
ORIGINAL RESEARCH

A systematic approach for the estimation of software risk and cost
using esrcTool

Mohd Sadiq • Mohd Shahid

Received: 27 November 2012 / Accepted: 29 June 2013 / Published online: 13 August 2013

� CSI Publications 2013

Abstract Software risk evaluation is a process for iden-

tifying, analysing, and developing mitigation strategies for

risk in a software intensive system while it is in develop-

ment. This paper presents a systematic approach for the

estimation of software risk and cost using esrcTool. This

tool is based on software risk assessment and estimation

model. In this model function point approach is employed

as an input variable to estimate the source of uncertainty,

i.e. measurement error, model error, and assumption error.

To show the validity of our tool, we have considered the

project developed by our students.

Keywords Software risk � Cost � esrcTool � FP � SRAEM

1 Introduction

Software risk evaluation (SRE) is a process for identifying,

analyzing, and developing mitigation strategies for risks in

a software-intensive system while it is in development.

SRE process has been in evolutionary development at the

Software Engineering Institute (SEI) since 1992; and it has

been used on over 50 Department of Defence and civil

(Federal and State) contractors and program offices. There

are certain questions that are related to risk management

like risk prioritization and analysis etc. It is systematic and

continuous processes that can be best described by the SEI

risk management paradigms which includes: (a) identify

(b) analyze (c) plan (d) track (e) control and (f) communi-

cation [1]. The practice of risk management involves two

primary steps each with three subsidiary steps, as shown in

Fig. 1. The first primary step of risk management is risk

assessment and it involves: (a) risk identification, (b) risk

analysis, (c) and risk prioritization. The secondary step of

risk management includes risk control and it involves:

(a) risk management planning, (b) risk resolution, (c) and

risk monitoring [2–4].

Risk assessment begins with team training. The team

meets prior to the risk assessment for team building and

training in the details of risk management paradigm and

risk assessment process. This training includes instruction

in the risk management mechanism to be applied during the

assessment as well as practice exercises using the mecha-

nism [5, 6]. Brief description about primary and secondary

steps of risk management is given below:

1. Risk identification produces lists of the projects-

specific risk items likely to compromise a project

success. A typical risk identification technique

includes examination of decision drivers, assumption

analysis, and checklist.

2. Risk analysis assesses the loss probability and loss

magnitude for each identified risk item and it access

compound risk in the risk item interactions. Typical

technique include performance models, cost models,

network analysis etc.

3. Risk prioritization produces a ranked ordering of the

risk items identified and analyzed. Typical techniques

includes risk exposure analysis, risk reduction leverage

(particularly involve cost-benefit analysis) etc.

M. Sadiq (&)

Department of Computer Engineering, National Institute

of Technology, Kurukshetra 136119, Haryana, India

e-mail: sadiq.jmi@gmail.com; msq_delhi@yahoo.co.in

M. Shahid

Department of Computer Science and Engineering,

Mewat Engineering College, Established by Haryana Wakf

Board, Government of Haryana, Gurgaon, Haryana, India

e-mail: shahid27.jmi@gmail.com

123

CSIT (September 2013) 1(3):243–252

DOI 10.1007/s40012-013-0022-4

4. Risk management planning helps prepare you to address

each risk item including the coordination of individual

risk item plans with each other and with the overall

project plan. Typical technique includes checklist for risk

resolution technique, cost benefit analysis, and standard

risk management plan outlines, form and elements.

5. Risk resolution produces a situation in which the risk

items are eliminated or otherwise resolved (for example

risk avoidance via relaxation of requirements). Typical

technique includes prototypes simulation, benchmark,

mission analysis, and design to cost approach.

6. Risk monitoring involves tracking the project’s pro-

gress toward resolving its risk items and taking

corrective action where appropriate. Typical technique

includes milestone tracking and a top ten risk item list

that is highlighted at each weekly and monthly [7].

The objective of this paper is to present a systematic

approach to estimate the software risk and cost using esrcTool.

This tool is based on software risk assessment and estimation

model (SRAEM) [8] which is used to predict the possible

results of software projects with good accuracy. SRAEM not

only assess the risk but it also estimates the risk. In SRAEM,

function point (FP) is used to estimate the measurement error,

model error, and assumption error. Function point is an

important software metrics which is used to calculate the

approximate LOC, cost and effort of software [5, 9, 10].

The paper is organized as follows: In Sect. 2 we present

the background and the related work of risk assessment and

estimation model. Section 3 presents the method for the

computation of FP. In Sect. 4, we present the systematic

approach for the estimation of software risk and cost using

esrcTool. An experimental work is carried out in Sect. 5;

and finally we conclude the paper in Sect. 6.

2 Background and related work

This section presents the background and related work of

software risk assessment and estimation models. Researchers,

scientist and academician in the field of software engineering

have developed a lot of models/tools according to their need

and requirements. Gupta and Sadiq [8] have developed a

SRAEM to predict the possible results of software projects

with good accuracy. SRAEM model not only assess the risk

but it also estimate the risk. In this model, the risk is estimated

using risk exposure and software metrics of risk management.

This metric is based on mission critical requirements stability

risk metrics (MCRSRM) [11]. This software metrics is used

when there are changes in requirements such as addition,

subtraction, or deletion. The esrcTool gives the incremental

risk for every phase and also the total cumulative risk as the

software progress from phase to phase.

Gupta et al. [12] developed a software estimation tool

based on software engineering metrics model. In literature,

there are a few published models that evaluate the risk of

software projects. In [13] Kashlaf and Hashim developed a

model and prototype tool to manage software risks. Soft

risk prototype is a tool prototype to manage software

development risks. Java language has been chosen as

development language of the prototype. Another model

named Software engineering risk model (SERIM) focuses

on three risk elements: (i) technical risk, (ii) cost risk, and

(iii) schedule risk. This model does not take into account of

the software complexity issues, which plays an important

role in determining the risk for the software projects. It also

does not account for issues related to requirements. In the

series of risk assessment models there is another model

called software risk assessment model (SRAM) [14]. This

model considers the nine critical risk elements (i) com-

plexity of the software (ii) staff involved in the projects (iii)

targeted reliability (iv) product requirement (v) method of

estimation (vi) method of monitoring (vii) development

process adopted (viii) usability of software (ix) tools. The

above models do not include the sources of uncertainty, i.e.

measurement error, model error and assumption errors.

Existing models have considered the prioritization as a

single step of risk assessment but does not specify how

prioritization would be done. In [15] we proposed the

architecture of an esrcTool to estimate the software risk

and cost. On the basis of systematic review of software risk

assessment and estimation model [16], which is an

Fig. 1 Steps involved in the risk management

244 CSIT (September 2013) 1(3):243–252

123

extension of the work of Georgieve et al. [17], we identify

11 primary studies that are related to software risk and cost

estimation and its brief description is given in Table 1. The

results of previous studies indicate that SRAEM [8] and

SRAEP using model based approach [18] is the latest risk

assessment model in the literature [16, 17].

3 Method for the computation of FP

At the beginning of the 1970s, researchers at IBM initiated

studies aimed at determining what critical variables were

involved in programming productivity. Instead of consid-

ering code volume or complexity, they discovered that a

system would be better evaluated by analyzing the func-

tions executed by programs and mapping pertinent ques-

tions to estimating and evaluating software’s development

productivity in heterogeneous environments [19]. Function

Point is a well known established method to estimate the

size of software system and software projects. Originally,

the method was used in the early phases of the waterfall

model such that the implementation effort could be esti-

mated on the basis of input and output behaviour as defined

in the functional documentation.

As the size and the complexity of software increases, it

becomes increasingly important to develop high quality

software and cost effectively within a specified period. In

order to achieve this goal, the entire software development

processes need to be managed based on an effective plan.

The subjects of estimation in the area of software devel-

opment are size, effort invested, development time, tech-

nology used and quality.

Function Point is a measure of software size that uses

logical functional terms business owners and users more

readily understand. Albrecht’s model of functional speci-

fications requires the identification of five types of com-

ponents, namely input, output and inquiry elementary

processes and logical internal elementary processes and

logical internal and external interface files The actual cal-

culation process itself is accomplished in three stages:

(I) determine the unadjusted function point (UFP), (II)

value adjustment factor (VAF) and (III) Adjusted function

points(AFP).The unadjusted function points includes:

(a) Data function and (b) Transactional functions.

The data function includes:

3.1 Internal logical file

3.2 External interface file.

The transactional functions are classified in the follow-

ing manner:

3.3 External input.

3.4 External output.

3.5 External enquiry.

3.1 Internal logical file (ILF)

ILF are groups of logically related data or control infor-

mation maintained by the application itself. For instance,

the file that stores the customer data of a company is and

ILF for the customer database system since such a system

is responsible for customer maintenance.

3.2 External interface file (EIF)

EIF are groups of logically related data or control infor-

mation whose maintenance is under the responsibility of

another application. For instance, the file that stores

employee data of a company is an EIF for the customer

database system, assuming that it accesses employee data

whose actual maintenance is accomplished by the

employee database system.

3.3 External input (EI)

EI are elementary processes that involve data or control

information that are input at the boundary of the applica-

tion with the main objective of doing ILF maintenance, for

instance, updating the personal data of customer of an

organization.

3.4 External output (EO)

EO are elementary processes that send control information

or calculated data to the end user or to other applications,

for instance, a report that summarizes sales volume per

month for a particular customer of a company.

3.5 External inquiry (EQ)

EQ are elementary processes that send control information

or uncalculated data to the end user or to other applications.

For instance, a personal data query operation for an

employee of a company

Once we have identified EI, EO, EQ, ILF, and EIF then

each function presented must be classified according to its

relative functional complexity as low, average or high.

Calculating the VAF, is an earmark of the general func-

tionality provided to the user. The VAF is derived from the

sum of the degree of influence (DI) of the 14 general

system characteristics. The DI of each one of these char-

acteristics ranges from 0 to 5 as follows:

(i) 0––no influence;

(ii) 1––incidental influence;

(iii) 2––moderate influence;

CSIT (September 2013) 1(3):243–252 245

123

T
a

b
le

1
S

u
m

m
ar

y
o

f
v

ar
io

u
s

ri
sk

as
se

ss
m

en
t

m
et

h
o

d
s

[1
6
]

S
.

n
o

.
Y

ea
r

o
f

p
u

b
li

ca
ti

o
n

M
et

h
o

d
’s

n
am

e
In

p
u

t
d

at
a

R
is

k
as

se
ss

m
en

t
te

ch
n

o
lo

g
y

T
y

p
e

o
f

ev
al

u
at

io
n

Q
u

al
it

at
iv

e
Q

u
an

ti
ta

ti
v

e
H

y
b

ri
d

1
S

ad
iq

et
al

.
[1

8
]

S
R

A
E

P
u

si
n

g
M

o
d

el
b

as
ed

ap
p

ro
ac

h

Id
en

ti
fy

co
n

te
x

t
u

si
n

g
u

se
ca

se

d
ia

g
ra

m
,

se
q

u
en

ce
d

ia
g

ra
m

an
d

se
cu

ri
ty

re
q

u
ir

em
en

ts

C
al

cu
la

te
ri

sk
ex

p
o

su
re

an
d

co
m

p
u

te
d

eg
ra

d
at

io
n

o
f

k
ey

n
o

d
e

sa
fe

ty
m

et
ri

c

H

2
G

u
p

ta
an

d
S

ad
iq

[8
],

2
0

0
8

S
R

A
E

M
M

ea
su

re
m

en
t

er
ro

r,
m

o
d

el
er

ro
r,

an
d

as
su

m
p

ti
o

n
er

ro
r

R
is

k
ex

p
o

su
re

an
d

m
is

si
o

n
cr

it
ic

al

re
q

u
ir

em
en

ts
st

ab
il

it
y

ri
sk

m
et

ri
cs

H

3
Y

o
u

n
g

et
al

.
[2

8
]

A
n

al
y

si
n

g
S

o
ft

w
ar

e
S

y
st

em

Q
u

al
it

y
R

is
k

u
si

n
g

B
ay

es
ia

n

B
el

ie
f

N
et

w
o

rk

P
ro

je
ct

ri
sk

fa
ct

o
rs

B
ay

es
ia

n
b

el
ie

f
n

et
w

o
rk

,
D

el
p

h
i

m
et

h
o

d

H

4
V

u
co

v
ic

h
et

al
.

[2
9

]
S

o
ft

w
ar

e
R

is
k

in
E

ar
ly

D
es

ig
n

M
et

h
o

d

S
o

ft
w

ar
e

fu
n

ct
io

n
al

it
y

,
h

is
to

ri
ca

l

fu
n

ct
io

n
fa

il
u

re

F
u

n
ct

io
n

fa
il

u
re

d
es

ig
n

m
et

h
o

d
H

5
Y

o
n

g
et

al
.

[3
0
]

A
N

eu
ra

l
n

et
w

o
rk

M
et

h
o

d
fo

r

S
o

ft
w

ar
e

R
is

k
A

n
al

y
si

s

S
o

ft
w

ar
e

R
is

k
F

ac
to

rs
fr

o
m

Q
u

es
ti

o
n

n
ai

re
s

P
ri

n
ci

p
al

co
m

p
o

n
en

t
an

al
y

si
s,

g
en

et
ic

al
g

o
ri

th
m

an
d

N
N

H

6
D

eu
rs

en
an

d
K

u
ip

er
s

[3
1

]
S

o
u

rc
e

b
as

ed
so

ft
w

ar
e

ri
sk

as
se

ss
m

en
t

S
o

u
rc

e
co

d
e

in
fo

rm
at

io
n

C
o

d
e

m
et

ri
cs

,
an

d
Q

u
es

ti
o

n
n

ai
re

s
H

7
Y

ac
o

u
b

an
d

A
m

m
ar

[3
2

]
A

m
et

h
o

d
o

lo
g

y
fo

r
ar

ch
it

ec
tu

re

le
v

el
re

li
ab

il
it

y
ri

sk
an

al
y

si
s

C
o

m
p

le
x

it
y

an
d

co
u

p
li

n
g

m
et

ri
cs

D
y

n
am

ic
m

et
ri

cs
an

d
ar

ch
it

ec
tu

re

el
em

en
ts

H

8
N

eu
m

an
n

[3
3
]

A
n

en
h

an
ce

d
n

eu
ra

l
n

et
w

o
rk

te
ch

n
iq

u
e

fo
r

so
ft

w
ar

e
ri

sk

an
al

y
si

s

S
o

ft
w

ar
e

m
et

ri
cs

d
at

a
P

ri
n

ci
p

al
co

m
p

o
n

en
t

an
al

y
si

s
an

d

ar
ti

fi
ci

al
n

eu
ra

l
n

et
w

o
rk

H

9
N

o
g

u
ei

ra
et

al
.

[3
4

]
A

R
is

k
as

se
ss

m
en

t
m

o
d

el
fo

r

so
ft

w
ar

e
p

ro
to

ty
p

in
g

R
eq

u
ir

em
en

ts
,

p
er

so
n

n
el

an
d

co
m

p
le

x
it

y
m

et
ri

cs

D
if

fe
re

n
t

so
ft

w
ar

e
m

et
ri

cs
H

1
0

W
il

li
am

s
et

al
.

[3
5

]
S

o
ft

w
ar

e
ri

sk
ev

al
u

at
io

n
fr

o
m

S
E

I

ri
sk

m
an

ag
em

en
t

p
ar

ad
ig

m

R
is

k
d

at
a

Q
u

es
ti

o
n

n
ai

re
s

H

1
1

C
h

ee
et

al
.

[3
6

]
In

fl
u

en
ce

d
ia

g
ra

m
fo

r
so

ft
w

ar
e

ri
sk

an
al

y
si

s

S
o

ft
w

ar
e

m
et

ri
cs

d
at

a
In

fl
u

en
ce

d
ia

g
ra

m
H

246 CSIT (September 2013) 1(3):243–252

123

(iv) 3––average influence;

(v) 4––significant influence; and

(vi) 5––strong influence.

The general characteristics (Fi) of a system are: (i) data

communications; (ii) distributed data processing; (iii) per-

formance; (iv) heavily used configuration; (v) transaction

rate;(vi) online data entry; (vii) end user efficiency (viii)

online update(ix) complex processing; (x) reusability; (xi)

installation ease; (xii) operational ease; (xiii) multiple sites;

(xiv) facilitate change. The third and the last stage is the

final calculation of the function points. With the help of the

following equation we can get the total points of an

application.

AFP ¼ UFP� VAF

where AFP adjusted function points; UFP unadjusted

function points; and VAF value adjustment factor [20, 21].

Function points are computed by completing the fol-

lowing Table 2. Five information domain characteristics

are determined and counts are provided in appropriate table

location [22].

Organization that use FP methods develop criteria for

determining whether a particular entity is simple, average,

or complex. To compute the AFP the following relation-

ship is used.

AFP ¼ UFP� 0:65þ 0:01�
X

Fið Þ
h i

ð1Þ

where Fi is the complexity adjustment value, i = 1–14.

For example, it is given that EI = 5, EO = 2, EQ = 4,

ILF = 2 and EIF = 1 and the complexity of the project is

average then the UFP would be calculated as follows (see

Table 3).

If we assume that all general systematic characteristics are

absolutely essential, then FP in this case would be 98.55

4 Systematic approach

This section presents a systematic approach for the esti-

mation of software risk and cost using esrcTool l [15, 23].

Systematic means to characterize by order and planning.

Therefore, esrcTool first extract the source code of the

program/software for the computation of the FP because it

is used as an input to the measurements error, model error,

and assumption error. In order to estimate the risk and cost

of the software, we have implemented this tool in C lan-

guage. The architecture of the esrcTool is given in Fig. 2.

The systematic approach for the estimation of software

risk and cost using esrcTool involves the following steps:

(a) estimation of the risk, (b) cost estimation. The detailed

descriptions about these steps are given in the following

sub-section.

4.1 Estimation of the risk

There are three dimensions of software risk i.e. technical

risk, organization and environmental risk [16]. Each soft-

ware models have some weaknesses and also have some

advantages [22]. A technical report on the software risk

evaluation method is available in [1]. The esrcTool esti-

mates the risk on the basis of measurement error, model

error, and assumption error.

4.1.1 Measurement error

This error occurs if some of the input variables in a model

have inherent accuracy limitations. Kemerer [24] argue

that, function points are assumed to be at least 12 %

inaccurate. Thus, if we estimate a product size of 1,000

Table 2 FP computation

Measurement

parameter (MP)

Count Simple Average Complex Result

EI X 3 4 6 Results after

simplificationEO X 4 5 7

EQ X 3 4 6

ILF X 7 10 15

EIF X 5 7 10

UFP

Table 3 Results

MP Count Average complexity Results

EI 5 4 20

EO 2 5 10

EQ 4 4 16

ILF 2 10 20

EIF 1 7 7

UFP 73

CSIT (September 2013) 1(3):243–252 247

123

function points, measurement error could mean that the

real size is anywhere between 880 and 1,120.

4.1.2 Model error

Factors that affect error but are not included explicitly in

the model contribute to the model error. For example, 0.5

person-days per function point is usually obtained from

results observed for recalled from previous projects. It is

unlikely that any future projects will achieve the same

ratio, but the model is expected to all right on average. If

you base a model on past project data, you should calculate

the associated inaccuracy by using the mean magnitude

relative error. Thus, if you have estimation model with an

inherent 20 % inaccuracy and your product is 1,300 func-

tion points in size; your estimate is likely to be between

208 and 312 person days.

4.1.3 Assumption error

This error occurs when we make incorrect assumptions

about a model’s input parameters. For example, your

assessment that a product size is 1,300 function point rests

on the assumption that you have correctly identified the

customer requirements. If you can identify your assump-

tions, you can investigate the effect of their being invalid

by assessing both the probability that an assumption is

incorrect and the resulting impact on the estimate.

This is the form of risk analysis. For example, if you

believe that there is a 0.3 probability that the requirement

complexity has been underestimated and, if it has, you

estimate another 390 function point. At this point the

concept of risk exposure is used to calculate the effective

current cost of a risk and can be used to prioritize risk that

requires countermeasure. Mathematically it can be written

as:

Probability of risk occurring � Total loss if risk occur ð2Þ

total loss can be defined as E2 - E1. Where E1 is the

effort, if the original assumption is true and E2 is the effort

if the alternative assumption is true. Suppose E1 = 540

person days and E2 = (1,300 ? 100) 9 0.5 = 700 person

days, then risk exposure = (700 - 540) 9 0.3 = 48 per-

son days.

The esrcTool also includes the MCRSRM in order to

compute the risk when there are some changes in the

requirements (addition, modification, or deletion). There-

fore, total risk can be computed as [23]:

b=a½ �i¼1 to nþK A c=d½ �iþB d=b½ �iþG e=b½ �i
� �

ð3Þ

where:

(i) [b/a]i = (number of mission critical requirements)/

(total number of requirements) at the input of phase

number i,

(ii) Ki is the penalty for adding, modifying or deleting of

requirements during phase number i,

(iii) a = total number of requirements,

(iv) b = total number of mission critical requirements

(MCR),

(v) c = number of MCR added during phase i,

(vi) d = number of MCR modified during phase i,

(vii) e = number of MCR deleted during phase i.

 Extracting Source Code

Input Variables

Fig. 2 Architecture of esrcTool (adopted from [23])

248 CSIT (September 2013) 1(3):243–252

123

On the basis of the following parameters during phase 1,

the risk at the input is 40/100 and the added risk during

phase 1 is 42/40 due to adding, modifying and deletion of

MCR. Where, a = 100, b = 40, c = 5, d = number of

MCR modified during phase 1 = 10 (3 which were

downgraded from MCR to just requirements, and the

remaining 7 are still MCR, and e = 7.

It can be seen that esrcTool gives the incremental risk for

every phase and also the total cumulative risk as the project

progresses from phase to phase. Assumption error helps you

to estimate the risk exposure. Now the next step is how to

prioritize the risk: Suppose in a software project, we identi-

fied three different types of risk i.e. products recall situation,

significant product rejection, and competitive strike. The

information about probability of risks occurring and the total

loss if it occurs are given in the Table 4.

The rank of risk is estimated using risk exposure and the

value of the highest risk exposure indicate the most serious

risk. Table 5 contains the calculated values of risk expo-

sure and the ranking of risk.

In Table 5, Competitive strike contains the highest value

of risk exposure i.e. 2,500, so it has the first priority.

Similarly, product recall situation and significant product

rejection have second and third priority respectively. Since

risk exposure is not absolute but relative. There are several

ways to compare different exposures with each other. One

ways is to compare the exposure of a single event before

and after managing the risk. We need a simple measure to

assess risk reduction. So risk reduction leverage (RRL) is

another quantitative means of assessing how risks are being

managed. Mathematically we can write the RRL as:

Risk exposure before� Risk exposure afterð Þ=
Cost of risk reduction ð4Þ

4.2 Cost estimation

International Software Benchmarking Standards Group

(ISBSG) is an international group of representatives from

international metrics organizations who collect project data

from countries like, India, Hong Kong Germany, Japan,

and USA. ISBSG Release 6 Report provides the cost value

for the software projects. Cost data is derived from 56

projects representing a broad cross section of the software

industry. After going through these software projects, the

ISBSG conclude that median cost to develop a function

point is $US 716, and the average cost is $ US 849 per

function point. For more information about the ISBSG

please visit: www.ISBSG.org.au

5 Experimental work

This section presents the experimental work. In this paper,

we have considered the projects developed by the students

of Master of Technology (M.Tech.) of Computer Science

and Engineering. The first project that we have considered

is ‘‘A Mini Software for Numerical Integration (MSNI)’’.

This Software basically calculates the values of the given

Integrand after applying all the existing algorithms of the

numerical computations like Simpson’s 1/3 rule, Simp-

son’s 3/8 rule and so on; and some proposed algorithm.

Software requirements elicitation is a process which is used

to identify the high level objective of an organization [25–

27]. In MSNI, we have collected 21 different requirements

and the prioritization of these requirements is shown in

Fig. 3. For the computation of software risk and cost, we

implement esrcTool in C language; and the GUI of the

proposed tool is given in Fig. 4.

Table 4 Information about probability of occurring and total loss, if

it occurs

Risk Probability of

occurring (%)

Total loss, if

it occurs (K)

Product recall situation 2 80

Significant product rejection 0.1 1,000

Competitive strike 10 25

Table 5 Prioritization of risk

Risk Probability

of occurring

(%)

Total loss,

if it occurs

(K)

Risk

exposure

Risk

priority

Product recall

situation

2 80 1,600 2

Significant

product rejection

0.1 1,000 1,000 3

Competitive Strike 10 25 2,500 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R1 R3 R5 R7 R9 R11 R13 R15 R17 R19 R21

Series1

Fig. 3 Prioritization of requirements

CSIT (September 2013) 1(3):243–252 249

123

http://www.ISBSG.org.au

In order to estimate the function point of the MSNI, we

used the esrcTool as well as the tool proposed by [12]. The

value of function point of MSNI found to be 50. According

to the measurement error the actual size of the function

point varies from 44 to 56. To find out the value of model

error, we have assumed that the 0.2 person-days per

function point. No estimation model can include all factors

that affect the effort required to produce a software prod-

uct. Suppose, we have an estimation model with an

inherent 20 % inaccuracy and our product is of 50 function

points in size, our estimation is likely to be between 8 and

12 person days.

The assumption error occurs when we have some

incorrect assumption about the models input parameter.

Our assumption is that the product size is of 50 function

points rest on the assumption that we have correctly

identified all the requirements. If we can identify our

assumption, we can investigate the effect of their invalid by

assessing both the probability hat an assumption is incor-

rect and the resulting impact on the estimate. This is the

called the risk analysis. If we assume that there are 0.4

probabilities that the requirement complexity has been

underestimated, so we estimate another 2 function point.

We can estimate the risk exposure from the following

Fig. 4 Snapshot of the GUI of the esrcTool [23]

Table 6 Results from esrcTool

Project

(P) number

Values

of FP

Measurement

error

Model error Assumption

error

Risk

exposure

Cost

P1 1,300 1,144 FP–1,456 FP 208–312 person days Addition of 52 FP 10 Person day 1,144 9 cost of 1 FP to

1,456 9 cost of 1 FP

P2 1,200 1,056 FP–1,344 FP 192–288 person days Addition of 48 FP 9 Person day 1,056 9 cost of 1 FP to

1,344 9 cost of 1 FP

P3 1,000 880 FP–1,120 FP 160–240 person days Addition of 40 FP 8 Person day 880 9 cost of 1 FP to

1,120 9 cost of 1 FP

P4 750 660 FP-840 FP 120–180 person days Addition of 30 FP 6 Person day 660 9 cost of 1 FP to

840 9 cost of 1 FP

P5 600 520 FP-672 FP 96–144 person days Addition of 24 FP 5 Person day 520 9 cost of 1 FP to

672 9 cost of 1 FP

P6 550 484 FP-616 FP 88–132 person days Addition of 22 FP 4 Person day 484 9 cost of 1 FP to

616 9 cost of 1 FP

P7 400 352 FP-448 FP 64–96 person days Addition of 16 FP 3 Person day 352 9 cost of 1 FP to

448 9 cost of 1 FP

P8 250 220 FP-280 FP 40–60 person days Addition of 10 FP 2 Person day 220 9 cost of 1 FP to

280 9 cost of 1 FP

P9 180 158 FP-202 FP 29–43 person days Addition of 7 FP 1 Person day 158 9 cost of 1 FP to

202 9 cost of 1 FP

P10 90 79 FP-101 FP 11–25 person days Addition of 4 FP 1 Person day 79 9 cost of 1 FP to

101 9 cost of 1 FP

250 CSIT (September 2013) 1(3):243–252

123

formula: Risk Exposure = E2 - E1, where E1 is the effort

if the original assumption is true, and E2 is the effort if the

alternative assumption is true and P2 is the probability that

the alternative assumption is true. So in our case E1 = 10

person days, E2 = 50 9 0.2 ? 2 9 0.2 = 10.4 = 11

(approximately). The risk exposure = 11 - 10 = 1 person

days. We have summarized the results of esrcTool in

Table 6.

6 Conclusion and future work

In this paper we present a systematic approach to estimate

the software risk and cost using esrcTool. We have

implemented esrcTool using C language. From the pro-

posed tool, it is easy to estimate the risk in the software and

also to estimate the cost of the software. The cost of the

software depends on the value of the function point. In this

paper we have employed the function point approach as an

input parameter into the esrcTool. We have applied to the

proposed tool on the MSNI; and on nine other projects that

are based on software engineering and computer graphics.

From the proposed tool, it is easy to find out the cost of

software; and estimate the risk of those software’s projects

that were designed and developed by our graduate and post

graduate students. Software risk and cost analysis is the

part of non functional requirements (NFR). Therefore, such

type of analysis helps to improve the understanding level of

stakeholders during retirements elicitation phase. Future

research agenda includes the following:

(i) To apply the esrcTool on real projects because

projects developed by students have some kind of

errors.

(ii) To develop a fuzzy based model for the computation

of esrcTool.

(iii) To elicit and prioritize the software requirements

using analytic hierarchy process (AHP) and quality

function deployment.

References

1. Williams RC, Pandelios GJ, Behrens SG (1999) Software risk

evaluation (SRE) method description (Version-2.0), Technical

report December-1999

2. Sherer SA (2005) The three dimensions of software risk: tech-

nical, organizational, and environmental. In: 28th Hawaii inter-

national conference on system sciences, 1995, Wailea, IEEE

3. Van Scoy RL (1992) Software development risk: opportunity, not

problem, Technical report

4. Demarco T, Lister T (2003) Risk management during require-

ments, IEEE Computer society, IEEE Software, pp. 99–100

5. International Function Point User Group (IFPUG) (1990) Func-

tion point counting practices manual, Release 4.0, IFPUG,

Westerville

6. Zuse H (1991) Software metrics-methods to investigate and

evaluate software complexity measures. In: Proc. second annual

oregon workshop on software metrics, Portland

7. Firesmith D (2004) Prioritizing requirements. J Object Technol

3(8):35–47

8. Gupta D, Sadiq M (2008) Software risk assessment and estima-

tion model. In: International conference on computer science and

information technology, IEEE Computer Society, Singapore,

pp 963–967

9. Low GC, Jeffery DR (1990) Function point in the estimation and

evaluation of the software process, IEEE Trans Software Eng 16(1)

10. Tsoi H-L (2005) To evaluate the function point analysis: a case

study. Int J Comput Internet Manag 13(1):31–40

11. Sherif JS (1996) Metrics for software risk management, ISMN#0-

7803-3274-1, pp. 507–513

12. Gupta D, Kaushal SJ, Sadiq M (2008) Software estimation tool

based on software engineering metrics model. In: IEEE interna-

tional conference on management of innovation and technology,

Bangkok, pp. 623–628

13. Keshlaf AA, Hashim K (2000) A model and prototype tool to

manage software risks. In: 1st Asia pacific conference on soft-

ware quality, pp. 297–305, IEEE

14. Foo S-W, Muruganatham A (2000) Software risk assessment

model ICMIT 2000, IEEE, pp. 536–544

15. Sadiq M, Rahman A, Ahmad S, Asim M, Ahmad J (2010) esrcTool:

a tool to estimate the software risk and cost. In: IEEE second

international conference on computer research and development,

pp. 886–890, Kuala Lumpur. doi: 10.1109/ICCRD.2010.29

16. Ahmad Khan MA, Khan S, Sadiq M (2012) Systematic review of

software risk assessment and estimation models. Int J Eng Adv

Technol 1(4), ISSN: 2249–8958

17. Georgieva K. Et al (2009) Analysis of risk analysis methods––a

survey, LNCS- Springer, Heidelberg, pp. 76–86

18. Sadiq M, Ahmad MW, Rahmani MKI, Jung S (2010) Software

risk assessment and evaluation process (SRAEP) using model

based approach. In: IEEE international conference on networking

and information technology, ICNIT-2010, pp. 171–177, Manila

19. Albrecht AJ (1979) Measuring application development produc-

tivity, Proc. IBM applications development symposium, Monte-

rey. pp. 14–17

20. Low GC, Jeffery DR (1990) Function point in the estimation and

evaluation of the software process, IEEE Trans Software Eng 16(1)

21. International Function Point User Group (IFPUG) (1990) Func-

tion point counting practices manual, Release 4.0, IFPUG,

Westerville

22. Sadiq M, Rizvi DR, Aggarwal S (1997–2001) Weaknesses of

software risk estimation models. In: 2nd National conference on

emerging trends in computer science and information technology,

AFSET, Faridabad, pp. 146–150

23. Sadiq M, Sunil, Zafar S, Asim M, Suman R (2010) GUI of es-

rcTool: a tool to estimate the software risk and cost. In: The 2nd

IEEE international conference on computer and automation

engineering (ICCAE-2010), pp. 673-677, Singapore

24. Kermerer CF (1993) Reliability of function points measurements,

a field experiment. Commun ACM 36:85–97

25. Li Z, Wang Z, Yang Y, Wu Y, Liu Y (2007) Towards multiple

ontology framework for requirements elicitation and reuse. In:

31st IEEE annual international computer software and applica-

tion conference

26. Sadiq M, Ghafir S, Shahid M (2009) An approach for eliciting

software requirements and its prioritization using analytic hier-

archy process. In: IEEE international conference on advances in

recent technologies in communication and computing, ACEEE

annual world congress on engineering and technology

27. Sadiq M, Ghafir S, Shahid M (2009) A framework to prioritize

the software requirements using quality function deployment. In:

CSIT (September 2013) 1(3):243–252 251

123

http://dx.doi.org/10.1109/ICCRD.2010.29

National conference on recent development in computing and its

application, organized by Jamia Hamdard, Delhi

28. H. Young et al (2007) Analysing software system quality risk

using bayesian belief network. In: Proceedings of the interna-

tional conference on granular computing, IEEE computer society,

Los Alamitos

29. Vucovich JP et al (1995) Risk assessment in early software

design based on the software function failure design method. In:

Proceedings of the 31st annual international conference on

computer software and applications. IEEE Computer Society, Los

Alamitos

30. Yong H et al (2006) A neural network approach for software risk

analysis. In: Proceedings of the 6th international conference on

data mining-workshop. IEEE Computer Society, Los Alamitos

31. Deursen T et al (2003) Source based software risk assessment. In:

Proceedings of the international conference on software mainte-

nance, IEEE Computer Society, Los Alamitos

32. Yacoub SM, Ammar HH (2002) A methodology for architecture

level reliability risk analysis, IEEE Trans Software, pp. 529–547

33. Neumann DE (2002) An enhanced neural network technique for

software risk analysis. In: IEEE transaction on Software Engi-

neering, pp. 904–912

34. Nogueira J et al (2000) A risk assessment model for software

prototyping projects. In: Proceedings of the 11th international

workshop on rapid system prototyping. IEEE Computer Society,

Los Alamitos

35. Williams RC et al (1999), Software risk evaluation method

description, CMU/SEI-99-TR, ESC-TR-99-029, Software

Institute

36. Chee CL et al (1995) Using influence diagram for software risk

analysis. In: Proceedings of the 7th international conference on

tools with artificial intelligence. IEEE Computer Society, Los

Alamitos

252 CSIT (September 2013) 1(3):243–252

123

	A systematic approach for the estimation of software risk and cost using esrcTool
	Abstract
	Introduction
	Background and related work
	Method for the computation of FP
	Internal logical file (ILF)
	External interface file (EIF)
	External input (EI)
	External output (EO)
	External inquiry (EQ)

	Systematic approach
	Estimation of the risk
	Measurement error
	Model error
	Assumption error

	Cost estimation

	Experimental work
	Conclusion and future work
	References

