capturing the image of the

printed QR code (2D barcode) related to URL. In addition

to the URLs, 2D barcodes can also symbolize visual tags in

the supplemented real-world environment [2], and the

adaptation from the individual profiles to 2D barcodes

usually exists. Whereas 1D barcodes are traditionally

scanned with laser scanners, 2D barcode symbologies need

imaging device for scanning. Detecting bar codes from

images taken by digital camera is particularly challenging

due to different types of degradations like geometric dis-

tortion, noise, and blurring in image at the time of image

acquisition. Image blurring is frequently an issue that

affects the performance of a barcode identification system.

Blur may arise due to diverse sources like atmospheric

turbulence, defocused lens, optical abnormality, and spatial

and temporal sensor assimilation. Two common types of

blurs are motion blur and defocus blur. Motion blur is

caused by the relative motion between the camera and

object during image capturing while the defocus blur is

caused by the inaccurate focal length adjustment at the

time of image acquisition. Blurring induces the degradation
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of sharp features of image like edges, specifically for

barcode images where the encoded information is easily

lost due to blur. Image restoration techniques available in

the literature can be classified as blind deconvolution,

where the blur kernel is not known and non-blind decon-

volution, where the blur kernel is known [3]. The first and

foremost step in any blind image restoration technique is

blur estimation. Various techniques have been presented

over the years which attempt to estimate point spread

function (PSF) of blur simultaneously with the image [4,

5]. However, in recent years, a number of efficient methods

[6–9] have suggested that blind deconvolution can be

handled better with separate PSF estimation and after that

non-blind deconvolution can be used as the subsequent

step. The work presented in this paper falls in the former

category where PSF parameters are estimated before image

deconvolution.

Bhaskar et al. [10] utilized line spread function (LSF)

information to estimate defocus blur. They used the power

spectrum equalization (PSE) restoration filter for image

restoration. However, this method works only for little

areas of frequency. Shiqian et al. [11] presented a method

which analyzes LSF to find the exact location of blur edges

in spatial domain and then used this information for

defocus parameter estimation. But in presence of noise it is

difficult to find exact location of edges. Sang et al. [12]

proposed a digital auto focusing system which applies

block based edge categorization to decide the defocus blur

extent. This method fails for restoration of high frequency

details because it works for the low and median frequen-

cies. There exist few methods which work in frequency

domain. Vivirito et al. [13] applied extended discrete

cosine transform (DCT) of Bayer patterns to extract edge

details and used this information to find defocus blur

amount. Gokstop [14] computed image depth for defocus

blur estimation in his work. However, this method requires

two images of same scene from different angles to estimate

depth. Moghadam [15] presented an iterative algorithm

using optical transfer function (OTF) estimate blur

parameter. However, this method is noise independent, but

it requires manually adjustment of some parameters. Some

other methods presented in [16–19] have used wavelet

coefficients as features to train and test the radial basis

function (RBF) or cellular neural network for parameter

estimation.

Cannon [20] proposed the technique to identify the

motion blur parameters using power spectrum of many sub

images by dividing blurred image into different blocks.

Fabian and Malah [21] proposed a method based on Can-

non’s method. Initially, they applied spectral subtraction

method to reduce high level noise then transformed

improved spectral magnitude function to cepastral domain

for identification of blur parameters. Chang et al. [22]

proposed a method using the bispectrum of blurred image.

In this method blur parameters obtained in the central slice

of the bispectrum. Rekleitis [23] suggested a method to

estimate the optical flow map of a blurred image using only

information from the motion blur. He applied steerable

filters to estimate motion blur angle and 1D cepstrum to

find blur length. Yitzhaky and Kopeika [24] used auto-

correlation function of derivative image based on the

examination that image characteristics along the direction

of motion blur are dissimilar from the characteristic in

other directions. Lokhande et al. [25] estimated parameters

of motion blur by using periodic patterns in Frequency

domain. They proposed blur direction identification using

Hough transform and blur length estimation by collapsing

the 2D spectrum into 1D spectrum. Aizenberg et al. [26]

presented a work that identifies blur type, estimates blur

parameters and perform image restoration using neural

network. Dash et al. [27] presented an approach to estimate

the motion blur parameters using Gabor filter for blur

direction and radial basis function neural network for blur

length with sum of Fourier coefficients as features. Dobes

et al. [28] presented a fast method of finding motion blur

length and direction. This method computes the power

spectrum of the image gradient in the frequency domain

filtered by using a band pass Butterworth filter to suppress

the noise. The orientation of blur is found using Radon

transform and the distance between the neighbouring

stripes in power spectrum is used to estimate the blur

length. Fang et al. [29] proposed another method consisting

of Hann windowing and histogram equalization as pre-

processing steps. Dash et al. [30] modeled the blur length

detection problem as a multiclass classification problem

and used support vector machine. Though there are large

amount of work reported, no method is completely accu-

rate. Researchers are still active in this field in order to

improve the restoration performance by searching for

robust method of blur parameters estimation.

In the real environment, it is more common that

acquired images may be degraded by simultaneous blur

combining motion and defocus blur instead of image

blurring due to only motion or defocus blur. In the litera-

ture, little attention has been paid to joint blur identification

by the researchers. Wu et al. [31] proposed a method to

estimate defocus blur parameter in joint blur with the

assumption that motion blur PSF is known in the joint blur.

In this method a reduced update Kalman filter is applied for

blurred image restoration and the best defocus parameter is

estimated on the basis of maximum entropy. Chen et al.

[32] presented a spread function-based scheme considering

fundamental characteristics of linear motion and out-of-

focus blur based on geometric optics to restore joint blurred

images without application dependent parameters selec-

tion. Zhou et al. [33] analyzed cepstrum information for
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blur parameter estimation. Liu et al. [34] solved the prob-

lem of blur parameter identification using radon transform

and back propagation neural network.

This work deals with combined blur parameters identi-

fication. The term blur refers the joint blur with the coex-

istence of defocus and motion blur throughout the paper.

The rest of the paper is structured as follows. Section 2

describes the image degradation model. Section 3 briefly

discusses GRNN model. In Sect. 4, the overall methodol-

ogy has been discussed. Section 5 presents the simulation

results of parameter estimation. Finally in Sect. 6, con-

clusions and future work are discussed.

2 Image degradation model

The image degradation process in spatial domain can be

modeled by the following convolution process [3]

g x; yð Þ ¼ f x; yð Þ � h x; yð Þ þ g x; yð Þ ð1Þ

where g x; yð Þ is the degraded image, f(x, y) is the uncor-

rupted original image, h x; yð Þ is the point spread function

that caused the degradation and g x; yð Þ is the additive

noise. Since, convolution in spatial domain (x, y) is

equivalent to the multiplication in frequency domain (u, v),

Eq. (1) can be written as

Gðu; vÞ ¼ Fðu; vÞHðu; vÞ þ Nðu; vÞ ð2Þ

When the scene to be recorded translates relative to the

camera at a constant velocity (vrelative) under an angle of h
radians with the horizontal axis during the exposure

interval [0, texposure], the distortion is one dimensional.

Defining the length of motion as L ¼ vrelative � texposure;

the point spread function (PSF) for uniform motion blur

described as [23, 24]

hm x; yð Þ ¼
1

L
if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

� L

2
and

x

y
¼ � tan h

0 otherwise

(

ð3Þ

The frequency response of PSF is called optical transfer

function (OTF). The frequency response of hm is a SINC

function given by

H u; vð Þ ¼ sinc pL u cos hþ v sin hð Þð Þ ð4Þ

Figure 1a and b show an example of motion blur PSF

and corresponding OTF with specified parameters.

In most cases, the out of focus blur caused by a system

with circular aperture can be modeled as a uniform disk

with radius R given by [10, 11]

hd x; yð Þ ¼
1

pR2
if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

�R

0 otherwise

(

ð5Þ

The frequency response of Eq. (5) is given by (6), which

is based on a Bessel function of the first kind [12]

H u; vð Þ ¼ J1ðR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

Þ
R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

" #

ð6Þ

where J is the Bessel function of first kind and R is radius

of uniform disk. Fig. 2a and b show an example of PSF and

corresponding OTF of defocus blur with specified radius.

In the case where both out-of-focus blur and motion blur

are simultaneously present in the same image, the blur

model is [31]

Fig. 1 a PSF of motion blur with angle 45� and length 10 pixels, b OTF of PSF in (a)
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g x; yð Þ ¼ f x; yð Þ � hd x; yð Þ � hm x; yð Þ þ g x; yð Þ ð7Þ

Since convolution is commutative, so joint blur PSF can

be obtained as convolution of two blur functions as

h x; yð Þ ¼ hd x; yð Þ � hm x; yð Þ ð8Þ

where hd(x, y), hm(x, y) are point spread functions for motion

defocus and blur respectively and * is the convolution

operator. Fig. 3a and b show an example of PSF and corre-

sponding OTF of combined blur with specified parameters.

This paper treats the blur effect caused by both defocus and

camera motion while ignoring the noise term in model. The

PSF estimation for blur is corresponding to estimate three

parameters angle (h), length (L) and radius (R).

3 Generalized regression neural network (GRNN)

model

A generalized regression neural network (GRNN) is a

dynamic neural network architecture that can solve any

Fig. 2 a PSF of defocus blur with radius 5 pixels, b OTF of PSF in (a)

Fig. 3 a PSF of joint blur with angle 45� and length 10 pixels, radius 5 pixels, b OTF of PSF in (a)
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function approximation problem if adequate data is avail-

able [35, 36]. Training of these type of networks does not

depend on iterative procedure like back propagation net-

works. The main aim of a GRNN is to estimate a linear or

nonlinear regression surface on independent variables. The

network calculates the most probable value of an output

given only by training vectors. It is also confirm that the

prediction error approaches zero, as the training set size

becomes large with barely minor restrictions on the func-

tion. GRNN has been identified to give superior results

than the back-propagation network or radial basis function

neural network (RBFNN) in terms of prediction accuracies

[37, 38]. For an input vector F, the output Y of the GRNN

is [35]

ŶðFÞ ¼
Pn

k¼1 Yke�
D2

k

2r2

Pn
k¼1 e

�
D2

k

2r2

ð9Þ

where n is the number of sample observations, r is the

spread parameter and Dk is the squared distance between

the input vector F and the training vector Xk defined as

Dk ¼ F � Xkð ÞðF � XkÞT ð10Þ

The smoothing factor r determines the spread for

regions of neurons. The value of the spread parameter

should be smaller than the average distance between the

input vectors to fit the data very closely. So, a variety of

smoothing factors and methods for choosing those factors

should be tested empirically to find the optimum smoothing

factors for the GRNN models [39]. A schematic diagram of

the GRNN model for blur identification problem is shown

in Fig. 4, in which GRNN consists of an input layer, a

hidden layer (pattern layer), a summation layer, and an

output layer. The numbers of neurons in input layer are

equal to the number of independent features in dataset.

Each unit in the pattern layer depicts a training pattern. The

summation layer keeps two different processing units, i.e.,

the summation and single division unit. The summation

unit adds all the outputs of the pattern layer, whereas the

division unit only sums the weighted activations of the

pattern units. Each node in the pattern layer is connected to

each of the two nodes in the summation layer. The weights

Yk and one are assigned on the links between node k of the

pattern layer and the first and second node of the summa-

tion layer respectively. The output unit calculates the

quotient of the two outputs of the summation layer to give

the estimated value.

4 Methodology

Blurring reduces significant features of image such as

boundaries, shape, regions, objects etc., which creates

problem for image analysis in spatial domain. The motion

blur, defocus blur appear differently in frequency domain,

and the blur identification can be easily done using these

patterns. If we transform the blurred image in frequency

domain, it can be seen from frequency response of motion

blurred image that the dominant parallel lines appear which

are orthogonal to the motion orientation with near zero

values [20, 21]. In defocused blur one can see appearance

of some circular zero crossing patterns [10, 11] and in case

of coexistence of both blurs, combined effect of both blurs

become visible. The steps of the algorithm for joint blur

parameter identification are detailed in Fig. 5. These are

five major steps: preprocessing of images, motion blur

angle estimation, image rotation in case of non horizontal

motion blur angle, motion blur length estimation and

defocus blur length estimation.

4.1 Preprocessing

Blur classification requires a number of preprocessing

steps. First, the color image obtained by the digital

Fig. 4 Schematic diagram of

GRNN model for blur

identification
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camera is changed into an 8-bit grayscale image. This

can be made by averaging the color channels or by

weighting the RGB-parts according to the luminance

perception of the human eye. The period transitions from

one boundary of image to the next frequently lead to

high frequencies, which are converted into visible verti-

cal and horizontal lines in the power spectrum of image.

Because these lines may distract from or even superpose

the stripes caused by the blur, they have to be removed

by applying a windowing function prior to frequency

transformation. The Hanning window gives a fine trade-

off between forming a smooth transition towards the

image borders and maintaining enough image informa-

tion in power spectrum. A 2D Hann window of size

N 9 M defined as the product of two 1D Hann windows

as [29]

w n;m½ � ¼ 1

4
1þ cos 2p

n

N

h i� �

1þ cos 2p
m

M

h i� �

ð11Þ

After that step, the windowed image can be transferred

into the frequency domain by performing a fast Fourier

transform. The power spectrum is calculated to facilitate

the identification of particular features of the Fourier

spectrum. However, as the coefficients of the Fourier

spectrum decrease rapidly from its centre to the borders, it

can be hard to identify local differences. Taking the loga-

rithm of the power spectrum helps to balance this fast drop

off. In order to obtain a centred version of the spectrum, its

quadrants have to be swapped diagonally. In view of the

fact that the remarkable features are around the centre of

the spectrum, a centred portion of size 128 9 128 is

cropped to perform further processing (Fig. 6).

Fig. 5 Overview of the joint

blur parameter estimation

scheme
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4.2 Blur angle estimation using enhanced Radon

transform

Radon transform [40] is competent to transform two

dimensional images with lines into a domain of possible

line parameters h; qð Þ, where h is the angle between the

perpendicular from the origin to the given line and the x-

axis and q is the length of the perpendicular. Each line in

the image will give a peak positioned at the corresponding

line parameters. It computes the projections of an image

matrix along specified directions. A projection of a two-

dimensional function f(x, y) is a set of line integrals. The

Radon function computes the line integrals from multiple

sources along parallel paths or beams in a certain direction.

An arbitrary point in the projection expressed as ray-sum

along the line x coshþ y sinh ¼ q is given by [41]

g q; hð Þ ¼
X

M�1

x¼0

X

N�1

y¼0

f x; yð Þd x cos hþ y sin h� qð Þ ð12Þ

Fig. 6 a Original image

containing QR code [42],

b defocus blurred image with

R = 20, c motion blurred image

with L = 10 and h = 0�,

(g) joint blurred image with

R = 20, L = 10 and h = 0�,

e–h log power spectrums of

images (a–d) respectively,

i–l log power spectrums after

Hann windowing of images

(a–d) respectively
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where d(.) is the delta function. The advantage of Radon

transform over other line fitting algorithms, such as Hough

transform and robust regression, is that we do not need to

specify edge pixels of the lines. Frequency response of

motion blurred image shows the dominant parallel lines

orthogonal to the motion orientation. To find direction of

these lines, let R be the Radon transform of an image, and

then the position of high spots along the h axis of R shows

the motion direction. Figure 7b shows the result of apply-

ing Radon transform to the logarithmic power spectrum

(LGPS) of blurred image shown in Fig. 7a. The peak in

Radon transform corresponds to the motion blur angle. To

reduce the computation time and improve the results, we

have projected the spectrum with a step of 5� and estimated

the line orientation. Then near that orientation, we have

further projected the spectrum with a step of 1� to find final

orientation.

4.3 Blur length estimation

The idea of motion blur length estimation uses the blur

patterns appearance corresponding to the motion blur in the

joint blurred images. The equally spaced parallel dark

stripes in the LGPS contain motion blur length information.

The distance between two dark stripes decreases as the

motion blur length (L) increases. Therefore, one can esti-

mate the motion blur length by calculating the distance

between two dark stripes but accurate estimation of these

spacing is complex. We can solve this problem with

summation of frequency amplitudes in certain direction

and then utilize the GRNN to find the relationship between

summed amplitudes and motion blur length. For example,

consider an image degraded by uniform horizontal motion

blur (i.e. angle is 0�) and defocus blur with parameter L and

R respectively. Due to motion blur vertical parallel dark

stripes appear in spectrum. So, we add amplitudes verti-

cally and use this vector as feature vector for GRNN. For

the other motion blur orientations, we need to rotate the

spectrum by the estimated angle using enhanced radon

transform before summing the amplitudes in vertical

direction.

4.4 Blur radius estimation

In the spectrum of the blurred image containing joint blur,

we can see the alternating light and dark concentric circle

stripes due to defocus blur. The distance between two dark

circular stripes decreases as the defocus blur radius

(R) increases. Therefore, one can estimate the defocus blur

parameter by calculating the spacing between the adjacent

dark circle stripes but accurate estimation of these spacing

is critical. Similar to the identification of uniform linear

motion blur length, the identification of defocus blur radius

makes use of GRNN. The sum of the amplitudes for each

concentric circle is taken as input feature vector and R as

output for GRNN.

5 Simulation results

The performance of the proposed technique has been

evaluated using numerous 2D barcode images. The barcode

image database used for the simulation is the Brno Institute

of Technology QR code image database [42]. Numerous

2D barcode images from the database were considered to

introduce joint blur synthetically with varying degree of

parameters. We have also analyzed the effect of joint blur

on parameter identification approach with consideration of

three situations as:

a. Blur extent of motion and defocus blurs is same in

joint blur ðL ¼ RÞ.
b. Blur extent of motion blur dominates defocus blur in

joint blur ðL [ RÞ.
c. Blur extent of defocus blur dominates motion blur in

joint blur (L \ R).

We selected the GRNN for the purpose of blur param-

eter identification owing to its excellent prediction ability.

We use sum of amplitudes feature vector as inputs to the

GRNN as discussed in Sects. 4.3 and 4.4. The whole

training and testing features set is normalized into the range

[0, 1]. The GRNN was implemented using the function

newgrnn available in MATLAB neural network toolbox.

The only parameter to be determined is the spread

parameter r. In view of the fact that there exists no a priori

scheme of selecting it, we compared the performance with

a variety of values. To evaluate the performance two sta-

tistical measures, mean absolute error (MAE) and root

mean square error (RMSE), between the estimated output

and target have been used, which are the widely acceptable

indicators to give a statistical description for the

Fig. 7 a Fourier spectrum of Fig. 1a blurred with motion length 10

pixels and motion orientation 45�, b Radon transform of (a)
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effectiveness of the model. They are computed using (13)

and (14) respectively.

Emae ¼
P

ðT � YÞj j
N

ð13Þ

Erms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

ðT � YÞ2

N

s

ð14Þ

where T is target vector, Y is predicted output and N is

number of samples. RMSE and MAE signify the residual

errors, which provide an overall idea of the variation

among the target and predicted values. In results, we have

shown the best case and worst case blur parameter toler-

ances. These values illustrate the absolute errors (i.e. dif-

ference between the real values and the estimated values of

the angle and length). We have also plotted the regression

results for each blur length and radius. These plots illus-

trate the original data points along with the line providing

the best fit through the points. The equation for the line is

also given.

5.1 Blur angle estimation

To carry out motion blur angle estimation experiment, we

have applied the enhanced radon transform method on a

barcode image that was degraded by different orientations

with step of 5 degree in the range 0� B u\ 180� with

fixed L and R. We have selected L and R parameters as 20

pixels for first situation of joint blur. For the next two

situations where one blur extent is higher to other one, we

have considered L = 20, R = 15 and L = 20, R = 25

respectively. Table 1 presents the summary of results. In

this table, the column named ‘‘angle tolerance’’ illustrates

the absolute value of errors (i.e. difference between the real

values and the estimated values of the angles). The low

values of the mean absolute error and root mean square

errors show the high accuracy of the method. The results in

table also disclose that prediction accuracy is slightly better

when motion blur extent is more than defocus blur in

comparison to other situations of joint blur. Figure 8 plots

the absolute errors between true blur angle and estimated

blur angle for all three situations of joint blur.

5.2 Blur length estimation

To carry out extensive experiment, we applied the pro-

posed method on 100 barcode images that are synthetically

degraded by keeping blur orientation fixed at 0� and

varying L and R in the range 1–20 (i.e., 1 B L B 20 and

1 B R B 20 pixels) for all three considered cases of joint

blur separately. So, total 2,000 blurred images were cre-

ated. Out of these degraded images 1,000 were used to

train the GRNN and all were used to test the model. The

best spread parameter for fitting was found to be 2. Table 2

Table 1 Simulation results of angle estimation on barcode image in

Fig. 6a for all three cases

Cases Angle tolerance (�)

Motion blur

length (L)

= defocus blur

radius (R)

Motion blur

length (L)

[ defocus blur

radius (R)

Motion blur

length (L)

\ defocus blur

radius (R)

Best estimate 0 0 0

Worst estimate 3 3 3

MAE 0.7222 0.5556 0.8333

RMSE 1.0801 0.9428 1.2019

Fig. 8 The average error in

angle estimation for all three

cases

Table 2 Simulation results of blur length estimation on barcode

image for all three cases

Cases Length tolerance (in pixels)

Motion blur

length (L)

= defocus blur

radius (R)

Motion blur

length (L)

[ defocus blur

radius (R)

Motion blur

length (L)

\ defocus blur

radius (R)

Best estimate 0 0 0

Worst estimate 1.4211e-014 1 2.1316e-014

MAE 1.4626e-015 0.0098 1.5919e-015

RMSE 2.6334e-015 0.0958 2.9028e-015
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and regression plots in Fig. 9 present the summary of

results. Results show the robustness of proposed method

and also reveal that change in the blur extent ratios has

negligible effect on the performance.

5.3 Blur radius estimation

To validate the proposed method, we applied the proposed

scheme for blur radius estimation on 100 barcode images

that were synthetically degraded by keeping blur orienta-

tion fixed at 0� and varying L and R in the range 1–20 (i.e.,

1 B L B 20 and 1 B R B 20 pixels) for all three

Fig. 9 Regression plots of predicted blur length with different ratios of L and R a L = R, b L [ R, and c L \ R

Table 3 Simulation results of blur radius estimation on barcode

image for all three cases

Cases Radius tolerance (in pixels)

Defocus blur

radius (R)

= motion blur

length (L)

Defocus blur

radius (R) [
motion blur

length (L)

Defocus blur

radius (R)

\ motion blur

length (L)

Best estimate 0 0 0

Worst estimate 3 8 2

MAE 0.0035 0.0100 0.0020

RMSE 0.0866 0.2280 0.0548

Fig. 10 Regression plots of predicted blur radius with different ratios of L and R a R = L, b R [ L, and c R \ L

20 CSIT (March 2014) 2(1):11–22
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considered cases of joint blur separately. So, total 2,000

blurred images were created. Out of these degraded ima-

ges 1,000 were used to train the GRNN and all are used to

test the model. The best spread parameter for fitting was

found to be 1. Table 3 and plots in Fig. 10 present the

summary of results. Results in table and regression plots

overall conclude that proposed scheme gives very accurate

results. Though the blur radius prediction is slightly better

when R \ L, the general conclusion about the results is that

different ratios of L and R do not affect too much on

performance.

6 Conclusion

In this paper, we have proposed a proficient method that

identifies the blur parameters in case of coexistence of

defocus and motion blurs in barcode images. We have

utilized blur pattern appearances in frequency spectrum.

Enhanced radon transform is used to estimate blur orien-

tation. To estimate blur length and radius, we have utilized

generalized regression neural network model with sum of

amplitudes in a specific manner as input features. Results

show that proposed scheme for joint blur parameter iden-

tification is very accurate. Analysis of results also shows

that different ratios of blur extents do not alter the per-

formance significantly. In future, this work can be extended

to identification of parameters of the blurred image with

noise interference.

Acknowledgments We highly appreciate Faculty of Engineering

and Technology, Mody Institute of Technology & Science University,

Laxmangarh for providing facility to carry out this research work.

Conflict of interest The authors declare that there is no conflict of

interests regarding the publication of this article.

References

1. ISO/IEC 18004:2000 (2000) Information technology—automatic

identification and data capture techniques-bar code symbology-

QR code

2. Parikh TS, Lazowska ED (2006) Designing an architecture for

delivering mobile information services to the rural developing

world. In: ACM international conference on world wide web,

pp. 123–130

3. Tiwari S, Shukla VP, Biradar SR, Singh AK (2013) Texture

features based blur classification in barcode images. Int J Inf Eng

Electron Bus 5:34–41

4. Kundur D, Hatzinakos D (1996) Blind image deconvolution.

IEEE Signal Process Mag 13(3):43–64

5. Schulz TJ (1993) Multiframe blind deconvolution of astronomi-

cal images. JOSA 10(5):1064–1073

6. Gennery D (1973) Determination of optical transfer function by

inspection of frequency domain plot. JOSA 63:1571–1577

7. Hummel R, Zucker K, Zucker S (1987) Debluring gaussian blur.

CVGIP 38:66–80

8. Lane R, Bates R (1987) Automatic multidimensional deconvo-

lution. JOSA 4(1):180–188

9. Tekalp A, Kaufman H, Wood J (1986) Identification of image and

blur parameters for the restoration of non causal blurs. IEEE

Trans Acoust Speech Signal Process 34(4):963–972

10. Bhaskar R, Hite J, Pitts DE (1994) An iterative frequency-domain

technique to reduce image degradation caused by lens defocus

and linear motion blur. Int Conf Geosci Remote Sens

4:2522–2524

11. Shiqian W, Weisi L, Lijun J, Wei X, Lihao C (2005) An objective

out-of-focus blur measurement. In: Fifth international conference

on information, communications and signal processing,

pp. 334–338

12. Sang KK, Sang RP, Joon KP (1998) Simultaneous out-of-focus

blur estimation and restoration for digital auto focusing system.

IEEE Trans Consum Electron 44:1071–1075

13. Vivirito P, Battiato S, Curti S, Cascia ML, Pirrone R (2002)

Restoration of out of focus images based on circle of confusion

estimate. In: Proceedings of SPIE 47th annual meeting, vol 4790,

pp. 408–416

14. Gokstop M (1994) Computing depth from out-of-focus blurring a

local frequency representation. In: Proceeding of international

conference of pattern recognition, vol 1, pp. 153–158

15. Moghadam ME (2008) A robust noise independent method to

estimate out of focus blurs. In: IEEE international conference on

acoustics, speech and signal processing, pp. 1273–1276

16. Jiang Y (2005) Defocused image restoration using RBF network

and kalman filter. IEEE Int Conf Syst Man Cybernet

3:2507–2511

17. Su L (2008) Defocused image restoration using RBF network and

iterative wiener filter in wavelet domain. CISP’08 congress on

image and signal processing, vol 3, pp. 311–315

18. Jongsu L, Fathi AS, Sangseob S (2010) Defocus blur estimation

using a cellular neural network. CNNA 1(4):3–5

19. Chen H-C, Yen J-C, Chen H-C (2012) Restoration of out of focus

images using neural network. In: Information security and intel-

ligence control (ISIC), pp. 226–229

20. Cannon M (1976) Blind deconvolution of spatially invariant

image blurs with phase. IEEE Trans Acoust Speech Signal Pro-

cess 24:58–63

21. Fabian R, Malah D (1991) Robust identification of motion and

out-of-focus blur parameters from blurred and noisy images.

Graph Models Image Process 53(5):403–412

22. Chang M, Tekalp AM, Erdem TA (1991) Blur identification

using the bispectrum. IEEE Trans Signal Process

39(10):2323–2325

23. Rekleitis IM (1995) Visual motion estimation based on motion

blur interpretation. MSc thesis, School of Computer Science,

McGill University, Montreal, QC, Canada

24. Yitzhaky Y, Kopeika NS (1997) Identification of blur parameters

from motion blurred images. Graph Models Image Process

59:310–320

25. Lokhande R, Arya KV, Gupta P (2006) Identification of blur

parameters and restoration of motion blurred images. In: Pro-

ceedings of ACM symposium on applied computing, pp. 301–305

26. Aizenberg I, Paliy DV, Zurada JM, Astola JT (2008) Blur iden-

tification by multilayer neural network based on multivalued

neurons. IEEE Trans Neural Netw 19(5):883–898

27. Dash R, Sa PK, Majhi B (2009) RBFN based motion blur

parameter estimation. In: IEEE international conference on

advanced computer control, pp. 327–331

28. Dobes M, Machala L, Frst M (2010) Blurred image restoration: a

fast method of finding the motion length and angle. Digit Signal

Process 20(6):1677–1686

29. Fang X, Wu H, Wu Z, Bin L (2011) An improved method for

robust blur estimation. Inf Technol J 10:1709–1716

CSIT (March 2014) 2(1):11–22 21

123



30. Dash R, Sa PK, Majhi B (2012) Blur parameter identification

using support vector machine. ACEEE Int J Control Syst Instrum

3(2):54–57

31. Wu Q, Wang X, Guo P (2006) Joint blurred image restoration

with partially known information. In: International conference on

machine learning and cybernetics, pp. 3853–3858

32. Chen C-H, Chien T, Yang W-C, Wen C-Y (2008) Restoration of

linear motion and out-of-focus blurred images in surveillance

systems. In: IEEE international conference on intelligence and

security informatics, pp. 239–241

33. Zhou Q, Yan G, Wang W (2007) Parameter estimation for blur

image combining defocus and motion blur using cestrum ana-

lysis. J Shanghai Jiao Tong Univ 12(6):700–706

34. Liu Z, Peng Z (2011) Parameters identification for blur image

combining motion and defocus blurs using BP neural network. In:

4th international congress on image and signal processing (CISP),

vol 2, pp. 798–802

35. Specht DF (1991) A general regression neural network. IEEE

Trans Neural Netw 2(6):568–576

36. Chartier S, Boukadoum M, Amiri M (2009) BAM learning of

nonlinearly separable tasks by using an asymmetrical output

function and reinforcement learning. IEEE Trans Neural Netw

20(8):1281–1292

37. Tomandl D, Schober A (2001) A modified general regression

neural network (MGRNN) with new, efficient training algorithms

as a robust ‘black box’-tool for data analysis. Neural Netw

14(8):1023–1034

38. Li Q, Meng Q, Cai J, Yoshino H, Mochida A (2009) Predicting

hourly cooling load in the building: a comparison of support

vector machine and different artificial neural networks. Energy

Convers Manage 50(1):90–96

39. Li CF, Bovik AC, Wu X (2011) Blind image quality assessment

using a general regression neural network. IEEE Trans Neural

Netw 22(5):793–799

40. Tiwari S, Shukla VP, Biradar SR, Singh AK (2012) Certain

investigations on motion blur detection and estimation. In: Pro-

ceedings of international conference on signal, image and video

processing, IIT Patna, pp. 108–114

41. Tiwari S, Shukla VP, Biradar SR, Singh AK (2013) Review of

motion blur estimation techniques. J Image Graph 1(4):

176–184
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