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Abstract Texture features play a vital role in land cover

classification of remotely sensed images. Local binary

pattern (LBP) is a texture model that has been widely used

in many applications. Many variants of LBP have also been

proposed. Most of these texture models use only two or

three discrete output levels for pattern characterization. In

the case of remotely sensed images, texture models should

be capable of capturing and discriminating even minute

pattern differences. So a multivariate texture model is

proposed with four discrete output levels for effective

classification of land covers. Remotely sensed images have

fuzzy land covers and boundaries. Support vector machine

is highly suitable for classification of remotely sensed

images due to its inherent fuzziness. It can be used for

accurate classification of pixels falling on the fuzzy

boundary of separation of classes. In this work, texture

features are extracted using the proposed multivariate

descriptor, MDLTP/MVAR that uses multivariate discrete

local texture pattern (MDLTP) supplemented with multi-

variate variance (MVAR). The classification accuracy of

the classified image obtained is found to be 93.46 %.

Keywords Land use land cover classification � Texture

model � Multispectral image � Texture segmentation

1 Introduction

Land cover refers to the biophysical attributes of the sur-

face of the earth. Features of land covers include texture,

shape, colour, contrast and so on. Land cover classification

involves classifying the multispectral remotely sensed

image into various land covers such as land, vegetation,

water, etc. Some of the applications of land cover classi-

fication are town planning, conservation of earth’s natural

resources, studying the effects of climatic conditions and

analyzing change in land forms. Identification of a suitable

feature extraction technique and classifier is a challenging

task in land cover classification of remotely sensed images.

Texture based methods are widely used in applications

like face recognition, content based image retrieval, pattern

classification in medical imagery and land cover classifi-

cation of remotely sensed images. Texture is a surface

property that characterizes the coarseness and smoothness

of land covers. Pixel based techniques classify a pixel

depending on the intensity of the current pixel but texture

based techniques classify a pixel based on its relationship

with the neighborhood. Texture measures can capture

micro as well as macro patterns as they can be captured by

varying the size of neighborhood. Most of the texture based

methods are rotation, illumination, scaling and color

invariant and are robust and susceptible to noise. Recent

texture based studies reveal that texture measures aug-

mented with a contrast measure characterizing the local

neighborhood yield accurate results, provided the condi-

tions like using a sufficient number of precise samples for

training, a suitable neighborhood for finding pattern unit

and an optimal window size are satisfied.

Support vector machine (SVM) is basically a binary

classifier but can be used for multiclass classification fol-

lowing suitable approaches. The advantage of SVM over
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other classifiers is that SVM allows a marginal region on

both sides of the linear or non linear boundary of separation

of classes and classifies the pixels within the support

regions based on measures of uncertainty and reliability.

This ensures that uncertain pixels that fall in the support or

boundary region are assigned exactly correct class labels.

The objective of this research work is to propose a multi-

variate texture model that performs land cover classifica-

tion of remotely sensed images with the help of SVM.

1.1 Motivation and justification of the proposed

approach

A variety of texture models are found in literatures. The

univariate texture model, local binary pattern (LBP) [11]

was proposed for gray level images and its classification

accuracy was proved to be better in many applications. A

multivariate extension of the univariate LBP model was

proposed for remotely sensed images by [10] as multivar-

iate local binary pattern (MLBP). They concluded that

MLBP model with uncertainty measure helped in identi-

fying objects and yielded high classification accuracy.

Algorithms using wavelet transform [2] and rotation

invariant features of Gabor wavelets [3] were proposed for

performing texture segmentation of gray level images and

they reported that the results were promising. To provide

better pattern discrimination, advanced local binary pattern

(ALBP) [1] was proposed for texture classification and

applied on standard texture databases. It was proved that

ALBP characterized local and global texture information

and was robust in discriminating texture. Local texture

pattern (LTP) [15] was proposed for gray level images and

later extended to remotely sensed images as multivariate

local texture pattern (MLTP) [16]. From the experiments, it

was proved that MLTP model gave high classification

accuracy. In dominant local binary pattern (DLBP) [8]

histograms of dominant patterns were used as features for

texture classification of standard textures. Local derivative

pattern [13] was proposed for face recognition under

challenging image conditions. A novel face descriptor

named local color vector binary pattern (LCVBP) [7] was

proposed to recognize face images with challenges. Two

color local texture features like color local Gabor wavelets

(CLGWs) and color local binary pattern (CLBP) [4] were

purposed for face recognition and both were combined to

maximize their complementary effect of color and texture

information respectively.

Among many classification algorithms used for texture

based classification of remotely sensed images, support

vector machine [[6], [12]], relevance vector machine [5]

are reported often in literatures. [6] suggested that SVM

was more suitable for heterogeneous samples for which

only a few number of training samples were available. [12]

concluded that the SVM classification approach was better

than K nearest neighbour classification algorithm. [9]

performed a detailed survey of various classification

algorithms including pixel based, sub pixel based, para-

metric, non parametric, hard and soft classification algo-

rithms. They summarized that the success of an image

classification algorithm depended on the availability of

high quality remotely sensed imagery, the design of a

proper classification procedure and analyst’s skills.

Among the texture models mentioned earlier, only LBP,

LTP, wavelet and Gabor wavelet have been extended to

remotely sensed images already. The challenge in spectral

methods is that they produce features of high dimension-

ality. So dimensionality reduction may be required prior to

classification. At the same time, the multivariate texture

models MLBP [10] and MLTP [17] yield high classifica-

tion accuracy on remotely sensed images using at most

three discrete levels. So it is expected that if we increase

the number of discrete levels, we can more precisely model

the relationship between neighbour pixels. Motivated by

this, a multivariate texture model with four discrete levels

is proposed for land cover classification of remotely sensed

images. Incorporating fuzziness either during feature

extraction [18] and [14] or classification can improve the

classification accuracy of pattern classification and recog-

nition problems. Support vector machine is a fuzzy clas-

sifier often used in classification of remotely sensed

images. Moreover it converges quickly and needs only a

minimum number of samples for classification. Justified by

these facts, the proposed multivariate texture model is

combined with SVM classification algorithm for perform-

ing land cover classification of remotely sensed images.

The objective of this research work is to propose a multi-

variate texture model MDLTP for land cover classification

of remotely sensed images that gives high classification

accuracy.

1.2 Outline of the proposed approach

The proposed approach has texture feature extraction part

as shown in Fig. 1a and classification part as shown in

Fig. 1b. During feature extraction, the centre pixel of each

3 9 3 neighbourhood of a sample is assigned a pattern

label using the proposed local texture descriptor. Local

contrast variance is also used as a supplementary local

feature descriptor. These two local descriptors are then

used to form a 2D global histogram of each sample. The

2D global histograms thus formed characterize the global

feature of the sample. The SVM classifier works in two

phases as shown in Fig. 1b. In the training phase, training

samples are extracted from distinct land cover classes of

remotely sensed images. Texture features in the form of 2D

global histograms of training samples are used to train
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SVM classifier. In the testing phase, test samples centred

around each pixel of remotely sensed image are extracted,

2D global histogram was found and given as input to SVM.

The SVM classifier finds the optimal hyper plane of sep-

aration and returns the class label based on its prior

learning of training samples.

1.3 Organization of the paper

The second section of the paper gives the overview of the

proposed multivariate texture model. The third section

describes the SVM classification algorithm. The fourth

section gives a detailed account of the experiments con-

ducted with the proposed multivariate texture model for

supervised texture classification of remotely sensed image.

It also evaluates the performance of the proposed model.

The final section discusses the outcomes of various

experiments and gives the conclusion.

2 Texture feature extraction

2.1 Local texture description using discrete local

texture pattern (DLTP)

The proposed texture model extracts local texture infor-

mation from a neighbourhood in an image. Let us take a

3 9 3 neighbourhood where gc, g1, ���g8 be the pixel val-

ues of a local region where the value of the centre pixel is

gc and g1, g2���g8 are the pixel values in its neighbourhood.

The relationship between the centre pixel and one of its

neighbour pixels is described in Eq. (1).

pðgi; gcÞ ¼

�1 if gi\ðgc � mÞ
0 if ðgc � mÞ� gi� gc

1 if gc\gi�ðgc þ mÞ
9 if gi [ ðgc þ mÞ

8
>><

>>:

ð1Þ

Here ‘m’ is the threshold which is set to express the

closeness of neighbouring pixel with the centre pixel. The

value p(gi, gc)stands for output level assigned to ith pixel

in the neighbourhood. The discrete output levels are fixed

numerically to -1, 0, 1 and 9 to assign unique pattern

values during individual summation of positive and neg-

ative values. The output levels characterize the neigh-

bourhood pixel relation. Concatenation of these levels in a

neighbourhood gives us a pattern unit. The sample cal-

culation of pattern unit for m = 5 is shown below.

206 194 201

203 201 198

212 210 202
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7
5!

1 �1 0

1 0

9 9 1
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7
5

! 1 �1 0 0 1 9 9 1 ðPattern UnitÞ

The total number of patterns considering all combina-

tions of four output levels with number of pixels in the

neighbourhood (P) equal to eight will be 48. This will lead

to increase in number of bins required when these local

patterns are accumulated to characterize global regions. In

order to reduce the number of possible patterns, a unifor-

mity measure (U) is introduced as defined in Eq. (3). It

corresponds to the number of circular spatial transitions

between output levels like -1, 0, 1 and 9 in the pattern

unit. Patterns for which U value is less than or equal to

three are considered uniform and other patterns are

Support Vector 
machine classifier

(ii)Testing Phase 

(i)Training Phase 

Training  
Phase 

Testing 
Phase 

Class 
label of
test
sample

Features of test sample 

Features of training samples  

(b) Classification 

Training 
database

Sample Capturing the 
relationship of 
pixels in 
neighbourhood 
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Contrast 
Variance 
Descriptor 
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texture 
Descriptor 

2D global 
histograms of 
samples with 
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contrast 
Variance 
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(a) Feature extraction techniqueFig. 1 Feature extraction and

classification
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considered non uniform. The gray scale DLTP for local

region ‘X’ is derived as in Eq. (2). The value PS stands for

sum of all positive output levels including zero and NS

stands for sum of all negative output levels in the pattern

unit. To each pair of (NS?1, PS?1) values, a unique DLTP

value is obtained from the lookup table ‘L’ for all uniform

patterns and 166 will be assigned for non uniform patterns.

DLTPðXÞ ¼
LðNSþ 1;PSþ 1Þ U� 3

166 Otherwise

(

ð2Þ

where

U ¼ sðgP�1j � gcÞ � sðg0 � gcÞj

þ
XP�1

k¼1

sðgkj � gcÞ � sðgk�1 � gcÞj ð3Þ

where s(x,y) =
1 if x � yj j [ 0

0 if otherwise

(

and

PS ¼
XP�1

i¼0

pðgi; gcÞ if sðpðgi; gcÞ� 0

NS ¼
XP�1

i¼0

pðgi; gcÞ if sðpðgi; gcÞ\0

ð4Þ

The lookup table (L) shown in Table 1 provides unique

pattern values to the different combinations of NS?1 and

PS?1 values. The maximum negative sum (NS) is eight as

there can be eight -1’s. The maximum positive sum (PS)

is 72 as there can be eight 9’s. So the size of the lookup

table is (9 9 73). All entries in the table are filled

sequentially starting from 1 to 165 which characterize

unique pattern labels. Zero entries in the lookup table show

that the patterns will never occur. This scheme provides

165 uniform patterns and one non uniform pattern.

2.2 Local contrast variance- supplementary feature

Texture features by itself do not capture contrast infor-

mation of an image. This will result in patterns with same

texture values but different contrast values to get classified

into same class. In order to avoid this, texture is supple-

mented with contrast information. Rotation invariant local

variance is a powerful spatial property that provides con-

trast information and is defined for 3 9 3 neighbourhood

of a gray scale image as follows.

VAR ¼ 1

8

X7

i¼0

gi � l8ð Þ2 where l8 ¼
1

8

X7

i¼0

gi ð5Þ

Equal percentile binning is performed for quantization

of variance values. We can find the bin interval for binning

variance values by using the formula ‘100/B’, where B is

the required number of bins.

Training 
Features  
of Cl1 

Training Phase Testing Phase 

SVM1, 2

Training 
Features  
of Cl2 

Training 
Features  
of Cln-1 

SVMn-1, n

Training 
Features  
of Cln 

Test 
Features

SVM1, 2 

SVMn-1, n

Global 
Probability 

Value 

Class Label of
the test sample 

Local 
Probability 
Value 

Local 
Probability 
Value 

Training 
Features  
of Cl3 

SVM2, 3

Training 
Features  
of Cl2 

SVM2, 3

Local 
Probability 
Value 

Fig. 2 Working principle of

SVM
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2.3 Extending DLTP and VAR for multispectral bands

The proposed DLTP operator for gray scale image is

extended as Multivariate DLTP (MDLTP). Among the

multispectral bands, three most suitable bands for land

cover classification are chosen and combined to form a

RGB image. Nine DLTP operators are calculated in the

RGB image. Out of nine, three DLTP operators (RR, GG

and BB) describe the local texture in each of the three

bands R, G and B individually. Six more DLTP operators

describe the local texture of the cross relation of each

band with other bands (GR, BR, RG, BG, RB and GB).

For example, the GR cross relation is obtained by

replacing the centre pixel of R band in its neighbourhood

with the centre pixel of G band. Nine DLTP operators

thus obtained are arranged in a 3 9 3 matrix. Then

MDLTP is found by calculating DLTP for the 3 9 3

resulting matrix as shown below. This MDLTP histogram

has only 166 bins.

MDLTP

¼ DLTP

DLTPgR
i ; g

R
c DLTPgG

i ; g
R
c DLTPgB

i ; g
R
c

DLTPgR
i ; g

G
c DLTPgG

i ; g
G
c DLTPgB

i ; g
G
c

DLTPgR
i ; g

B
c DLTPgG

i ; g
B
c DLTPgB

i ; g
B
c

2

6
6
4

3

7
7
5

ð6Þ

where ‘i’ ranges from 0 to 7 (total number of pixels in

3 9 3 neighbourhood).

The univariate variance measure (VAR) can be extended

as Multivariate variance (MVAR) for remotely sensed

image as follows. The individual independent variances

VAR1, VAR2 and VAR3 of R, G and B bands are found

using Eq. (5) and combined into a single composite vari-

ance (MVAR) by applying the formula below.

MVAR ¼ 1

3

X3

i¼1

ðVARi � l3Þ2 where l3 ¼
1

3

X3

i¼1

VARi

ð7Þ

2.4 Global description through 2D histogram

The multivariate local descriptor describes the texture

pattern over any local region. The global description of

an image can be obtained through combining multivar-

iate local texture descriptor and multivariate local con-

trast variance in a 2D histogram. The steps are given

below.

1. Find multivariate local texture descriptor (MDLTP)

and multivariate local contrast variance descriptor

(MVAR) for all pixels by using a sliding window

neighbourhood that runs over the image from top left

to bottom right.

2. Compute the occurrence frequency of the ordered pair

MDLTP and MVAR into a 2D histogram where x

ordinate denotes MDLTP and y ordinate denotes

MVAR.

3 Support vector machine classification algorithm

The SVM classifier is a supervised binary classifier which

can classify pixels that are not linearly separable. Support

vectors are the samples closest to the separating hyper

plane and SVM orientates this hyper plane in such a way

as to be as far as possible from the sure candidates of

both classes. The optimization problem of finding support

vectors with maximal margin around separating hyper

plane is solved subject to a tolerance value entered by the

user. The classifier solves optimization problem with the

help of one of the kernels like linear, sigmoid, radial basis

function, polynomial, wavelet and frame. Each new test-

ing sample is classified by evaluating the sign of output of

SVM.

Multiclass classification is done in SVM following two

approaches namely one against one and one against all. We

have used one against one approach in this article. In one

against one approach, one SVM per each pair of classes is

used. The whole set of patterns is divided into two classes

at a time and finally the patterns which get classified into

more than one class are fixed to a single class using

probability measures. The steps involved in multiclass

classification are as follows.

3.1 Training phase

1. If ‘n’ is the number of classes (In Fig. 2, Cl1, Cl2 ….

Cln are classes), then ‘nC2’ support vector machines

are needed.

2. Each SVM is trained with the 2D histograms of known

samples and their class labels (pertaining to the

corresponding pair of classes).

3.2 Testing phase

1. The 2D global histogram of unknown sample is given

as input to all SVM’s.

2. The output of SVM per pair of classes is mapped to a

local probability value.

3. Then the global posterior probability is found from the

individual probabilities to decode the class label of the

unknown sample.

The overall working principle of multiclass SVM is out-

lined in Fig. 2.
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4 Experiments and results

4.1 Experimental data

The remotely sensed image under study is a IRS P6,

LISS- IV image supplied by National Remote Sensing

Centre(NRSC), Hyderabad, Government of India. The

image has been taken in July 2007 and is of size

2959x2959. It is formed by combining bands 2, 3 and 4

of LISS- IV data (Green, red and near IR) and is shown

in Fig. 3. It covers the area in and around Tirunelveli city

located in the state of Tamil Nadu in India. It extends to

the suburbs of Nanguneri village in the South, the out-

skirts of Palayamkottai in the East, the suburbs of

Alankulam village in the North and the suburbs of Che-

ranmahadevi village near Ambasamudram in the West.

The river Thamirabarani runs across the diagonal region

of the image. In the image, residential areas are either

with closely packed buildings or with partially occupied

buildings with shrubs and trees scattered then and there.

Some irrigation tanks are present inside the city. Also in

the south of Tirunelveli city leading to Nanguneri village

several irrigation tanks and vegetation areas are present.

In the North, bare soil is scattered in some places on the

way to Sankarankoil. In the West, on the way leading to

Cheranmahadevi fertile paddy fields and vegetation are

present on either sides of the perennial river. An updated

geological map has been selected as a reference for

ground truth study of the same area.

The experimental classes or training samples are the

areas of interest extracted from source image in Fig. 3 and

are of size 16 9 16 as shown below Table 2.

4.2 Land cover classification of remotely sensed image

with MDLTP/MVAR

In experiments, the size of training and testing samples are

kept same to get high classification accuracy. Since the size

of the training sample was 16 9 16, the size of testing

sample was also fixed to 16 9 16. The multivariate local

texture feature (MDLTP) and multivariate local contrast

variance (MVAR) were found and the 2D histograms for

global description were formed for all samples as illus-

trated in Sect. 2. In training phase, the 2D histograms of

training samples were used to train SVM. In testing phase,

the 2D histograms of testing samples were given as input to

SVM. The classifier returned the class label. The classified

image is shown in Fig. 4.

The MDLTP/MVAR model discriminates well between

various land covers because it is so designed to assign dis-

tinct and precise pattern codes to capture patterns. So set-

tlement and vegetation-3 classes cluster densely. The thin

Table 2 Training samples and their descriptions

Class

No

Actual

class

Sample

used

Description

Class1 Vegetation-1 Crops with tender sprouts

Class2 Vegetation-2 Thick forest like vegetation

Class3 Vegetation-3 Mature and ripe crops

Class4 Settlement Residential area

Class5 Water Water in rivers and ponds

Class6 Soil Barren land with

sparsely and randomly

scattered shrubs

Fig. 3 IRS P6, LISS-IV remotely sensed image Fig. 4 Classified image using MDLTP/MVAR
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diagonal line of water running across the image is clearly

traced without discontinuity. The vegetation-1 class which

lies on either sides of river is seen vividly. The vegetation-2

class present around water tanks is classified precisely.

4.3 Performance evaluation of classified image

The overall classification accuracy and Kappa coefficient are

the performance metrics for assessing the classified image.

To compute these values, an error matrix is built as follows.

The size of error matrix is ‘c 9 c’ where ‘c’ is the number of

classes. If a pixel that belongs to class (where 1B i Bc) is

correctly classified, then a count is added in entry (i, i) of

error matrix. If a pixel that belongs to class ci is incorrectly

classified to class (where 1B j Bc), then a count is added to

the entry (i, j) of error matrix. The diagonal entries mark

correct classifications while the upper and lower diagonal

entries mark incorrect classifications. Then the overall

accuracy (Po) can be found as follows.

Overall classification accuracy Poð Þ ¼
Pc

i¼1 xii

b
ð8Þ

where ‘b’ is the total number of observations and

xii is the observation in row ‘i’ and column ‘i’ of error

matrix.

The classification accuracy expected (Pe) is found as

below.

Accuracy expected Peð Þ ¼
Pc

i¼1 x1x2

b2
ð9Þ

where x1 is the marginal total of row ‘i’ and x2 is the

marginal total of column ‘i’. Kappa coefficient is found

using Po and Pe as follows.

Kappa Coefficient ¼ Po � Pe

1� Pe

ð10Þ

In our experiments, a set of stratified random samples

comprising of 2400 pixels were used for building error

matrix. The performance measures Po and kappa coefficient

described above are found for the classified image in Fig. 4

and shown in Table 3 and Table 4 respectively.

The proposed model MDLTP/MVAR gives a classifi-

cation accuracy of 93.46 % and a kappa coefficient of

0.9156. The model performs well because the neighbour-

hood pixel relations are precisely captured with the help of

four discrete levels.

For evaluating the performance of the proposed model with

the existing pixel based and texture based classification algo-

rithms, the classification accuracies of various algorithms were

found and tabulated in Table 5. The existing texture methods

such as gabor wavelet, multivariate local binary pattern

(MLBP), multivariate local texture pattern (MLTP) and wavelet

and the existing pixel based methods such as Maximum likeli-

hood classifier, Mahalonobis distance classifier and minimum

distance classifier are considered for comparison.(Table 5)

From the above table, it is inferred that the pixel based

classifiers give classification accuracy only in the order of

75 %. This is due to the lack of attaching due weightage to the

intensities of neighbourhood rather than just the intensity of

current pixel value. The performance of spectral models drops

when the spectral characteristics of different patterns are

similar. The MLBP texture model gives 90.42 % classifica-

tion accuracy. The degree of quantization is more in MLBP as

we use only two discrete levels for modeling neighbour pixel

relation. Moreover, MLTP (with discrete levels like 0, 1 and 9)

with MVAR yield 91.88 % classification accuracy. The

Table 3 Error matrix of proposed model MDLTP/MVAR

Classified total BG Class1 Class2 Class3 Class4 Class5 Class6 Row total

Class1 0 90 1 1 0 0 0 92

Class2 0 0 260 23 0 0 0 283

Class3 1 9 4 639 21 1 84 759

Class4 0 0 1 4 326 0 0 331

Class5 1 0 0 4 0 248 0 253

Class6 1 0 0 0 1 0 680 682

Column total 3 99 266 671 348 249 764 2,400

BG back ground

Table 4 Accuracy totals of proposed model MDLTP/MVAR

Class name RT CT NC PA % UA %

BG 3 0 0

Class1 99 92 90 90.91 97.8

Class2 266 283 260 97.74 91.87

Class3 671 759 639 95.23 84.19

Class4 348 331 326 93.68 98.49

Class5 249 253 248 99.6 98.02

Class6 764 682 680 89.01 99.71

Totals 2,400 2,400 2,243

Overall accuracy = 93.46 % Overall Kappa = 0.9156

RT reference total, CT classified total, NC number correct, PA pro-

ducer’s accuracy, UA user’s accuracy
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proposed model MDLTP/MVAR performs better than the

chosen methods and gives 93.46 % classification accuracy.

5 Discussion and conclusion

A multivariate texture model (MDLTP) is proposed for land

cover classification of remotely sensed images. The advanta-

ges of the proposed model are threefold. Firstly, it gives stable

results even for small window sizes and secondly, it requires

only a minimum number of training samples in training phase.

Thirdly, it captures additional uniform patterns. The model is

made wholesome by adding contrast variance as supplemen-

tary measure. The significance of the method is vividly seen as

it captures even minute pattern differences with the help of four

discrete levels and subsequent assignment of unique pattern

labels. The SVM classifier augments the texture model by

incorporating fuzziness in classifying land covers. From the

experiments, it is proved that the proposed model yields

93.46 % classification accuracy.

In future, it is proposed to extend the model for hyper

spectral data. The proposed model will certainly inspire

researchers to find optimal number of discrete levels for

each texture model so that maximum classification accu-

racy can be achieved. The model can be hybridized with

extreme learning machine or relevance vector machine

classifier to yield better classification accuracy.
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