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Abstract We determine all graphs whose line graphs

(middle graphs, total graphs, respectively) are homoge-

neously representable interval graphs.
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A graph G ¼ ðV;EÞ is said to be an interval graph if it is

possible to assign to each vertex ofG a closed interval on the

real line such that two distinct vertices of G are adjacent if

and only if the corresponding intervals have a non-empty

intersection, that is, if there exists a collection I ¼ fIvv 2
VðGÞg of closed intervals on the real line such that G is

isomorphic to the intersection graph XðIÞ of I . In such a

situation, the collection I is called an interval representation

of G. Without loss of generality we may assume that an

interval representation consists of closed, nonempty, finite

intervals in which all end points of the intervals are distinct.

The first characterization of interval graphs has been proved

by Lekkerkerker and Boland [1]. In some applications of

interval graphs it is desirable to have an interval graph with

as few different interval representations as possible. In [2] a

class of interval graphs whose representations are far from

being unique is demonstrated.

Let I ¼ fI1; . . .; Ipg be a set of intervals of the real line,

where Ii ¼ ½ai; bi� for i ¼ 1; 2; . . .; p. An interval Ii is called

an end interval of the set I if ai � aj for all j, or bi � bj for

all j. A graph G is called a homogeneously repre-

sentable interval graph (shortly, an HRI graph) if for every

vertex v of G there exists an interval representation of G in

which the interval representing v is an end interval.

Homogeneously representable interval graphs were char-

acterized in terms of forbidden subgraphs by Skrien and

Gimbel [2].

Theorem 1 (Skrien and Gimbel) A graph G is an HRI

graph if and only if it does not contain any of the graphs

P4, C4, C5 or G1 (Fig. 1) as an induced subgraph.

The line graph of a graph G, denoted by LðGÞ, is the

intersection graph XðEðGÞÞ of the family EðGÞ ¼
ffu; vg : uv 2 EðGÞg, that is, LðGÞ is the graph whose

vertices are in one-to-one correspondence with the edges

of G, and two vertices of LðGÞ are adjacent if and only if

the corresponding edges of G are adjacent. Whitney [3]

proved that K1;3, K3 is the only pair of non-isomorphic

connected graphs with isomorphic line graphs. In the next

two theorems we characterize all graphs G whose line

graphs LðGÞ are homogeneously representable interval

graphs.

Theorem 2 The line graph LðGÞ of a graph G is an HRI

graph if and only if G contains no P5, C4, C5 or G2 (Fig. 1)

as a subgraph.

Proof Note that P4 ¼ LðP5Þ, C4 ¼ LðC4Þ, C5 ¼ LðC5Þ,
and G1 ¼ LðG2Þ. Now, Whitney’s theorem implies that if
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at least one of the graphs P4, C4, C5, and G1 is an induced

subgraph of the line graph LðGÞ, then at least one of the

graphs P5, C4, C5, and G2 is a subgraph of G. From this and

from Theorem 1 it follows that if LðGÞ is not an HRI graph,
then at least one of the graphs P5, C4, C5, and G2 is a

subgraph of G. The opposite implication is straightforward.

h

Theorem 3 The line graph LðGÞ of a graph G is an HRI

graph if and only if every connected component of G is a

subgraph of any of the graphs H1, H2, and H3 Fig. 2.

Proof Since LðGÞ is an HRI graph if and only if every

connected component of LðGÞ is an HRI graph, without

loss of generality we may assume that G is connected and

different from K1. First note that if G is a subgraph of any

of the graphs given in Fig. 2, then it contains no P5, C4, C5

or G2 as a subgraph, and therefore LðGÞ is an HRI graph,

by Theorem 2.

Now assume that LðGÞ is an HRI graph. According to

Theorem 2, the graph G does not contain P5, C4, C5 or G2

as a subgraph. Let P ¼ ðv0; v1; . . .; vdÞ be a longest path in

G. Since P5 is not a subgraph of G and G 6¼ K1, we have

1� d � 4. If d ¼ 1, then G ¼ K2 and G is a subgraph of

Hi. If d ¼ 2, then G is a star or a complete graph on three

vertices. Notice that G is a subgraph of the graphs H1 and

H2. If d ¼ 3 and P has no chord in G, then it follows from

the choice of P that the sets NGðv1Þ and NGðv2Þ are disjoint,
and every vertex of NGðv1Þ [ NGðv2Þnfv1; v2g is a leaf in

G. Thus G is a double star, and it is a subgraph of H2. Now

assume that d ¼ 3 and P has a chord in G. From the

absence of C4 in G, it follows that either v0v2 or v1v3 is a

chord of P in G. Without loss of generality, assume that

v0v2 is a chord of P in G. Since P is a longest path in G, we

have NGðv0Þ ¼ fv1; v2g, NGðv1Þ ¼ fv0; v2g, and each ver-

tex of NGðv2Þnfv0; v1g is a leaf in G. Therefore G can be

obtained from K3 by attaching a positive number of leaves

to exactly one vertex of K3. Certainly, G is a subgraph of

H2. Now assume that d ¼ 4. From the absence of C4 and

C5 in G and from the choice of P, it easily follows that

NGðv0Þnfv1g � fv2g and NGðv4Þnfv3g � fv2g. In addition,

NGðv2Þnfv1; v3g � fv0; v4g as otherwise G2 would be a

subgraph of G. Again from the choice of P and from the

absence of C4 in G, it follows that NGðv1Þ ¼ fv0; v2g if v0v2
is a chord of P in G. Similarly, NGðv3Þ ¼ fv2; v4g if v2v4 is

a chord of P in G. This implies that G ¼ H3 if both v0v2
and v2v4 are chords of P in G. If v0v2 is a chord of P and

v2v4 is not a chord of P, then the choice of P implies that

the vertices belonging to NGðv3Þ are independent, and G is

a subgraph of H1. Similarly, G is a subgraph of H1 if v2v4 is

a chord and v0v2 is not a chord of P in G. Finally assume

that neither v0v2 nor v2v4 is a chord of P in G. Then from

the choice of P and from the absence of C4 in G, it follows

that the sets NGðv1Þnfv2g and NGðv3Þnfv2g are disjoint and

each of them consists of independent vertices. Therefore G

is a subgraph of H2. h

The middle graph of a graph G, denoted by MðGÞ, is the
intersection graph XðFÞ of the family F ¼ ffvg : v 2
VðGÞg [ ffv; ug : vu 2 EðGÞg. It is known that MðGÞ is

isomorphic to the line graph LðG � K1Þ [4], where G � K1 is

a graph obtained by taking the graph G and jVðGÞj copies
of K1 and then joining the i-th vertex of G to the i-th copy

of K1.

The following result follows from Theorems 1 and 2.

Theorem 4 The middle graph MðGÞ of a graph G is an

HRI graph if and only if every connected component of G is

isomorphic to K1 or K2.

Proof If every component of G is isomorphic to K1 or K2,

then every component of MðGÞ is K1 ¼ MðK1Þ or K1;2 ¼
MðK2Þ. Thus by Theorem 1, MðGÞ is an HRI graph. Now

assume that MðGÞ is an HRI graph. Suppose that G has a

component different from K1 and K2. Then K1;2 is a

P4 P5 C4 C5 G1 G2

Fig. 1 Graphs P4, P5, C4, C5, G1 and G2
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Fig. 2 Graphs H1, H2 and H3
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subgraph of G and therefore G2 ¼ K1;2 � K1 is a subgraph

of G � K1. Consequently, by Theorem 2, the middle graph

MðGÞ ¼ LðG � K1Þ is not an HRI graph, a contradiction. h

The total graph of a graph G, denoted by TðGÞ, is the

intersection graph XðFÞ of the family F ¼ EðGÞ [
VEðGÞ ¼ ffv; ug : vu 2 EðGÞg [ ffvg [ ffv; ug : u 2
NGðvÞg : v 2 VðGÞg, that is, TðGÞ is the graph for which

there exists a one-to-one correspondence between its ver-

tices and the vertices and edges of G such that two vertices

of TðGÞ are adjacent if and only if the corresponding ele-

ments in G are adjacent or incident. This concept was

originated by Behzad [5]. It is interesting to note that the

graphs G and LðGÞ are induced subgraphs of the total graph
TðGÞ.

We now determine all graphs whose total graphs are

HRI graphs.

Theorem 5 The total graph TðGÞ of a graph G is an HRI

graph if and only if every connected component of G is

isomorphic to K1, K2 or K1;2.

Proof The sufficiency follows immediately from Theo-

rem 1. Now assume that TðGÞ is an HRI graph. It is easy to

see that if TðGÞ is an interval graph, then every connected

component of G is triangle-free. From this and from the

absence of G1 in TðGÞ (Theorem 1) it follows that P3 is not

a subgraph of G. Thus every component of G is isomorphic

to one of the graphs K1, K2, or K1;2. h

Acknowledgments Research partially supported by the Polish

National Science Centre Grant 2011/02/A/ST6/00201.

Open Access This article is distributed under the terms of

the Creative Commons Attribution License which permits any use,

distribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

References

1. Lekkerkerker C, Boland J (1962) Representation of a finite graph

by a set of intervals on the real line. Fund Math 51:45–64

2. Skrien D, Gimbel J (1985) Homogeneously representable interval

graphs. Discret Math 55:213–216

3. Whitney H (1932) Congruent graphs and the connectivity of

graphs. Am J Math 54:150–168

4. Akiyama J, Hamada T, Yoshimura I (1974) Miscellaneous

properties of middle graphs. TRU Math 10:41–53

5. Behzad M (1967) A criterion for the planarity of the total graph of

a graph. Math Proc Cambridge Philos Soc 63:679–681

On Homogeneously Representable Interval Graphs 41

123


	On Homogeneously Representable Interval Graphs
	Abstract
	Acknowledgments
	References




