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Abstract We initiate the study of 2-outer-independent

domination in graphs. A 2-outer-independent dominating

set of a graph G is a set D of vertices of G such that

every vertex of VðGÞnD has at least two neighbors in D,

and the set VðGÞnD is independent. The 2-outer-inde-

pendent domination number of a graph G is the minimum

cardinality of a 2-outer-independent dominating set of

G. We show that if a graph has minimum degree at least

two, then its 2-outer-independent domination number

equals the vertex cover number. Then we investigate the

2-outer-independent domination in graphs with minimum

degree one.

Keywords 2-Outer-independent domination �
2-Domination � Domination

Introduction

Let G ¼ ðV ;EÞ be a graph. The number of vertices of G

we denote by n and the number of edges we denote by m,

thus jVðGÞj ¼ n and jEðGÞj ¼ m. By the complement of G,

denoted by G, we mean a graph which has the same ver-

tices as G, and two vertices of G are adjacent if and only if

they are not adjacent in G. By the neighborhood of a vertex

v of G we mean the set NGðvÞ ¼ fu 2 VðGÞ : uv 2 EðGÞg.

The degree of a vertex v, denoted by dGðvÞ, is the cardi-

nality of its neighborhood. By a pendant vertex we mean a

vertex of degree one, while a support vertex is a vertex

adjacent to a pendant vertex. The set of pendant vertices of

a graph G we denote by LðGÞ. We say that a support vertex

is strong (weak, respectively) if it is adjacent to at least two

pendant vertices (exactly one pendant vertex, respec-

tively). Let dðGÞ (DðGÞ, respectively) mean the minimum

(maximum, respectively) degree among all vertices of G.

The path (cycle, respectively) on n vertices we denote by

Pn (Cn, respectively). A wheel Wn, where n� 4, is a graph

with n vertices, formed by connecting a vertex to all ver-

tices of a cycle Cn�1. The distance between two vertices of

a graph is the number of edges in a shortest path con-

necting them. The eccentricity of a vertex is the greatest

distance between it and any other vertex. The diameter of a

graph G, denoted by diamðGÞ, is the maximum eccentricity

among all vertices of G. By Kp;q we denote a complete

bipartite graph the partite sets of which have cardinalities

p and q. By a star we mean the graph K1;m where m� 2.

Let uv be an edge of a graph G. By subdividing the edge uv

we mean removing it, and adding a new vertex, say x,

along with two new edges ux and xv. By a subdivided star

we mean a graph obtained from a star by subdividing each

one of its edges. Generally, let Kt1;t2;...;tk denote the com-

plete multipartite graph with vertex set S1 [ S2 [ . . . [ Sk,

where jSij ¼ ti for positive integers i� t. The corona of a

graph G on n vertices, denoted by G � K1, is the graph on

2n vertices obtained from G by adding a vertex of degree

one adjacent to each vertex of G. We say that a subset of
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VðGÞ is independent if there is no edge between any two

vertices of this set. The independence number of a graph

G, denoted by aðGÞ, is the maximum cardinality of an

independent subset of the set of vertices of G. A vertex

cover of a graph G is a set D of vertices of G such that for

every edge uv of G, either u 2 D or v 2 D. The vertex

cover number of a graph G, denoted by bðGÞ, is the

minimum cardinality of a vertex cover of G. It is well-

known that aðGÞ þ bðGÞ ¼ jVðGÞj, for any graph G [1].

The clique number of G, denoted by xðGÞ, is the number

of vertices of a greatest complete graph which is a sub-

graph of G. By G� we denote the graph obtained from G by

removing all pendant and isolated vertices.

A subset D � VðGÞ is a dominating set of G if every

vertex of VðGÞnD has a neighbor in D, while it is a 2-

dominating set of G if every vertex of VðGÞnD has at least

two neighbors in D. The domination (2-domination,

respectively) number of a graph G, denoted by cðGÞ
(c2ðGÞ, respectively), is the minimum cardinality of a

dominating (2-dominating, respectively) set of G. Note that

2-domination is a type of multiple domination in which

each vertex, which is not in the dominating set, is domi-

nated at least k times for a fixed positive integer k. Multiple

domination was introduced by Fink and Jacobson [2], and

further studied for example in [3–9 ]. For a comprehensive

survey of domination in graphs, see [10].

A subset D � VðGÞ is a 2-outer-independent dominating

set, abbreviated 2OIDS, of G if every vertex of VðGÞnD
has at least two neighbors in D, and the set VðGÞnD is

independent. The 2-outer-independent domination number

of G, denoted by coi2 ðGÞ, is the minimum cardinality of a 2-

outer-independent dominating set of G. A 2-outer-inde-

pendent dominating set of G of minimum cardinality is

called a coi2 ðGÞ-set. The 2-outer-independent domination

number of trees was investigated in [11], where it was

proved that it is upper bounded by half of the sum of the

number of vertices and the number of pendant vertices.

In a distributed network, some vertices act as resource

centers, or servers, while other vertices are clients. If a set

D of servers is a dominating set, then every client in

VðGÞnD has direct (one hop) access to at least one server.

2-dominating sets represent a higher level of service, since

every client has guaranteed access to at least two servers.

The outer-independence condition means that the clients

are not able to connect with each other directly. This may

be useful for example for security, when we allow clients

to communicate with each other only through servers.

We initiate the study of 2-outer-independent domination

in graphs. We show that if a graph has minimum degree at

least two, then its 2-outer-independent domination number

equals the vertex cover number. Then we investigate the

2-outer-independent domination in graphs with minimum

degree one. We find the 2-outer-independent domination

numbers for several classes of graphs. Next we prove some

lower and upper bounds on the 2-outer-independent dom-

ination number of a graph, and we characterize the extre-

mal graphs. Then we study the influence of removing or

adding vertices and edges. We also give Nordhaus–Gad-

dum type inequalities [12].

Preliminary Results

If G is a disconnected graph with connected components

G1;G2; . . .;Gk, then we can easily see that coi2 ðGÞ ¼
coi2 ðG1Þ þ coi2 ðG2Þ þ . . .þ coi2 ðGkÞ.

We have the following inequalities.

Proposition 1 Let G be a graph. Then:

(i) coi2 ðGÞ� c2ðGÞ;
(ii) coi2 ðGÞ�xðGÞ � 1;

(iii) coi2 ðGÞ� bðGÞ.

Proof (i) Any 2-outer-independent dominating set of a

graph is a 2-dominating set of this graph, and thus

c2ðGÞ� coi2 ðGÞ.
(ii) Let D be a coi2 ðGÞ-set, and let A be a maximum clique

in G. Since VðGÞnD is independent, we have

jðVðGÞnDÞ \ Aj � 1. This implies that jDj � jAj � 1. We

now get coi2 ðGÞ ¼ jDj � jAj � 1 ¼ xðGÞ � 1.

(iii) Note that the definition of 2-outer-independent

domination implies that every 2OIDS of a graph is a vertex

cover of this graph, and thus the result follows. h

Note that the bounds of the above proposition are tight.

It is easy to see that for every integer n� 3 we have

coi2 ðKnÞ ¼ c2ðKnÞ þ n� 3, for every integer m� 2 we have

coi2 ðK1;mÞ ¼ xðK1;mÞ þ m� 2 and coi2 ðK1;mÞ ¼ bðK1;mÞ
þm� 1, while coi2 ðK3Þ ¼ 2 ¼ bðK3Þ.

We next prove that if a graph has no pendant or isolated

vertices, then its 2-outer-independent domination number

and vertex cover number are equal.

Theorem 2 Let G be a graph. If dðGÞ� 2, then

coi2 ðGÞ ¼ bðGÞ.

Proof Let D be a minimum vertex cover of G, and let

x 2 VðGÞnD. Clearly, NGðxÞ � D. Since dðGÞ� 2, the

vertex x is adjacent to at least two vertices of D. There are

no edges between any two vertices of VðGÞnD, thus the set

VðGÞnD is independent. This implies that D is a 2OIDS of

the graph G. Consequently, coi2 ðGÞ� bðGÞ. On the other

hand, by Proposition 1 we have coi2 ðGÞ� bðGÞ. Thus

coi2 ðGÞ ¼ bðGÞ. h

Corollary 3 Let G be a graph. If coi2 ðGÞ 6¼ bðGÞ, then
dðGÞ 2 f0; 1g.

264 N. Jafari Rad, M. Krzywkowski

123



Henceforth, we study only connected graphs G with

dðGÞ ¼ 1, that is, connected graphs having at least one

pendant vertex. Since a pendant vertex has only one

neighbor in the graph, it cannot have two neighbors in the

dominating set. Thus we have the following property of

pendant vertices.

Observation 4 Every pendant vertex of a graph G be-

longs to every coi2 ðGÞ-set.

Connected Graphs with Minimum Degree One

Throughout this section we consider only connected graphs

with minimum degree one. We have the following relation

between the 2-outer-independent domination number of a

graph and the independence number of the graph obtained

from it by removing all pendant vertices.

Lemma 5 For every graph G with n vertices we have

coi2 ðGÞ ¼ n� aðG�Þ.

Proof Let D be any coi2 ðGÞ-set. By Observation 4, all

pendant vertices belong to the set D. Therefore

VðGÞnD � VðG�Þ. The set VðGÞnD is independent, thus

aðG�Þ� jVðGÞnDj ¼ n� coi2 ðGÞ. Now let D� be any aðG�Þ-
set. Let us observe that in the graph G every vertex of D�

has at least two neighbors in the set VðGÞnD�. Thus

VðGÞnD� is a 2OIDS of G. We now get

coi2 ðGÞ� jVðGÞnD�j ¼ n� aðG�Þ. This implies that

coi2 ðGÞ ¼ n� aðG�Þ. h

It is obvious that for every graph G we have

2� coi2 ðGÞ� n. We now characterize the graphs attaining

these bounds.

Proposition 6 Let G be a graph. We have:

(i) coi2 ðGÞ ¼ 2 if and only if G 2 fP2;P3g;

(ii) coi2 ðGÞ ¼ n if and only if G ¼ P2.

Proof Obviously, coi2 ðP2Þ ¼ 2 ¼ n and coi2 ðP3Þ ¼ 2.

Assume that for some graph G we have coi2 ðGÞ ¼ 2. Let D

be a coi2 ðGÞ-set. If all vertices of G belong to the set D, then

the graph G has two vertices. Consequently, G ¼ P2. Now

let x be a vertex of VðGÞnD. The vertex x has to be

dominated twice, thus dGðxÞ� 2. Since the set VðGÞnD is

independent, the vertex x cannot have more than two

neighbors in G. This implies that G is a path P3 as no other

vertices can be dominated twice.

Now assume that for some graph G we have coi2 ðGÞ ¼ n.

If G has at least three vertices, then it has a vertex, say x, of

degree at least two. Let us observe that Dnfxg is a 2OIDS

of the graph G. This implies that coi2 ðGÞ� n� 1. Therefore

the graph G has exactly two vertices, and consequently, it

is a path P2. h

Corollary 7 For every graph G with at least three

vertices we have coi2 ðGÞ� n� 1.

We now consider graphs G such that 3� coi2 ðGÞ� n� 1.

Theorem 8 Let G be a graph of order n� 3, and let k be

an integer such that 3� k� n� 1. We have coi2 ðGÞ ¼ k if

and only if G can be obtained from a connected graph H of

order k with jLðHÞj � n� k and aðHÞ ¼ n� k, by attach-

ing n� k vertices to H in a way such that every pendant

vertex of H is a support vertex of G.

Proof Assume that coi2 ðGÞ ¼ k. Lemma 5 implies that

aðG�Þ ¼ n� k. Clearly, every vertex of VðGÞnVðG�Þ is a

pendant vertex in G. Let us also observe that every pendant

vertex of G� is a support vertex of G. Thus

jLðG�Þj � n� jVðG�Þj.
Now assume that G is a graph obtained from a

connected graph H of order k with jLðHÞj � n� k and

aðHÞ ¼ n� k, by attaching n� k vertices to H in a way

such that every pendant vertex of H is a support vertex of

G. Let us observe that G� ¼ H. Let D be a maximum

independent set of H. Clearly, VðGÞnD is a 2OIDS of G,

and therefore coi2 ðGÞ� n� aðHÞ ¼ k. Suppose that

coi2 ðGÞ\k. Using Lemma 5 we obtain aðHÞ[ n� k, a

contradiction. Thus coi2 ðGÞ ¼ k. h

Bounds

We have the following upper bound on the 2-outer-inde-

pendent domination number of a graph in terms of its

vertex cover number and the number of pendant vertices.

Proposition 9 If G is a graph with l pendant vertices,

then coi2 ðGÞ� bðGÞ þ l.

Proof Let us observe that vertices of any minimum vertex

cover of G together with all pendant vertices of G form a

2OIDS of the graph G. h

Let us observe that the bound from the previous

proposition is tight. Let l be a positive integer, and let

H ¼ C6. Let x be a vertex of H, and let G be a graph

obtained from H by attaching l new vertices and joining

them to the vertex x. It is straightforward to see that

bðGÞ ¼ 3, while coi2 ðGÞ ¼ 3 þ l.

We have the following upper bound on the 2-outer-in-

dependent domination number of a graph in terms of its

vertex cover number and maximum degree.

Proposition 10 For every graph G we have

coi2 ðGÞ� bðGÞDðGÞ.

Proof Let S be a minimum vertex cover of G. The ver-

tices of S together with all pendant vertices of G form a

2OIDS of the graph G. Every vertex of S is adjacent to at

most DðGÞ pendant vertices. Thus coi2 ðGÞ� bðGÞDðGÞ. h
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Let us observe that the bound from the previous

proposition is tight. For stars K1;m we have

coi2 ðK1;mÞ ¼ m ¼ 1 � m ¼ bðK1;mÞDðK1;mÞ.
We have the following upper bound on the 2-outer-in-

dependent domination number of a graph.

Proposition 11 For every graph G with l pendant ver-

tices we have

coi2 ðGÞ�
nDðGÞ þ l

DðGÞ þ 1
:

Proof By Lemma 5 we have coi2 ðGÞ ¼ n� aðG�Þ. Since

every maximal independent set of a graph is a dominating

set of this graph, we have cðG�Þ� aðG�Þ. We now get

aðG�Þ� cðG�Þ� jVðG�Þj
DðG�Þ þ 1

� n� l

DðGÞ þ 1
:

h

We have the following upper bound on the 2-outer-in-

dependent domination number of a graph in terms of its

diameter.

Proposition 12 If G is a graph of diameter d, then

coi2 ðGÞ� n� bd=2c.

Proof Let v0; v1; . . .; vd be a diametrical path in G. If d is

even, then let D ¼ fv2i�1 : 1� i� d=2g, while if d is odd,

then let D ¼ fv2i�1 : 1� i�ðd � 1Þ=2g. Let us observe

that VðGÞnD is a 2OIDS of the graph G. h

Let us observe that the bound from the previous

proposition is tight. We have coi2 ðPnÞ ¼ bn=2c þ 1 ¼ n� b
ðn� 1Þ=2c � 1 þ 1 ¼ n� bðn� 1Þ=2c ¼ n� bd=2c.

We have the following upper bound on the 2-outer-in-

dependent domination number of a tree in terms of its

independence number and the number of support vertices.

Theorem 13 For every tree T of order at least three with

s support vertices we have coi2 ðTÞ� aðTÞ þ s� 1.

Proof Let n mean the number of vertices of the tree T.

We proceed by induction on this number. If diamðTÞ ¼ 1,

then T ¼ P2. We have coi2 ðP2Þ ¼ 2 ¼ 1 þ 2 � 1

¼ aðP2Þ þ s� 1. Now assume that diamðTÞ ¼ 2. Thus T is

a star K1;m. We have coi2 ðK1;mÞ ¼ m\mþ 1 ¼ mþ 2 �
1� 2m� 1 ¼ mþ m� 1 ¼ aðK1;mÞ þ sðK1;mÞ � 1. Now

let us assume that diamðTÞ ¼ 3. Thus T is a double star.

We have coi2 ðTÞ ¼ n� 1 ¼ n� 2 þ 2 � 1 ¼ aðTÞ þ sðTÞ
�1.

Now assume that diamðTÞ� 4. Thus the order n of the

tree T is at least five. We obtain the result by the induction

on the number n. Assume that the theorem is true for every

tree T 0 of order n0\n.

First assume that some support vertex of T, say n, is

strong. Let y be a pendant vertex adjacent to x. Let

T 0 ¼ T � y. We have s0 ¼ s. Let D0 be any coi2 ðT 0Þ-set.

Obviously, D0 [ fyg is a 2OIDS of the tree T. Thus

coi2 ðTÞ� coi2 ðT 0Þ þ 1. Let us observe that there exists a

maximum independent set of T 0 that contains the vertex x.

Let A0 be such a set. It is easy to see that D0 [ fyg is an

independent set of the tree T. Thus aðTÞ� aðT 0Þ þ 1. We

now get coi2 ðTÞ� coi2 ðT 0Þ þ 1� aðT 0Þ þ s0 ¼ aðT 0Þ þ s� a
ðTÞ þ s� 1. Henceforth, we can assume that all support

vertices of T are weak.

We now root T at a vertex r of maximum eccentricity

diamðTÞ. Let t be a pendant vertex at maximum distance

from r, v be the parent of t, u be the parent of v, and w be

the parent of u in the rooted tree. By Tx let us denote the

subtree induced by a vertex x and its descendants in the

rooted tree T.

Assume that among the children of u there is a support

vertex, say x, different from v. Let T 0 ¼ T � Tv. We have

s0 ¼ s� 1. Let us observe that there exists a coi2 ðT 0Þ-set that

contains the vertex u. Let D0 be such a set. It is easy to

observe that D0 [ ftg is a 2OIDS of the tree T. Thus

coi2 ðTÞ� coi2 ðT 0Þ þ 1. Now let A0 be a maximum independent

set of T 0. It is easy to observe that D0 [ ftg is an independent

set of T. Thus aðTÞ� aðT 0Þ þ 1. We now get coi2 ðTÞ�
coi2 ðT 0Þ þ 1� aðT 0Þ þ s0 ¼ aðT 0Þ þ s� aðTÞ þ s� 1 .

Now assume that u is adjacent to a pendant vertex, say x.

It suffices to consider only the possibility when dTðuÞ ¼ 3.

Let T 0 ¼ T � x. We have s0 ¼ s� 1. Obviously, aðTÞ� a
ðT 0Þ. Let D0 be any coi2 ðT 0Þ-set. Obviously, D0 [ fxg is a

2OIDS of the tree T. Thus coi2 ðTÞ� coi2 ðT 0Þ þ 1. We now get

coi2 ðTÞ� coi2 ðT 0Þ þ 1� aðT 0Þ þ s0 ¼ aðT 0Þ þ s� 1� aðTÞþ
s� 1.

Now assume that dTðuÞ ¼ 2. Let T 0 ¼ T � Tv. We have

s0 � s. Let D0 be any coi2 ðT 0Þ-set. By Observation 4 we have

u 2 D0. It is easy to observe that D0 [ ftg is a 2OIDS of the

tree T. Thus coi2 ðTÞ� coi2 ðT 0Þ þ 1. Now let A0 be a

maximum independent set of T 0. It is easy to see that D0 [
ftg is an independent set of the tree T. Thus

aðTÞ� aðT 0Þ þ 1. We now get coi2 ðTÞ� coi2 ðT 0Þ þ 1

� aðT 0Þ þ s0 � aðT 0Þ þ s� aðTÞ þ s� 1. h

We have the following bounds on the 2-outer-indepen-

dent domination number of a graph in terms of its order and

size.

Proposition 14 For every graph G we have

2nþ 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2n� 1Þ2 � 8ðm� 1Þ
q

2
� coi2 ðGÞ�

2nþ 1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2n� 1Þ2 � 8ðm� 1Þ
q

2
:

Proof Let D be a coi2 ðGÞ-set. Let t denote the number of

edges between the vertices of D and the vertices of
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VðGÞnD. Obviously, m� t þ jEðG½D	Þj. Since G has at

least one pendant vertex, we have t�ðjDj � 1Þ�
jVðGÞnDj þ 1. Notice that jEðG½D	Þj � ðjDj � 1ÞðjDj
�2Þ=2. Now simple calculations imply the result. h

We also have the following lower bound on the 2-outer-

independent domination number of a graph in terms of its

order and size.

Proposition 15 For every graph G we have

coi2 ðGÞ� n� m=2.

Proof Let D be a coi2 ðGÞ-set. Since every vertex of

VðGÞnD has at least two neighbors in D, have

m� 2jVðGÞnDj. h

Let us observe that the bound from the previous

proposition is tight. For positive integers n we have

coi2 ðPnÞ ¼ bn=2c þ 1 ¼ ðnþ 1Þ=2 ¼ n� ðn� 1Þ=2 ¼ n�
m=2.

We have the following necessary condition for that a

graph attains the bound from the previous proposition.

Proposition 16 If for a graph G we have

coi2 ðGÞ ¼ n� m=2, then the graph G is bipartite and it has

at least m=2 vertices of degree two.

Proof Let D be a coi2 ðGÞ-set. Let t denote the number of

edges between the vertices of D and the vertices of

VðGÞnD. If some vertex of VðGÞnD has degree at least

three, then we get m� t� 3 þ 2ðjVðGÞnDj � 1Þ ¼
2jVðGÞnDj þ 1 ¼ 2ðn� coi2 ðGÞÞ þ 1 ¼ mþ 1[m, a con-

tradiction. Thus every vertex of VðGÞnD has degree two.

We have jVðGÞnDj ¼ n� coi2 ðGÞ ¼ m=2. Thus there are at

least m=2 vertices of degree two. If the set D is not inde-

pendent, then we get m[ t ¼ 2jVðGÞnDj ¼ 2ðn
�coi2 ðGÞÞ ¼ m, a contradiction. Therefore D is an inde-

pendent set. Since the set VðGÞnD is also independent, the

graph G is bipartite. h

It is an open problem to characterize the graphs attaining

the bound from Proposition 16.

Problem 17 Characterize graphs G such that

coi2 ðGÞ ¼ n� m=2.

We now study the influence of the removal of a vertex

of a graph on its 2-outer-independent domination number.

Proposition 18 Let G be a graph. For every vertex v of

G we have coi2 ðGÞ � 1� coi2 ðG� vÞ� coi2 ðGÞ þ dGðvÞ � 1.

Proof Let D be a coi2 ðGÞ-set. If v 62 D, then observe that D

is a 2OIDS of the graph G� v. Now assume that v 2 D. Let

us observe that D [ NGðvÞnfvg is a 2OIDS of the graph

G� v. Therefore coi2 ðG� vÞ� jD [ NGðvÞn fvgj� jDnfvgj
þjNGðvÞj ¼ coi2 ðGÞ þ dGðvÞ � 1.

Now let D0 be any coi2 ðG� vÞ-set. It is easy to see that

D0 [ fvg is a 2OIDS of the graph G. Thus

coi2 ðGÞ� coi2 ðG� vÞ þ 1. h

Let us observe that the bounds from the previous

proposition are tight. For the lower bound, let G ¼ Kn,

where n� 4. We have coi2 ðGÞ ¼ coi2 ðKnÞ ¼ n� 1 ¼
n� 2 þ 1 ¼ coi2 ðKn�1Þ þ 1. For the upper bound, let G be

subdivided star. The vertex of minimum eccentricity we

denote by v. Let m denote its degree. We have

G� v ¼ mK2. Consequently, coi2 ðG� vÞ ¼ coi2 ðmK2Þ ¼
mcoi2 ðK2Þ ¼ 2m ¼ mþ 1 þ m� 1 ¼ coi2 ðGÞ þ dGðvÞ � 1.

We now study the influence of the removal of an edge of

a graph on its 2-outer-independent domination number.

Proposition 19 Let G be a graph. For every edge e of G

we have

coi2 ðG� eÞ 2 fcoi2 ðGÞ � 1; coi2 ðGÞ; coi2 ðGÞ þ 1g:

Proof Let D be a coi2 ðGÞ-set, and let e ¼ xy be an edge of

G. Since the set VðGÞnD is independent, some of the

vertices x and y belongs to the set D. Without loss of

generality we may assume that x 2 D. If y 2 D, then it is

easy to see that D is a 2OIDS of the graph G� e. If y 62 D,

then D [ fyg is a 2OIDS of G� e. Thus

coi2 ðG� eÞ� coi2 ðGÞ þ 1. Now let D0 be a coi2 ðG� eÞ-set.

If some of the vertices x and y belongs to the set D0, then D0

is a 2OIDS of the graph G. If none of the vertices x and y

belongs to the set D0, then it is easy to observe that D0 [
fxg is a 2OIDS of the graph G. Therefore

coi2 ðGÞ� coi2 ðG� eÞ þ 1. h

Let us observe that the bounds from the previous

proposition are tight. For the lower bound, let xy be an edge

of the complete graph K4. Let G be a graph obtained from

K4 by adding two vertices x1; y1, and joining x to x1, and y

to y1. Then coi2 ðG� xyÞ ¼ coi2 ðGÞ � 1. For the upper bound,

consider a path P4, and the central edge of it.

Similarly, we have the following result, which imme-

diately follows from Proposition 19, concerning the influ-

ence of adding an edge on the 2-outer-independent

domination number of a graph.

Proposition 20 Let G be a graph. If e 62 EðGÞ, then
coi2 ðGþ eÞ 2 fcoi2 ðGÞ � 1; coi2 ðGÞ; coi2 ðGÞ þ 1g:

Let us observe that the bounds from the previous

proposition are tight.

Nordhaus–Gaddum Type Inequalities

A Nordhaus–Gaddum type result is a lower or upper bound

on the sum or product of a parameter of a graph and its
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complement. In 1956 Nordhaus and Gaddum [12] proved

the following inequalities for the chromatic number of a

graph G and its complement: 2
ffiffiffi

n
p

� vðGÞ þ vðGÞ� nþ 1

and n� vðGÞvðGÞ� ðnþ 1Þ2=4.

We now give Nordhaus–Gaddum type inequalities for

the sum of the 2-outer-independent domination number of

a graph and its complement.

Theorem 21 For every graph G we have

n� 1� coi2 ðGÞ þ coi2 ðGÞ� 2n.

Proof Let D be a coi2 ðGÞ-set. Since VðGÞnD is an inde-

pendent set, the vertices of VðGÞnD form a clique in G. Let

D be any coi2 ðGÞ-set. Let us observe that at most one vertex

of VðGÞnD does not belong to D. Therefore

jDj � jVðGÞnDj � 1. We now get coi2 ðGÞþ coi2 ðGÞ ¼ jDj
þjDj � jDj þ jVðGÞnDj � 1 ¼ n� 1.

Obviously, coi2 ðGÞ� n and coi2 ðGÞ� n. Thus

coi2 ðGÞ þ coi2 ðGÞ� 2n. h

We now prove that the complete graphs of order at most

two, and their complements are the only graphs which

attain the upper bound from Theorem 21.

Theorem 22 Let G be a graph. We have coi2 ðGÞ þ
coi2 ðGÞ ¼ 2n if and only if G ¼ K1 or G ¼ K2 or

G ¼ K1 [ K1.

Proof First, it is straightforward to see that coi2 ðGÞ þ
coi2 ðGÞ ¼ 2n if G ¼ K1 or G ¼ K2 or G ¼ K1 [ K1. Now

assume that for some graph G we have

coi2 ðGÞ þ coi2 ðGÞ ¼ 2n. This implies that coi2 ðGÞ ¼ n and

coi2 ðGÞ ¼ n. By Corollary 7, n� 2. Consequently, G ¼ K1

or G ¼ K2 or G ¼ K1 [ K1. h

Corollary 23 If G and G are different from K1 and K2,

then coi2 ðGÞ þ coi2 ðGÞ� 2n� 1.

We now prove that the path P3 and its complement are

the only graphs which attain the bound from the previous

corollary.

Theorem 24 Let G be a graph. We have coi2 ðGÞ þ
coi2 ðGÞ ¼ 2n� 1 if and only if G or G is a path P3.

Proof We have coi2 ðP3Þ þ coi2 ðP3Þ ¼ 5 ¼ 2n� 1. Now

assume that for some graph G we have

coi2 ðGÞ þ coi2 ðGÞ ¼ 2n� 1. This implies that coi2 ðGÞ ¼ n� 1

or coi2 ðGÞ ¼ n� 1. Without loss of generality we assume

that coi2 ðGÞ ¼ n� 1. By Theorem 8, the graph G is

obtained from a complete graph Kr, for some r� 1, by

attaching at least one pendant vertex. We show that n ¼ 3.

Suppose that n� 4. Since dðGÞ ¼ 1, we may assume that x

is a pendant vertex of G. Thus x has at least two neighbors

in the graph G. Therefore VðGÞnfxg is a 2OIDS of G, and

consequently, coi2 ðGÞ� n� 1. We now get coi2 ðGÞ þ coi2 ðGÞ

� 2n� 2, a contradiction. We deduce that n ¼ 3. Conse-

quently, G ¼ P3. h

We next improve the lower bound from Theorem 21.

Theorem 25 For every graph G with l pendant vertices

we have coi2 ðGÞ þ coi2 ðGÞ� nþ l� 2.

Proof By Theorem 8, the graph G is obtained from a

connected graph H with aðHÞ ¼ n� coi2 ðGÞ, by attaching

n� jVðHÞj pendant vertices to H such that any pendant

vertex of H is a support vertex of G. Let X ¼ VðGÞnVðHÞ.
By Lemma 5 we have coi2 ðGÞ ¼ n� aðHÞ. Let S be a

maximum independent set in H. Then clearly VðGÞnS is a

coi2 ðGÞ-set. Let D be a coi2 ðGÞ-set. Clearly, G½X	 and G½S	 are

complete graphs. Thus jD \ Sj � jSj � 1, and

jD \ Xj � jXj � 1. We now get

coi2 ðGÞ þ coi2 ðGÞ� jVðGÞj � jSj þ jSj � 1 þ jXj � 1

¼ nþ jXj � 2 ¼ nþ l� 2:

h

We now characterize graphs attaining the lower bound

from Theorem 21, that is, graphs G for which

coi2 ðGÞ þ coi2 ðGÞ ¼ n� 1. Since coi2 ðGÞ� 2, we may assume

that coi2 ðGÞ\n� 2.

Theorem 26 Let G be a graph such that coi2 ðGÞ\n� 2.

Then coi2 ðGÞ þ coi2 ðGÞ ¼ n� 1 if and only if G is obtained

from a connected graph H such that aðHÞ ¼ n� coi2 ðGÞ
and jLðHÞj � 1, by attaching one pendant vertex to H such

that if H has a pendant vertex x, then x is a support vertex

in G.

Proof Assume that for some graph G we have

coi2 ðGÞ þ coi2 ðGÞ ¼ n� 1. By Theorem 8, the graph G is

obtained from a connected graph H with

aðHÞ ¼ n� coi2 ðGÞ, by attaching n� jVðHÞj pendant ver-

tices to H such that any pendant vertex of H is a support

vertex of G. Let jVðGÞnVðHÞj ¼ l. By Theorem 25 we

have n� 1 ¼ coi2 ðGÞ þ coi2 ðGÞ� nþ l� 2. This implies

that l� 1, and so l ¼ 1. Now the result follows.

Conversely, let G be obtained from a connected graph H

with aðHÞ ¼ n� coi2 ðGÞ and jLðHÞj� 1, by attaching one

pendant vertex (say u) to H such that if H has a pendant

vertex x, then x is a support vertex in G. By Theorem 8 we

have coi2 ðGÞ ¼ n� aðHÞ. Let S be a maximum independent

set in H. Since coi2 ðGÞ\n� 2, we find that jSj � 3. Let

x; y 2 S. Then ðS� fx; ygÞ [ fug is a 2OIDS for G, and

thus coi2 ðGÞ þ coi2 ðGÞ� n� jSj þ jSj � 2 þ 1 ¼ n� 1. By

Theorem 25, coi2 ðGÞ þ coi2 ðGÞ� nþ l� 2 ¼ n� 1, and

thus the result follows. h

Similarly we obtain the following result.
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Theorem 27 Let k� n� 1 be a non-negative integer. If

G is a graph of order n, then coi2 ðGÞ þ coi2 ðGÞ ¼ nþ k if

and only if G is obtained from a connected graph H such

that aðHÞ ¼ n� coi2 ðGÞ and jLðHÞj� t, by attaching t

pendant vertices to H, where t� k þ 2, in a way such that if

H has a pendant vertex x, then x is a support vertex in G.
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