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Abstract

Background Several circumstances such as accidents, surgery, traumatic hemorrhagic shock, and other causalities cause
major blood loss. Allogenic blood transfusion can be resuscitative for such conditions; however, it has numerous ambivalent
effects, including supply shortage, needs for more time, cost for blood grouping, the possibility of spreading an infection,
and short shelf-life. Hypoxia or ischemia causes heart failure, neurological problems, and organ damage in many patients.
To address this emergent medical need for resuscitation and to treat hypoxic conditions as well as to enhance oxygen trans-
portation, researchers aspire to achieve a robust technology aimed to develop safe and feasible red blood cell substitutes for
effective oxygen transport.

Area covered This review article provides an overview of the formulation, storage, shelf-life, clinical application, side
effects, and current perspectives of artificial oxygen carriers (AOCs) as red blood cell substitutes. Moreover, the pre-clinical
(in vitro and in vivo) assessments for the evaluation of the efficacy and safety of oxygen transport through AOCs are key
considerations in this study. With the most significant technologies, hemoglobin- and perfluorocarbon-based oxygen carriers
as well as other modern technologies, such as synthetically produced porphyrin-based AOCs and oxygen-carrying micro/
nanobubbles, have also been elucidated.

Expert opinion Both hemoglobin- and perfluorocarbon-based oxygen carriers are significant, despite having the latter acting
as safeguards; they are cost-effective, facile formulations which penetrate small blood vessels and remove arterial blockages
due to their nano-size. They also show better biocompatibility and longer half-life circulation than other similar technologies.

Keywords Red blood cell substitutes - Artificial oxygen carriers - Old to cutting-edge technologies - In vitro and in vivo
assessment

Introduction

Blood supplies (O,) to tissues and organs via red blood cells
(RBCs) and removes carbon dioxide (CO,) from the body;
thus, it is an important body fluid in humans and animals.
It is impractical to live without blood (Sarkar 2008; Moradi

Nijaya Mohanto and Young-Joon Park have contributed equally to
this work as first authors.

< Jun-Pil Jee
jee@chosun.ac.kr

College of Pharmacy, Chosun University, 309 Pilmun-daero,
Dong-gu, Gwangju 61452, Republic of Korea

College of Pharmacy, Ajou University, Suwon, Gyeonggi,
Republic of Korea

et al. 2016). Accidents, surgeries, and other causalities cause
major blood loss. Furthermore, hemorrhagic shock, along
with trauma and acute coagulopathy, increases the mortality
rate in austere environments, such as battlefields and remote
civilian localities (Nosé 2004; Castro and Briceno 2010; Sen
Gupta 2019). Allogeneic red blood cell (RBC) transfusions
are used to resolve this situation and are the most common
method of resuscitation for hospitalized patients (Weiskopf
et al. 2017).

Although allogeneic blood transfusion can be resuscitative
for injured patients, it involves a few challenges, such as short-
age of blood, more time and cost for blood grouping (Castro
and Briceno 2010; Bachert et al. 2020), and the possibility
of spreading an infection, such as human immunodeficiency
virus (HIV), Zika virus and viral hepatitis (hepatitis B and
C viruses). Moreover, parasitic diseases, such as babesiosis,
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which is mainly transmitted through a tick bite, may also be
spread through blood transfusion (Chen et al. 2009; Moritz
et al. 2016; Khan et al. 2020). However, the greatest obstacle
to allogeneic transfusion is the short shelf-life of blood, which
may pose serious problems in harsh environments, such as
in battlefields (Castro and Briceno 2010; Bialas et al. 2019).

Many patients suffer from hypoxia and ischemia second-
ary to lung and airway injury or obstruction, thereby caus-
ing heart failure, neurological problems, and multiple organ
damage (Kheir et al. 2012; Fix et al. 2015) as well as leading
to increased mortality (Matsuki et al. 2014; Legband et al.
2015; Fix et al. 2015). Mechanical ventilation is usually used
in hospitals to treat respiratory insufficiency. However, delayed
measurement of inspired oxygen or inadequate oxygen inha-
lation can lead to further loss of organ or even patient death
(Feshitan et al. 2014; Legband et al. 2015).

To address this emergent medical need for resuscitation
and to treat hypoxic conditions as well as to enhance oxy-
gen transportation, various therapeutic processes have been
developed (Khan et al. 2018a). In the very beginning, William
Harvey described blood circulation; many scientists aspired
for its artificial replacement (Sarkar 2008; Moradi et al. 2016),
which was further highlighted after the origin of HIV in the
1980s (Moradi et al. 2016). It may not be feasible to provide
blood to every patient, with so many of them worldwide in
need of blood every second. Therefore, artificial oxygen car-
riers (AOCs) are a workable and protected method that can be
safely used in major surgeries and other hospital emergencies
(Matton et al. 2018).

AOC:s provide various amenities other than allogeneic
blood transfusions, which may lead to morbidity and mor-
tality advantages in patients with serious distress (Jahr et al.
2021). In addition to emergency hospitals, some AOCs play
an important role in organ preservation during transplantation
(Matton et al. 2018), sickle cell crisis (Davis et al. 2018), and
oxygen supply to the brain in cases of cardiac arrest (Shel-
lington et al. 2011). This review article provides an overview
of the formulation, storage, shelf-life, clinical application, side
effects, and current perspectives of AOCs as RBC substitutes.
Moreover, this review also includes pre-clinical (in vitro and
in vivo) assessments to evaluate the efficacy and safety of
oxygen transport through AOCs. With the most significant
technologies, hemoglobin- and perfluorocarbon-based oxygen
carriers as well as other modern technologies, such as syntheti-
cally produced porphyrin-based AOC systems and oxygen-
carrying micro/nanobubbles, have also been elucidated.

Oxygen carrier systems
The systemic circulation conveys oxygen and nutrients to

the cells as well as simultaneously carries CO, and waste
products from cells. Oxygenated blood flow starts from the
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left ventricle and is transported to the tissues of the body
through the arteries. Deoxygenated blood comes from the
tissue capillaries and enters the right atrium of the heart
through the veins (Fig. 1a). In oxygenated blood, oxygen
is carried by two pathways: (1) oxygen dissolution in the
blood (1.5%) and (2) oxygen binding with hemoglobin
(Hb) (98.5%) (Padsalgikar 2017).

Hb is a tetrameric protein molecule that is responsible
for carrying oxygen and is contained in RBCs; it contains
two alpha and two beta subunit peptides and has a molecu-
lar weight of 64,400 Da. Each peptide subunit is enclosed
in a globin and an iron-containing central heme group that
can bind to one oxygen molecule (four oxygen molecules
per Hb) (Fig. 1b) (Sen Gupta 2017). Typically, iron can
subsist in a ferrous (Fe?t) redox state, which binds with
oxygen. After oxidation (loss of an electron), Fe** (fer-
rous) becomes Fe* (ferric), called methemoglobin or fer-
rihemoglobin. Methemoglobin cannot bind oxygen (Pitt-
man 2011).

The binding of oxygen with Hb is cooperative, where
Hb affinity enhancement for oxygen depends on the
increased number of bound oxygen molecules. Deoxy-
genated Hb is denoted as the tense state (T-state), which
has low oxygen affinity (Mihailescu and Russu 2001).
After binding to oxygen, Hb can change its shape and pre-
vail in a relaxed state (R-state) with high oxygen affinity
(Mihailescu and Russu 2001; Modery-Pawlowski et al.
2013). When oxygenated Hb reaches tissues containing
low partial pressure of oxygen (pO,), it is divided into
Hb and oxygen, thereby providing increased local pO,;
if the oxygenated Hb reaches pulmonary circulation con-
taining high pO,, it results in less pO, due to increased
oxygenation of Hb and an oxygen binding curve (sigmoi-
dal curve) (Fig. 1b) (Modery-Pawlowski et al. 2013; Sen
Gupta 2017).

Factors affecting the oxygen-binding ability

Oxygen-carrying capacity depends on the concentration
of oxygen in the blood. Several parameters, such as envi-
ronmental factors, temperature, effector molecules such as
2,3-diphosphoglycerate (2,3-DPG), and diseases can affect
oxygen-binding ability, as defined below (Bialas et al. 2019):

Blood pH and CO, levels: For cellular respiration, several
biochemical reactions essential causing enhances metabolic
activity in tissues results in the CO, production as a meta-
bolic byproduct. CO, and water discharge from cellular res-
piration as metabolic waste products through the carbonic
anhydrase enzyme and both of them reacts with each other
(Benner et al. 2022) and form bicarbonate (HCO;™) and
H* (hydrogen) ions in the blood. When blood CO, level
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Fig. 1 a Blood circulation system [Reprinted with permission from
(Padsalgikar 2017). Copyright © 2017, Elsevier Inc.], b Top: RBC
(Red blood cell), the hemoglobin (Hb) structure within RBC, and the
‘Heme’ porphyrin structure within Hb; and bottom: oxygen binding
curve (sigmoidal curve) for Hb exhibited the cooperative binding

increases, H* ions are also enhanced, thus resulting in
reduced pH of the neighboring peripheral tissue environment
in where the desired yield is to discharge O, in peripheral
tissue and input O, in the lungs. But due to decrease pH,
Hb acts as a buffering agent by discharging its O, and Hb
decreased it’s affinity for oxygen (Fig. 1b), and vice versa
(Modery-Pawlowski et al. 2013; Sen Gupta 2017; Benner
et al. 2022). This effect was basically noticed by Bohr and
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© 2017, Wiley Periodicals, Inc.], ¢ Changed RBC shape and vaso-
occlusion in sickle cell anemia [Reprinted with permission from (Li
et al. 2017). Copyright © 2016, Elsevier Ltd]

his colleagues in 1904 which is also known as Bohr effect
(Malte and Lykkeboe 2018; Benner et al. 2022).
Temperature When body temperature increases in
active skeletal muscles, simultaneous heat production also
increases, which reduces the affinity of Hb for oxygen.
During decreased tissue metabolism, heat production also
decreases as a consequences of decrease temperature, which
raises the affinity of Hb for oxygen (Bialas et al. 2019).

@ Springer



156

Journal of Pharmaceutical Investigation (2023) 53:153-190

2,3-diphosphoglycerate (2,3-DPG): Allosteric 2,3-DPG is
an intermediate chemical metabolite in the Luebering—Rapo-
port glycolytic pathway and found within RBCs which is
formed from 1,3-diphosphoglycerate (1,3-DPG) in the pres-
ence of catalyst diphosphoglycerate mutase (Ptoszczyca
et al. 2021); it is tied to the B chain of Hb. Under increased
levels of 2,3-DPG, it preferentially binds to Hb, thereby
reducing the affinity of Hb for oxygen and vice versa (Khan
et al. 2020).

Diseases Many diseases, such as sickle cell anemia and
thalassemia, affect Hb levels and diminish the delivery
capacity of oxygen in the body. In sickle cell anemia, the
RBC shape changes from biconcave discoid to stiffened and
elongated crescent-shape. This shape cannot pass through
the blood capillaries, thus resulting in vaso-occlusion and
the inability to transport oxygen (Fig. 1c) (Li et al. 2017).
Thalassemia is a genetic disease that produces an elevated
number of RBCs; however, these cells have less Hb than
normal, so the oxygen-binding and carrying capacities are
reduced (Li et al. 2017).

AOCs and their benefits

AOC:s play an important role in the management of blood
conditions in patients with serious diseases (Spahn 2018).
AOCs can be grouped into hemoglobin-based oxygen carri-
ers (HBOC:s), in which oxygen and Hb are covalently linked,
and perfluorocarbon-based oxygen carriers (PFOCs), in
which oxygen is dissolved within a perfluorocarbon (PFC)
molecule (Castro and Briceno 2010; Spahn 2018; Bialas
et al. 2019; Sen Gupta 2019; Jédgers et al. 2021). In addi-
tion, synthetically produced porphyrin polymers and oxygen
micro/nanobubbles may be effective options for AOCs (Kit-
agishi et al. 2017; Khan et al. 2018a; Albalawi et al. 2018).
Different AOCs is presented in Table 1.

In the early history of HBOCs, Sydney Ringer developed
Ringer’s solution in 1883, which may not be a perfect blood
substitute or oxygen carrier; however, it acts as a plasma
volume expander that is still being used (Bialas et al. 2019).
The first endeavor to use HBOCs was formed in the 1930s
(Sakai et al. 2009). In 1933, Amberson et al. experimented
on a cat with renal toxicity; they replaced its blood with cell-
free Hb in Ringer’s solution, which displayed a sustained
life (Amberson et al. 1933). Thus, several patients in the US
navy were treated with cell-free Hb in the 1950s, although
cardiovascular complications (Sen Gupta 2017) were noted
as side effects. Subsequently, Hb was encapsulated with
nylon, collodion, and other materials for the first time by
Chang in 1957, and later with gelatin and silicone in 1960. A
pioneering study on liposome-encapsulated Hb (LEH) was
performed in 1977, in which Hb was encapsulated in phos-
pholipids, fatty acids, and cholesterol (Sakai et al. 2009).
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The first chemically modified HBOCs was HemAssist,
licensed in 1985. Polyheme is a polymerized form of Hb that
is free from unreacted tetramers, which was clinically devel-
oped in 1996 (Gould and Moss 1996). The concept of PFCs
as oxygen carriers started in 1966; an human serum albumin
-derived PFC-based AOC, which began in 2017, was consid-
ered as a cutting-edge technology and was utilized in various
in vivo studies (Wrobeln et al. 2017a). Another cutting-edge
technology was HemoCD (porphyrin-based AOC), which
was also artificially synthesized; an in vivo study is currently
ongoing as a carbon monoxide (CO) removal agent (Kitagi-
shi and Minegishi 2017). The current status of the AOCs is
shown in Fig. 2, which is briefly described later.

The main benefit of these systems is that they imme-
diately provide oxygen through the circulation system to
save life without any impairment (Haldar et al. 2019). AOC
products are feasible in traumatic conditions as well as in
austere environments where blood donation is impossible.
In addition, these may be used in medical treatments such
as elective and cardiovascular surgeries (Spahn 2018; Hal-
dar et al. 2019); they are effective in alleviating ischemic
conditions such as cerebral hypoxia (Kaneda et al. 2014)
and fetal ischemia (Ohta et al. 2017). In addition, they are
non-perishable, stable to supply, and economically feasible
(Bialas et al. 2019). Moreover, AOCs are compatible with
Jehovah’s Witnesses patients who require blood transfusion.
They believe that receiving blood is against God’s will; they
reject blood transfusion not only from others but also from
their own system. Blood management is an inconvenience
for rare blood groups, such as the Bombay type (Oh), and
highly immunocompromised patients, such as those with
sickle cell anemia (Khan et al. 2020). Therefore, AOCs are
a useful system for life recovery and act as a safeguard for
patients with serious hypoxia.

Hemoglobin based oxygen carriers (HBOCs)

HBOC:s are used as universal oxygen carrier systems that
can use in several life-threatening conditions, such as
hemorrhagic shock, trauma, stroke, myocardial infarction,
and acute blood loss (Bed6cs and Szebeni 2020). At first
Cell-free Hb was used for oxygen delivery, but it had sev-
eral problems in carrying oxygen. The first problem was
the high affinity of acellular Hb for oxygen. The p50 for
intact RBC was 26-28 mmHg, whereas that for cell-free
Hb was 10-15 mmHg, thereby resulting in oxygen being
more tied with tissues. During the purification process,
2,3-diphosphoglycerate is lost owing to the high affinity of
oxygen (Kim and Greenburg 2004). Furthermore, acellular
Hb was administered intravenously in some patients who
complained of kidney toxicity, hypertension, and cardio-
vascular complications. Hb tetramers are separated into
dimers and monomers, which can easily be secreted into
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Table 1 Types of AOCs

Types Sub-types

Products name/compositions

References

Hemoglobin-based oxygen carriers
(HBOCs)

Chemically altered
Hb-based HBOCs

Encapsulated HBOCs

Perfluorocarbon-based oxygen carriers —
(PFOCs)

Synthetically produced porphyrin- -
based AOCs

O, microbubbles Lipid shell types

Protein shell type
Polymer shell types

Surfactants stabilized
microbubbles

Cell-Free Hb

HemAssist

Optro

Hemolink

Hemopure (HBOC-201 and HBOC-301)
Polyheme

PHP (Pyridoxylated Hb) or Hemoximer
PolyHb-SOD-CAT-CA
PolyHb-Fibrinogen

Hemotech

Hemospan

Sanguinate

PEG-Hb

SanFlow (PNPH)

HemO,Life/ Hemarina-M101
OxyVita Hb

Hb Corpuscles (artificial)

Liposome Encapsulated Hb (LEH)
Polymersome Encapsulated Hb (PEH)
Fluosol DA

Oxypherol

Perftoran

Oxygent

Oxyfluor

Oxycyte

Dodecafluoropentane (DDFPe)

Albumin derived perfluorocarbon based
artificial oxygen carrier (A-AOC)

‘Picket fence’ iron porphyrin

LipidHeme porphyrin

HSA-heme porphyrin

HemoCD porphyrin

1,2-Distearoyl-sn-glycero-3-phosphocho-
line (DSPC)

1,2-distearoyl-sn-glycero-3-phosphoethan-
olamine-N- [amino (polyethylene glycol)]
(DSPE-PEG)

DSPC, PEG-40-S (9:1)

DSPC, BRIJ 100

F-PC, DMPC

1,2-dipalmitoyl-sn-glycero-3-phosphocho-
line (DPPC)

N-(Carbamoyl-methoxypolyethylene glycol
5000)-1,2-dipalmitoyl-cephalin sodium
(DPPE-MPEGS5000)

Bovine serum albumin

Chitosan

Dextran with or without polyvinylpyrro-
lidone (PVP)

Span 60, D-alpha tocopheryl polyethylene
glycol 1000 succinate (TPGS)

Modery-Pawlowski et al. (2013),
Moradi et al. (2016), Sen Gupta
(2017, 2019), Ferenz and
Steinbicker (2019), Bialas et al.
(2019), Jahr et al. (2021)

Spiess (2009), Castro and Briceno
(2010), Wrobeln et al. (2017a),
Sen Gupta (2017), Culp et al.
(2019), Hill (2019), Jégers et al.
(2021)

Wang et al. (2005), Modery-Paw-
lowski et al. (2013), Kitagishi
et al. (2017), Sen Gupta (2017),
Norvaisa et al. (2021)

Sirsi and Borden (2009); Tao and
Ghoroghchian (2014), Fix et al.
(2015), Khan et al. (2018a)
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the kidneys and cross through the glomeruli, thus causing
renal toxicity (Taguchi et al. 2017; Bachert et al. 2020).
Additionally, cell-free Hb scavenges nitric oxide (NO), a
vasodilator that may cause heart dysfunction (Sen Gupta
2017, Bialas et al. 2019). In addition, when NO abates the
circulation, it actively inhibits platelet aggregation (Bach-
ert et al. 2020).

Hb cannot be used directly as an oxygen-carrying com-
ponent owing to the disruption and toxicity of Hb during
extraction from RBC. To avoid this, outdated human, animal
(bovine), and recombinant Hb were used as raw ingredients
to prepare HBOCs, which were further chemically modi-
fied and microencapsulated (Kim and Greenburg 2004). Hb
is extracted through cell lysis, sterile filtration by purifica-
tion, chromatography, and low-heat sterilization during the
use of outdated human or animal (bovine) RBCs. First, Hb
is attached to oxygen at a slow speed, thus ascending the
attaching relation for the second, third, and fourth oxygen
molecules; this has a positive effect on the sigmoidal oxygen
equilibrium curve (Alayash 2010; Sen Gupta 2017). HBOCs
are divided into two main types: chemically altered HBOCs
and encapsulated HBOCs (Hb encapsulated within a defen-
sive shell), as shown in Fig. 3 (Jansman and Hosta-Rigau
2018).

Chemically altered HBOCs

In chemically altered HBOCs, Hb is cross-linked both intra-
and inter-molecularly. The first chemically altered HBOC
was HemAssist (Baxter, Illinois, USA), in which Hb was
cross-linked with diaspirin and produced from outdated
donated human blood with a half-life of 24 h. Another
altered HBOC was Optro (Somatogen, Boulder, Colorado,
USA), which was modified recombinantly and cross-linked
with glycine; it had a half-life of 2—19 h. Hemolink (Hemo-
sol, Toronto, Ontario, Canada) is another intramolecular
HBOC that is cross-linked with o-raffinose and produced
from expired human Hb; it had a half-life of 24 h (Bialas
et al. 2019; Sen Gupta 2019).

In this era, polymerization brought about a dramatic
change, in which Hb molecules were cross-linked inter-
molecularly with glutaraldehyde (Hemopure, Biopure;
Cambridge, MA, USA and Polyheme, Northfield Labs;
Evanston, IL, USA), polyoxyethylene pyridoxylated poly-
mer (PHP (Pyridoxylated Hb), or Hemoximer (Curacyte/
Apex Bioscience) to increase their molecular size (Moradi
et al. 2016). During polymerization, the PolyHb molecule
had four to five Hb molecules instead of one, which also
significantly enhanced the pharmacokinetics (Bialas et al.
2019). Hemopure originates from bovine Hb and polymer-
izes with glutaraldehyde, which is used in cases of hemor-
rhagic shock, perioperative transfusion, and acute normo-
volemic hemodilution cardiac surgery (Bialas et al. 2019;
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Khan et al. 2020). As it was produced from bovine Hb, it
was suitable for use in special patients, such as Jehovah's
Witness (Rogers and Crookston 2006). The half-life of
hemopure is 16-20 h for healthy volunteers and 8.5 h for
patients with liver disease (Taguchi et al. 2017). Polyheme
is created from human Hb, which resembles hemopure
and polymerizes with glutaraldehyde. During trauma,
surgery, and in different bleeding disorders, it has a half-
life of 24 h. Another polymerized HBOC is PHPoxylated
hemoglobin (PHP), or hemoximer, which is sourced from
human Hb and surface-modified with a polyoxyethylene
pyridoxylated polymer. PolyHb-SOD-CAT-CA originates
from the cross-linking between Hb and superoxide dis-
mutase (SOD), carbonic anhydrase (CA), and catalase
(CAT). It can be sterilized and preserved at room tempera-
ture for 320 days and is used not only as an oxygen carrier
but also for the withdrawal of radical oxygen and CO,
transportation. PolyHb-fibrinogen, produced from bovine
Hb and cross-linked with fibrinogen, displays both oxy-
gen and coagulation (platelet-like activity) characteristics
(Moradi et al. 2016; Bachert et al. 2020).

Another form of HBOCs is PEGylated modified Hb,
including hemospan (MP4; Sangart, San Diego, CA, USA),
PEG-HD (Enzon, Piscataway, NJ, USA), sanguinate (Prolong
Pharmaceuticals, South Plainfield, NJ, USA), and SanFlow
(PNPH) (Synzyme). Hemospan is composed of human Hb
and is modified with maleimide-polyethylene glycol (PEG)
with a molecular weight of 96 kDa. The name hemospan
was changed to MP40OX, which was used as an oxygen car-
rier to enhance the supply of oxygen in comparison to blood
replacement (Jahr et al. 2012). MP4OX has been used to
treat sickle cell anemia to reduce the associated pain and
duration (Keipert and MP4CO-SCD-105 Study Investigators
2016). PEG-Hb and SanFlow (PNPH) are bovine and human
Hb products modified with polyethylene glycol conjugated
(PEGylated) and polynitroxylated polyethylene glycol con-
jugated (PEGylated) Hb, respectively (Bed6cs and Szebeni
2020). Sanguinate was extracted from bovine Hb and cross-
linked with polyethylene glycol-conjugated (PEGylated)
carboxyhemoglobin with a molecular weight of 120 kDa. It
has anti-apoptotic and anti-inflammatory properties owing
to the release of CO. It has a half-life of 13-20 h and is used
in vaso-occlusive crises and sickle cell anemia (Ferenz and
Steinbicker 2019).

HemO,Life/Hemarina-M101 (Hemarina) was created
from lungworms, Arenicola marina (invertebrate), which is
not attached to Hb or other membranes (Ferenz and Stein-
bicker 2019; Bed6cs and Szebeni 2020; Varney et al. 2021).
Hb (extracellular) has 40 times more oxygen receptivity than
vertebrate Hb (Lupon et al. 2021). It is a hexagonal bilayer-
linked globin molecule with a molecular weight of 3600 kDa
and 2.5-h half-life. It can recover oxygen-related radicals
owing to its natural superoxide dismutase characteristics
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Hemolink: PHP or Hemoximer: PEG-Hb:
Terminated in 2004 Terminated in 2014 Terminated in 1998
HemAssist: Hemopure (HBOC- HemO,Life: Phase II and
Terminated in 1999 301): approved for Hemospan: III are in progress
veterinary use in 1998 Terminated in 2013 (NCT04181710)
Hemoglobin
based oxygen
carriers
Polyheme: Sanguinate: Phase II OxyVita Hb: Preclinical
Terminated in 2009 completed in 2017 development in progress

Optro: Terminated in 2014

Hemopure (HBOC-201): FDA’s Expanded ~ trials completed in 2018
Access Program (EAP) estimated
completion date is October, 2023

Hemotech: Clinical B
SanFlow (PNPH): Preclinical

development in progress

Perftoran: re-branded as

Vidaphor™ in North America

1966: Started concept of

Dodecafluoropentane: Phase
Ib/TI completed in 2018

Artificial use of perfluorocarbons as "
A S i Oxyfluor: Phase III trials
Oxygen an artificial oxygen carrier 2 :
. were suspended in 2002
Carriers
N Perfluorocarbon
based oxygen
carriers
Fluosol-DA: Oxycyte: Terminated in 2014
Terminated in 1994
Oxygent: Reached phase III Albumin derived perfluorocarbon
trials, licensed and accepted in based artificial oxygen carrier
China for clinical studies in (cutting edge technology): Started
2017 2017 and now performing pre-clinical
in vivo study
‘Picket fence’ porphyrin: HSA-Heme: started from 1995
first revealed in the 1970 and synthesis process ongoing
Porphyrin
based oxygen
carriers

LipidHeme: started from 1983

Fig.2 Current status of AOCs

(Mallet et al. 2014). It should be used in cases of sickle cell
anemia, hemorrhagic shock, and organ preservation (Ferenz
and Steinbicker 2019). Currently, it is used for oxygen ther-
apy in covid- 19 patients and has shown significant survival
improvement, thus avoiding tracheal intubation, delivering
rapid oxygen supply, and treating more patients without the
use of invasive machines (Lupon et al. 2021). Furthermroe,
OxyVita Hb (Oxyvita Inc.), which is inter- and intramo-
lecularly cross-linked, originates from bovine Hb and is sta-
bilized with sebacoly diaspirin. It has two subtypes, Oxy-
Vita Hb and OxyVitaHbCO (Ferenz and Steinbicker 2019).
Oxyvita Hb has a greater success in controlling severe

HemoCD (cutting edge technology): Besides
the synthesis process, in-vivo study also
ongoing as a CO scavenger

hemorrhage in a battlefield model than other HBOC:s. It has
a half-life of 72 h (Bed&cs and Szebeni 2020). A summary
of chemically altered HBOC:s is presented in Table 2.

Clinical trials Few HBOCs have reached safety stud-
ies and attained phase III trials; some of them have been
accepted, while a few others were terminated due to their
failure. HemAssist reached phase III clinical trial for use
during cardiac surgery and trauma/stroke, but was termi-
nated in 1999 due to increased mortality rate (Chen et al.
2009; Jahr et al. 2012). Optro reached a phase II trial for
elective surgery and showed fewer adverse effects, although

@ Springer



160

Journal of Pharmaceutical Investigation (2023) 53:153-190

Fig.3 Two main HBOCs. Top:
chemically altered HBOCs and
bottom: encapsulated HBOCs
[Reprinted with permission
from (Jansman and Hosta-Rigau
2018)]. Copyright © 2018,
Elsevier B.V

it was discontinued in 2014 due to NO scavenging panic
(Bedéces and Szebeni 2020). Hemolink was halted in 2003
after a phase II trial and subsequently terminated in 2004.
Hemopure faced many phases I-III safety studies; during
a phase III study, HBOC-201 was accepted as an oxygen
carrier in South Africa in 2001 and in Russia in 2012.
Subsequently, oxyglobin (HBOC-301) was accepted for
veterinary use. The Food and Drug Administration (FDA)
permitted its emergency use when no option is avail-
able to save the patient's life (Jahr et al. 2021). Although
Hemopure has not been FDA approved for human use for
any indication in the United States, it is obtainable for use
in life-threatening anemic patients in clinical trials and in
the FDA'’s expanded access program (EAP). This expanded
study started in October 2013, with an estimated comple-
tion date on October 2023 (NCT number: NCT01881503)
(Englewood Hospital and Medical Center 2021). Polyheme
completed phase III trials in 2007, but failed its biologics
license application (BLA) in 2009 due to its adverse effects,
and was discontinued (Carmichael et al. 2000; Jahr et al.
2012). PHP (Pyridoxylated Hb) or Hemoximer failed phase
IIT trials due to the associated increased mortality and was
terminated in 2014 (Yabuki et al. 1990; Bed6cs and Sze-
beni 2020). Hemotech is composed of purified bovine Hb,
which is cross-linked with ATP, adenosine, and glutathione,
and has been used in patients with acute blood loss; it has
also completed phase I trials (Simoni et al. 2012; Bed6cs
and Szebeni 2020). Hemospan, a PEGylated modified Hb,
completed phases Ila and IIb in 2012, although phase Ilc
was dismissed and finally discontinued in 2013. Sanguinate
completed phase II in 2017 (NCT02411708) (Prolong Phar-
maceuticals 2018). In 2020, HemO,Life/ Hemarina-M101
was used for oxygen therapy in life-threatening COVID-19
patients with severe respiratory problems; it is currently an

@ Springer
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ongoing study (Lupon et al. 2021). HemO,Life completed
phase I study in 2018; phases II and III (NCT04181710) are
currently in progress to determine its efficacy in renal trans-
plantation (Lupon et al. 2021) because of its high oxygen
carrying capability with minimal side effects (Bed6cs and
Szebeni 2020; Varney et al. 2021, p. 101). The clinical trials
of chemically altered HBOCs are summarized in Table 3.

Encapsulated HBOC systems

Encapsulated Hb products are produced in a way to share
maximum similarities with RBCs, which do not cause vaso-
activation due to NO scavenging. These systems were devel-
oped in 1950 and 1960 by Chang et al. (Bialas et al. 2019).
Encapsulation using different effector molecules or reductive
enzymes was carried out to recapitulate natural RBCs. The
encapsulated Hb products showed more amenities, such as
mitigation of hypertension, increased half-life, and longer
shelf-life than acellular Hb products (Moradi et al. 2016).
Hb is mainly encapsulated by polymeric membranes pro-
duced from collodions (cellulose nitrate), PEG-polylactate
polymer, cholesterol with phospholipids, etc. Furthermore,
the artificial Hb corpuscle maintains the activity of erythro-
cyte-related enzymes, such as CAT, carbonic anhydrase, and
2,3-DPG (Sen Gupta 2019). Compared to the size of eryth-
rocytes, liposome-encapsulated Hb particle size is much
smaller (1:30), which enables it to enter the body where
RBCs cannot. Therefore, it provides more oxygen during
trauma, shock, and stroke due to its ability to pass blockages
(Moradi et al. 2016).

Hb vesicles are composed of cholesterol, neo-red cells,
neohemocytes, or phospholipids (liposomes). Liposomes are
deliberated first-generation nanoparticles, which are lipid-
based (Hegde et al. 2022) and developed to produce nano-
size liposome-encapsulated Hb. Moreover, sub-micron-sized



161

Journal of Pharmaceutical Investigation (2023) 53:153-190

(1200) ‘e %

Iyef ((6102) e 32 Jepleq

‘(L107) ®dny uag (91027)

“Te 30 IpRIOIN “(€£107)

AN 19 MMmBO_meuh.@ﬁOE

(T102) Te 30 luowig
‘(L00?) Suey) pue Suop

(6102
‘Te 19 sererq (9107) 18 ®
IpeIOIA “(6007) "Te 30 uayD

(6100) Te 10
seferg ‘(L10¢) widny ueg

uoneyiodsuen
0D ‘reorper uaghxo

JO [emeIpYIIM

‘Io1LIed Ua3AXQ

(Ajrernoojow 193uy)
quoryeIn[3 ‘ouisouape
pue (A[Te[nos[owr enuy)

I911IBD Ua3KXQO ALV M payuI[-sso1)

(K11Ande a1[-19]
-91e1d) uonenseod
pue Io1LIRd Ua3AXQ0

urqoSoway

0} ua3ouriqy SUUI[SSOId
(eseIpAque oruoqIe)))
VO pue (asefere)) LV
‘(eseInuwsip aprxoradng)
dOS 1] SewAzuo jud
~IJJIp M palaya)

JowA[od IO pIyUI[-SSOID)
(payIpow-aoeLINg)
JowA[od payejAxoprikd

Qu[AYIokx0AT0g
apAyoprel

-eIN[3 YPIIM UOTRZLIOWATO]

apAyoeprel
-eIN[3 IIM UOTBZLIQWA[O]

asounyel-Q
YIIm pIYUI[-SSOID
QUIOATS YIIM paYUI[-SSOID)
urx
-1dseIp (s PaYUI[-SSOI)

Iot1Ied uadAxQ -

auraog

uraog

uraog

uewINg

uewIng

auraog

uewny

JUBUIQUIOY

uewINy
$921N0S
(1709 *77) JuRUIQUIODAX
pUB QUIAOQ ‘UBWUNH

[09)0IgOWa

Q0Ud
-10501g xody /914orInD

qe[ p[eYYoN
(sonnaderay,

YOqH MOU ‘YI910143dO
paed premidye) aindorg

[osowoH

uagojewog

xeqg

[o9jowoH

uaSoutiqri-qHAI0d

VO-LVD-d0S-qHATod

HUEU“OEDI 10
(qH pae[Axopukd) dHd

QwayA[og

(10€-DOGH pue
102-D04H) 2mdowey

JurowoH

ondp

JSISSY WO

qH pa1o
-39} JO/pUE PAZLIdWA[O

(A1renosyowt
enuL) qH pAUI[-Ss01)

9H 9°4-[12D

SOUQIYY

suonoung qH poIy

S90INOS

qureu siosuodg

Jwreu s)onpoid

SDO49H

SDOYGH Pa1afe A[[edrwoyd Jnoqe Arewwng g ajqel

pringer

a's



162

Journal of Pharmaceutical Investigation (2023) 53:153-190

Table 2 (continued)
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and Szebeni (2020), Jahr

et al. (2021)

Glycol (PEG)-modified

Hb

Polyethylene glycol

Bovine

Prolong Pharmaceuticals

Sanguinate

conjugated (PEGylated)

carboxyhemoglobin

Polyethylene glycol conju-

Bovine

Enzon

PEG-Hb

gated (PEGylated) Hb

Polynitroxylated Polyeth-

Human

Synzyme

SanFlow (PNPH)

ylene glycol conjugated

(PEGylated) Hb
Hexagonal-bilayer linked

Bedd6ces and Szebeni (2020),

Arenicola marina (Inver-

Hemarina

HemO, Life/Hemarina-

M101

Natural extracellular
biopolymer Hb

Varney et al. (2021)
Ferenz and Steinbicker

globin molecules
Hb stabilized with seba-

tebrate)
Bovine

Oxyvita Inc

OxyVita Hb

Zerolink polymer Hb

(2019), Bed6es and Sze-

beni (2020)

coly diaspirin

(100-200 nm diameter) liposomes were surface modified
with PEG to decline opsonization and increase its circula-
tion lifetime to 60 h, thus resulting in shortened scavenging
of NO due to an additional encapsulate component. PEG
not only increases their half-life but also reduces antigenic-
ity, thus expanding specific site targeting and generating
water-soluble properties (Kaneda et al. 2009; Haldar et al.
2019). They are also adaptable to the body’s immunity.
Furthermore, biodegradable polymeric vesicles, such as
poly (r-lactic acid)/poly(e-caprolactone), poly(L-lysine),
poly(lactic-coglycolic acid), and PEG copolymers, pro-
duced polymersome-encapsulated hemoglobin (PEH), which
was spherical in structure and smaller in size (§80-200 pm
in diameter), thus resulting in increased bioavailability
(Rameez et al. 2008; Haldar et al. 2019). Polymersomes
attached to different effector molecules and enzymes provide
similar environmental and indigenous biophysical character-
istics to erythrocytes (Bialas et al. 2019). In human RBCs,
the Hb loading concentration is approximately 150 mg/mL,
whereas it is 1-2 mg/mL in the PEH systems. PEH origi-
nates from both human and bovine Hb and resembles the
biophysical characteristics and oxygen equilibrium kinetics
of RBCs (Rameez et al. 2008). The source, encapsulated
components, function, and features of the encapsulated
HBOCs are shown in Table 4. A regular RBC is a bicon-
cave disc, which is slender in the middle and is extremely
flexible with modified flow dynamics based on the size of
the blood vessel and saturation of oxygen. Generally, eryth-
rocyte flow is distributed in the middle of large arteries and
veins, whereas PEH is equally divided in the microcircula-
tion for high oxygen delivery, which facilitates development
of new replacements with similar characteristics as that of
RBCs (Bialas et al. 2019).

Preclinical assessment (in vitro and in vivo) for evaluation
of efficacy and safety of oxygen transport through HBOCs

HBOC:s have been investigated using cell lines (in vitro) and
animal models (in vivo) to evaluate the efficacy and safety
of HBOC:s products (Table 5). HBOCs are being promoted
for oxygen- and plasma-expanded therapeutics to ameliorate
NO scavenging and vasoconstriction linked with oxidative
tissue injury (Béumler et al. 2014; Kao et al. 2018, p. 700).
Hb microparticles (HbMP-700) showed high oxygen affin-
ity that impeded premature oversupply of oxygen and vaso-
constriction in blood vessels in vitro; no toxicity or clinical
signs were observed during in vivo experiments in mice
(Kao et al. 2018, p. 700). In addition, 700-nM Hb particle
(HbPs) limits NO scavenging, which resulted in increased
tissue oxygenation in mice and rats (Xiong et al. 2013; Béu-
mler et al. 2014). PEGylated bovine carboxyhemoglobin,
SANGUINATE®, showed a better heart function and mitral
competence after myocardial infarction in rats (Kawaguchi
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(2011), Ferenz and Stein-

bicker (2019)

progress

hemorrhage

et al. 2018). Furthermore, OxyVita C improved systemic
blood pressure, which also prevented pial arterioles and
cerebral vasoconstriction in rat brains (Abutarboush et al.
2014). Moreover, liposome-encapsulated hemoglobin (LEH)
can fix oxygen deficiency, which prevents hemorrhagic
shock and sustains vital organ perfusion. In Cynomolgus
monkeys, LEH showed high oxygen affinity, which reduced
histological damage in the cerebral cortex and protected the
cerebral metabolic rate of oxygen (Kawaguchi et al. 2017).
In addition, a newly formed LEH conjugated with polyeth-
ylene glycol (PEG2K) and non-phospholipid hexadecyl-
carbamoyl methyl hexadecanoate (HDAS-PEG2K-LEH)
is immune-neutral and well-tolerated in repeated doses
(Yadav et al. 2014). HBOCs showed higher oxygen affinity
with better circulatory response and low oxidation; some
also helped to control systemic blood pressure and impede
vasoconstriction.

Perfluorocarbon-based oxygen carriers (PFOCs)

Researchers developed a biocompatible synthetic oxygen
carrier, namely perfluorocarbons (PFCs), which have a
huge ability to dissolve gases. In 1966, Clark and Gollan
conducted a new experiment on the utilization of oxygen-
carrying agents; they submerged mice in fluorobutyltetrahy-
drofuran (FX- 80) equilibrated with 100% oxygen (Clark
and Gollan 1966). PFCs are chemically stable and inert
molecules that are structurally similar to hydrocarbons,
where fluorine replaces these hydrogen groups. It is a nano-
particle that is 100 times smaller than erythrocytes (Haldar
et al. 2019). Hydrocarbons in PFC contain hydrogen atoms
that are substituted by fluorine atoms or halogens, in which
fluorine can extract electrons from other atoms and toughen
its bonds with the carbon backbone of fluorine compounds
(Jagers et al. 2021). Within PFCs, oxygen can be dissolved
via the Van der Waals interactions. The oxygen transport
process follows Henry’s law, which is controlled by the par-
tial pressure of oxygen. Oxygen transport through perfluoro-
decalin (PFD) is much faster than that through water because
oxygen finds more space to move freely in PFD molecules
(Jagers et al. 2021). However, PFC emulsions are made of
hydrophobic PFCs with surfactants, such as fluorinated com-
pounds or lipids, which can be made miscible with water
through high-pressure homogenization (Haldar et al. 2019;
Jahr et al. 2021).

To date, different PFC-based oxygen carriers (Fig. 4a)
including formulation and properties have been investi-
gated (Table 6). Fluosol-DA (Green Cross Corp., Japan)
was made from 14% PFD and 6% perfluorotripropylamine
(20% W/10.6% volume), with surfactants such as Pluronic
F-68, egg yolk phospholipid, and potassium oleate, which
was the first PFC system approved by the FDA in 1989.
Unfortunately, it was discontinued in 1994 due to short
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Table 4 Summary about encapsulated HBOCs system

References

Features/ Characteristics

Functions

Encapsulated components

Sources

Products name

More oxygen transport perfor- Moradi et al. (2016), Sen Gupta

Oxygen carrier

(i) Collodion (cellulose

Hemoglobin

Hb corpuscle (artificial)

(2019)

mance, easily circulates due

to less viscosity

nitrate)

(i) PEG-polylactate polymer

(iii) Cholesterol with phos-

pholipid

Kaneda et al. (2009), Haldar

Increase circulation half-life,

Sub-micron size liposomes

Bovine hemoglobin

Liposome encapsulated hemo-

et al. (2019)

reduce antigenicity, expand
the specific site targeting

and PEGylated liposomes

globin (LEH)

and generate water-soluble

Human and bovine hemo- Polymeric vesicles such as Oxygen carrier, used as Resemblance to human RBC, Rameez et al. (2008), Haldar

Polymersome-encapsulated

et al. (2019)

made in huge quantities,

drug delivery for cancer

treatment

Poly (L-lactic acid)/ poly(e-
caprolactone) and poly(L-

globin

hemoglobin (PEH)

more Hb loading capability

lysine), poly(lactic-coglycol-
icacid)/PEG copolymers

shelf-life, pulmonary complications, and reduced platelet,
increased WBC, and decreased neutrophil counts (Ohyanagi
et al. 1984; Police et al. 1985; Riess 2001; Castro and Bri-
ceno 2010; Jagers et al. 2021). The reason for short shelf-life
related to their stability are flocculation or coalescence and
Ostwald ripening leading to reversible droplet growth which
is the prevailing way of colloidal instability and destabiliza-
tion of AOCs (Jagers et al. 2021). In coalescence, two nan-
odroplets merged together on their surfaces and form larger
droplets. By establishing zeta-potential surface charge,
repulsion of droplets can minimize coalescence (Grapentin
et al. 2015). Furthermore, to prevent flocculation and coa-
lescence, surfactants like lipids or proteins need to use to
create a high surface charge density leading to the droplet’s
repulsion (Dichiarante et al. 2018). Ostwald ripening desta-
bilization is dominated by molar volume, solubility, and dif-
fusion coefficient of the scattered phase material (Lambert
and Janjic 2021). By this way, smaller droplets vanish away,
then forming bigger droplets due to the larger curvature of
small particles directed to an enhanced capillary pressure
ensuing the Kelvin effect. It can prevent by mixing a small
amount of higher homologue of the prime dispersed ingre-
dients (Grapentin et al. 2015).

Furthermore, Perftoran (14% PFD and 6% perfluorome-
thyl-cyclohexylpiperidin) was used to treat severe blood
loss and was approved for clinical use in Russia, Kazakh-
stan, Kyrgyzstan, Ukraine, and Mexico from 2005 to 2010.
Recently, Perftoran was produced by Good Manufacturing
Practice (GMP) standards, re-branded as Vidaphor™ in
North America and Europe, and safely administered as
an allogeneic blood transfusion to over 35,000 patients,
with only mild complications (Castro and Briceno 2010;
Ferenz and Steinbicker 2019; Krafft and Riess 2021). Sub-
sequently, new-generation products, such as Oxygent (58%
perfluorooctyl bromide and 2% perfluorodecyl bromide)
(Alliance Pharmaceutical Corp., USA) and Oxyfluor (78%
perfluoro-dichlorooctane) (HemaGen, St. Louis, USA),
were used to resolve the side effects of Fluosol-DA. Oxy-
gent is used in orthopedic surgery, cardiovascular surgery,
non-cardiac surgery, coronary bypass, and coagulation
procedures; it reached phase III trials and was approved
in China for clinical studies (Castro and Briceno 2010;
Ferenz and Steinbicker 2019; Jéagers et al. 2021; Krafft and
Riess 2021). In contrast, phase III trials of Oxyfluor were
suspended owing to several side effects, such as stroke and
thrombocytopenia. Oxycytes (60% tert-butylperfluorocy-
clohexane) (Oxygen Biotherapeutics Inc., North Carolina,
USA) have been investigated in different animal models
as well as in some clinical trials in patients with traumatic
brain and spinal cord injuries (Castro and Briceno 2010;
Hill 2019). Oxycytes completed phase II trials in 2008,
but was discontinued in 2014 when several indemnity con-
cerns were proposed (Castro and Briceno 2010; Sen Gupta

@ Springer
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Administration (Route and
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Animal model/cell line

Purposes

Table 5 (continued)

Products
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Le Daré et al. (2021)

Reducing amanitin-induced

hepatotoxicity

Progenitor HepaRG cells

To investigate the toxicity of

the liver

HemO,Life (M101)

2017; Lambert et al. 2019; Jagers et al. 2021). Dodecafluo-
ropentane (DDFPe) (2% DDFPe with 5% human serum
albumin) completed phase Ib/II trials in 2019; intrave-
nous administration in animal studies showed 3-7 times
more oxygenation than other PFCs and 9-15 times more
transport of oxygen than that via blood, with mild adverse
effects; the first 3 h of infusion alleviated stroke complica-
tions (Culp et al. 2019; Graham et al. 2019).

Albumin-derived PFC-based AOC (A-AOC) (17% Per-
fluorodecalin with 5% human serum albumin) are cutting-
edge technologies that have been used in animal models;
researchers are attempting to improve on this development.
A-AOQOC is a nanocapsule technology with high biocompat-
ibility. In rats, A-AOC was well-tolerated during intravenous
administration without changing other parameters of tissue
injury (Wrobeln et al. 2017a). Furthermore, it is assumed
that the A-AOC nanocapsules coat the surface area of nitro-
gen bubbles; hence, it can obstruct the mass collection of
bubbles and thus qualify for successful transportation in
blood plasma. It can also eliminate nitrogen bubbles, which
depend not only on the nanocapsule shell permeability but
also on the interchangeability of PFCs. Nitrogen bubbles
are encapsulated by nanocapsules in the crescent site, which
is further stabilized in an aqueous solution; Fig. 4b shows
the capability of PFC-containing nanocapsules to bind with
nitrogen bubbles attached to the wall of the endothelium and
to transport it to the lungs for excretion (Mayer and Ferenz
2019).

In addition, erythrocytes are situated in the middle of the
blood vessel, enclosed by a cell-free plasma layer due to the
Fahraeus-Lindqvist effect, which occurs in < 0.3-mm diam-
eter blood vessels; this effect proposes two outcomes for
increasing oxygen transport by PFOCs. In Fig. 4c, skimming
of plasma in the bifurcations of the blood vessel is the first
outcome, in which the RBC amount is higher in the larger
vessel, whereas this condition is alleviated in the microcir-
culation. During shock or other pathological conditions,
it causes tissue hypoxia and vasoconstriction, which is an
obstacle for the movement of RBCs. Nevertheless, PFOCs
can penetrate and pass through narrow blood vessels under
such conditions, owing to their nano-sized droplets and sus-
tained oxygen supply (Culp et al. 2012; Ryzhkov et al. 2016;
Jagers et al. 2021). Another outcome was the diffusion dis-
tance, which was enhanced by the plasma layer. PFOCs are
capable of decreasing the diffusion distance because of their
close connection to the endothelia, thus acting as stepping
stones for O, (Fig. 4c) (Spiess 2009; Wrobeln et al. 2017b;
Jagers et al. 2021).
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Fluosol-DA

Oxyfluor

Pulmonary

: : Systemic
circulation

Fig.4 a Fluosol-DA (perfluorodecalin), Perftoran
(perfluorodecalin+perfluoromethyl-cyclohexylpiperidine), ~Oxygent
(perfluorooctyl bromide), Oxyfluor (perfluorodichlorooctane), Oxy-
cyte (tertbutylperfluorocyclohexane) (Reprinted with permission
from (Modery-Pawlowski et al. 2013). Copyright © 2013, American
Chemical Society), Albumin-derived perfluorocarbon based artificial
oxygen carrier (A-AOC) [Reprinted with permission from (Mayer
and Ferenz 2019). Copyright © 2019, The Author(s), Springer]. b
This figure exhibited the capability of PFC containing nanocapsules
bind with nitrogen from bubbles attached with the wall of endothe-
lium and transportation to the lungs for excretion [Reprinted with

Preclinical assessment (in vitro and in vivo) for evaluation
of efficacy and safety of oxygen transport through PFOCs

PFC emulsions are used for oxygen delivery owing to their
nano-sized particles, which range from 0.2 pm in diameter
and is able to perfuse microcapillaries, where RBCs cannot
enter and flow due to their larger size (7 pm). It has been
used in cell lines (in vitro) and animal models (in vivo) to
evaluate the efficacy and safety of PFC (Table 7). A new

circulation

@ nitrogen bubbles

@ PFD - nanocapsules

‘%
Oxygent

A-AOC

permission from (Mayer and Ferenz 2019). Copyright © 2019, The
Author(s), Springer] ¢ Increase number of RBCs are located in the
middle area of the blood vessel which is surrounded by the plasma
layer. RBC number is decreased in the bifurcation of the vessel
(plasma skimming), the nanosized PFC droplets (light grey) can pen-
etrate and uniformly distribute in the blood vessel without plasma
skimming and the O, uptake into the PFC droplet occurs rapidly
which decrease the diffusion distance between RBCs and endothe-
lium and act as stepping-stones for O, [Reprinted with permission
from (Jagers et al. 2021) Copyright © 2020, The Author(s), Springer
Nature]

development of A-AOC showed better biocompatibility and
longer half-life circulation, thus resulting in good oxygen
transportation in different animal models (Wrobeln et al.
2017b; Ferenz 2017). It was well-tolerated by intravenous
administration and gave higher oxygen transport capacity
in rats compared to Perftoran® (Wrobeln et al. 2017a). In
addition, A-AOC displayed stable body temperature, pH,
higher partial pressure of oxygen, and lower partial pressure
of CO,, which was better for improved oxygenation. It can

@ Springer
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impede hypoxic tissue damage, although it shows higher
arterial blood pressure and lower blood glucose levels in
treated rats (Wrobeln et al. 2020). Moreover, it significantly
decreased decompression sickness (DCS) lesions and mor-
tality rates in a rat model (Mayer et al. 2020). Recently,
A-AOC has been analyzed in animal models, wherein sci-
entists have tried to improve and establish its implementa-
tion owing to its fewer side effects. Oxycytes improves oxy-
gen transport in the blood and lungs (Haque et al. 2016). It
improved the prognosis of spinal cord injuries (Mahon et al.
2013a), but was discontinued due to indemnity concerns in
2014 (Castro and Briceno 2010; Lambert et al. 2019; Jagers
et al. 2021). Dodecafluoropentane (DDFPe) alone neither
enhances the survival rate nor improves oxygen transport
compared to fresh whole blood (FWB) after resuscitation
in swine (Bonanno et al. 2018); however, it provided more
oxygenation and increased oxygen transport in rat brain tis-
sue (Moon-Massat et al. 2014). Therefore, DDFPe requires
further pre-clinical evaluation, although it has completed
phase Ib/II trials for acute ischemic stroke (Culp et al. 2019;
Graham et al. 2019; Jagers et al. 2021). Usually, PFCs are
administered intravenously; hence, PLGA-PEG/PFC emul-
sion was delivered via pulmonary delivery in rats to inves-
tigate oxygen transport, which showed increased oxygen
transport with improved lung ventilation (Yao et al. 2015).

Advantages of PFOCs

PFCs have emerged as effective materials because of their
physicochemical properties, which physically dissolve sig-
nificant quantities of gaseous species along with respira-
tory gases, such as oxygen, CO, CO,, and NO (Lowe 2001).
When PFC and RBC are present together in the circulation,
the oxygen release of PFC firstly acts as a safeguard for Hb-
bound oxygen until its arrival in hypoxic tissues (Cabrales
et al. 2007). PFCs are resistant to physical parameters such
as pH, and are not adversely affected by temperature changes
as compared to AOCs. The oxygen carrier function of PFCs
is not significantly influenced by pharmacological, environ-
mental, and chemical factors. Moreover, they are chemically
resistant to heat and do not undergo metabolic transforma-
tion in vivo. Hence, PFOCs are a secure choice as AOCs
as compared to HBOCs, which exhibit side effects such as
immune reactions (except some modified LEH conjugated
with PEG2K and non-phospholipid hexadecyl-carbamoyl
methyl hexadecanoate which is immune neutral and well
tolerated in repeated dose), high blood pressure, and short
half-life (Lambert and Janjic 2021). Furthermore, PFCs
allow optimal oxygenation in the human body because they
do not interact with oxygen; thus, oxygen supply increases
at the plasma level.

The most beneficial effect of PFCs is that they can be
preserved at room temperature for more than 1 year and

@ Springer

can penetrate small blood vessels and arterial blockages for
oxygen transport (Haldar et al. 2019; Lambert and Janjic
2021). PFOC:s has higher storage stability compared to other
oxygen carriers because of they are functionally resistant
to temperature and pH influence and also chemically heat
resistant due to their covalent carbon—fluorine bond (Lam-
bert and Janjic 2021). Newly developed albumin-derived
PFC-based nanoparticles act as novel AOCs and exhibit
higher oxygen transportation capacity without many unde-
sirable effects in rat animal models (Wrobeln et al. 2017a).
In addition, these nanoparticles can also protect tissues from
hypoxic damage; however, they have not yet been tested in
clinical trials (Wrobeln et al. 2020). The study of PFOCs
was successful in non-cardiac surgery without major safety
concerns, and reduced the need for allogeneic RBC transfu-
sion (Spahn 2018).

Synthetically produced porphyrin-based AOCs

Chemically similar structures of natural Hb and myoglobin
contain porphyrin groups in cyclic form with four pyrrole
rings attached by methine bridges. In the porphyrin rings,
the pyrrole nitrogen groups approve ferrous ion chelation to
protoporphyrin, which takes part in oxidative metabolism
and iron chelation (ferrous) for protoporphyrin to generate
‘heme’, which is the active site of oxygen transfer (Themes
2017). Therefore, many researchers have investigated Fe
(II)-containing porphyrin systems for oxygen transfer in the
body (Table 8). These synthetically produced porphyrins
unite the heme molecule with interchanging chemicals to
express an interrupted hydrophobic matrix (Themes 2017;
Bialas et al. 2019). Information on the in vitro and in vivo
applications of porphyrin-based oxygen carrier systems is
limited; further pre-clinical assessment is needed in proper
cell lines and animal models. Owing to the lack of this infor-
mation, we included several experiments on different por-
phyrin (synthetic)-based oxygen carriers, which showed the
efficiency of this system.

Previously, “picket fence” Fe?* porphyrin molecules
were revealed by Collman et al. in the 1970s to narrate the
a4-atropisomer of [5,10,15,20-tetrakis(2-pivalamidophe-
nyl) porphyrinato] iron (II), or FeTpivPP (Fig. 5a), which
exhibited the reversible oxygenation of Hb and myoglobin
(Modery-Pawlowski et al. 2013; Norvaisa et al. 2021). Picket
fence porphyrins have four pivalamide groups at the ortho-
positions of the phenyl groups. This is the first instance of a
myoglobin model that envisages both prosthetic group and
apoprotein functions (Kitagishi and Kano 2021). Previously,
Gottwald and Ullman successfully identified four separate
5,10,15,20-tetrakis(o-hydroxyphenyl) porphyrin atropiso-
mers. In addition, the former model produced the p-oxo fer-
ric dimer, which was capable of irreversible iron oxidation,
although it showed a delusion of reversible oxidation. The
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Table 7 (continued)

References

Results

Administration (Route and

dose)

Animal model/Cell line

Purposes

Products Name

Yao et al. (2015)

Cell viability and intracellular

cell viability assay for HCT

HCT 116 cells (in vitro); Rat

(i) To assess the PLGA-PEG/

PLGA-PEG/PFC emulsion

ROS exposed hypoxia-reox-

116 cells;

(in vivo)

PFOB emulsion effect on

ygenation injury in HCT 116
cells which were sub-lethal

HCT 116 cell viability, intra-

cellular ROS production, and
for detection of the hypoxic
condition, reoxygenation by

expression of HIF-1a

and HIF-1a contributed to

cell viability;

PLGA-PEG/PFC emulsion

0.3 mL of the emulsion

(ii) To assess oxygen transport

increased oxygen transport

through pulmonary delivery

(from trachea)

through new administration
way “pulmonary delivery”

in rats

which improved lung ventila-

tion in rats

Fraker et al. (2012)

300 L of pure PFC inoculate It demonstrates particle size

Mouse insulinoma beta cells

To optimize the nanoscale

PFC nano emulsion (Perfluoro-
decalin; perfluorotributyl-

affecting transportation of
oxygen and enhanced micelle

per well in 12 well plate

(MIN-6, passages 30-40)

perfluoro emulsion through

evaluation of different critical

factors like materials, emul-

amine; perfluorooctylbro-

mide)

size decrease diffusion of

oxygen

sification time, and particle

size with stability

main objective of picket fence porphyrin was to build a pro-
tective pocket for dioxygen binding similar to natural Hb, but
were amendable to irreversible oxidation in aqueous solu-
tions (Modery-Pawlowski et al. 2013; NorvaiSa et al. 2021).
Li et al. examined three different iron-based picket fence
porphyrins, namely Fe (TpivPP)(1-EtIm) (O,), Fe (TpivPP)
(1-Melm) (O,), and Fe (TpivPP)(2-MeHIm) (O,), to deter-
mine the rotation of Fe-oxygen and tert-butyl motion using
multitemperature X-ray structural studies and Mdssbauer
spectroscopy. The results indicated that the Fe-oxygen bond
was temperature-dependent, and not orientational (Li et al.
2013). The experimental conditions of the picket fence por-
phyrin system are listed in Table 9.

To avoid irreversible oxidation in a picket aqueous solu-
tion, scientists constructed an iron porphyrin, which was
attached to the phospholipid liposome bilayer (Fig. 5b)
(Tsuchida et al. 2009). Liposomes are spherical aqueous
inner core vesicles surrounded by a lipid bilayer consisting
of phospholipids (natural or synthetic) and sterols (Noh et al.
2022); reversible oxidation is possible due to their hydropho-
bic and non-polar environment. Lipid-heme showed high
consistency with phospholipids, forming an immensely sta-
ble lipid-heme liposome that could reversibly bind oxygen
(Tsuchida et al. 2009). A few in vivo experiments were con-
ducted to check this lipid-heme porphyrin, which is sum-
marized in Table 10 along with other experiments.

Another synthetic heme model has been developed, the
human serum albumin (HSA) incorporated with iron por-
phyrin systems (Fig. 5¢), which showed oxygen-carrying
abilities similar to that of Hb and myoglobin. HSA is the
most abundant protein found in blood plasma (Komatsu
et al. 2005b; Nakagawa et al. 2008; Watanabe et al. 2012).
Recombinant human serum albumin (rHSA) with iron por-
phyrin showed good blood compatibility and longer half-life,
with similar oxygen distribution to the tissues. In addition
to HSA and iron porphyrin, polyethylene glycol (PEG) has
also been used, thus resulting in an increased circulation
time and reduced oxidation (Nakagawa et al. 2007). The
experimental conditions of the HSA-heme synthetic system
are presented in Table 11.

Another cutting-edge technology is HemoCD (iron por-
phyrin complex), which is composed of a 1:1 complex of
5,10,15,20-tetrakis (4-sulfonatophenyl)porphinatoiron(II)
(Fe[II]TPPS) and a per-O-methylated b-cyclodextrin dimer
with a pyridine linker (Py3CD) (Fig. 5d) (Kano and Kit-
agishi 2009). Cyclodextrin dimers are toroidal in shape and
consist of oligosaccharides attached to D-glucopyranose
units (Kim et al. 2020) and encapsulated Fe[I[]TPPS, which
is necessary for oxygen binding and has a longer half-life
(Kano and Kitagishi 2009). In addition, another new 1:1
complex, Fe'PImCD (5,10,15,20-tetrakis- (4-sulfonato-
phenyl) porphinatoiron(II) (FellP) and an O-methylated
b-cyclodextrin dimer with an imidazole linker, (ImCD),

@ Springer
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Table 8 Synthetically produced porphyrin-based AOCs

Synthetically produced Used components
porphyrin-based AOCs

References

‘Picket fence’ porphyrin Iron (II) containing heme group interchanging of the molecule and attached in a hydro-

phobic matrix (eg- polymer, albumin)

LipidHeme Iron (II) porphyrin attached to the phospholipid liposome bilayer
HSA-heme Iron (II) containing porphyrin systems attached within HSA microsphere structures
HemoCD

pockets)

Iron (II) porphyrin systems attached within the middle of the cyclodextrin (hydrophobic

Kitagishi and Kano (2021)

Komatsu et al. (1994)
Tsuchida et al. (1999, p. 2)
Kitagishi et al. (2017)

Lipid bilayer
membrane

Lipidheme Totally synthetic

artificial oxygen carrier

RS

O,

-
-

Phospholipid
vesicles

Cc
9 OCH
£ F:;CO b%\%&cm OCH, H,CO OCI;3
0" OcH 0
H4CO, oy Heo 0 HiC0 Loctd oc
HCO 0 0 g 0‘ OCH H;CO
O, ocH, Hco A S Y SA(
neokSo N wol0 - 970cH
% OCH;H;C0 O ocH, M
H,CO 0% Z[?/OCHJ Owico 5 6
OCH
0OCH;§ ock 3 OCHcHo OCHOJCHZ
Py3CD FeTPPS
‘\‘
: N e -
N H
N. ="
K s s
Py3CD Fel'TPPS hemoCD

Fig.5 a Structure of picket-fence porphyrin [Reprinted with per-
mission from (Kano and Kitagishi 2009). Copyright © 2009, The
Authors. Journal compilation © 2009, International Center for Artifi-
cial Organs and Transplantation and Wiley Periodicals, Inc.], b Lipid-
Heme porphyrin vesicles as an artificial O, carrier [Reprinted with
permission from (Tsuchida et al. 2009). Copyright © 2009, American
Chemical Society] ¢ HSA-heme porphyrin as an artificial O, carrier

@ Springer

(crystal structure) [Reprinted with permission from (Tsuchida et al.
2009). Copyright © 2009, American Chemical Society], d Struc-
tures of Py3CD, FeTPPS, and hemoCD [Reprinted (adapted) with
permission from (Kano and Kitagishi 2009). Copyright © 2009, The
Authors. Journal compilation © 2009, International Center for Artifi-
cial Organs and Transplantation and Wiley Periodicals, Inc.]
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exhibited 10-times increased dioxygen affinity than that of
HemoCD (Kano et al. 2006). HemoCDs were modified with
PEGylated dendrons to enhance their circulation time in the
blood, which was more effective in protecting HemoCDs
from opsonization by the reticuloendothelial system (Kano
et al. 2011; Karasugi et al. 2012). Several experiments were
conducted on HemoCD, as presented in Table 12. In addi-
tion, HemoCD depleted CO under in vivo conditions (Kit-
agishi and Minegishi 2017) (Table 12). These nanotechnolo-
gies require pre-clinical assessment in animal models as well
as clinical evaluation for further improvement.

0, micro/nanobubbles

Micro/nanobubble-mediated oxygen transport is another
method of oxygen delivery under hypoxic conditions. It
can be used to transport oxygen directly to deoxygenated
erythrocytes, hypoxic tissues, and blood vessels (Bialas et al.
2019). Microbubbles and nanobubbles (MNBs) are spheri-
cal vesicles made by encapsulating different shells, such as
phospholipids, proteins, and polymers, with a core-contain-
ing gas. Microbubbles have been investigated for non-inva-
sive molecular imaging process, called the “photoacoustic
imaging method”, whereas nanobubbles have been used for
therapeutics and diagnosis (Khan et al. 2018a). MNBs are
usually used to reverse hypoxia, which is a typical feature of
solid tumors resulting in decreased therapeutic reaction and
malignancy. Hypoxic cells are more resistant to chemo- or
radiotherapy (Eisenbrey et al. 2015; Fix et al. 2015). Using
MNB:s, it is possible to improve the oxygen enhancement
ratio (OER), which increases the sensitivity of tumor radia-
tion therapy (Kwan et al. 2012; Khan et al. 2018a). The
MNBs are smaller (0.1-20 um) and can enter into major and
minor blood vessels; their stability is controlled by Laplace
pressure (inside and outside shell pressure difference), coa-
lescence, and Ostwald ripening (Hernot and Klibanov 2008;
Lee et al. 2015; Fix et al. 2015). The common structure of
MNBs is shown in Fig. 6a, where the core gas is surrounded
by a hydrophilic shell or amphiphilic biomaterial that has
been used in different areas, such as drug delivery, oxygen
transport, molecular imaging, and gene therapy (Khan et al.
2018a).

Different shells (lipids, proteins, polymers, and sur-
factants) exhibit numerous significant functions, including
the mechanical stability of bubbles, protection of bubbles,
and increasing oxygen transport safety, by decrementing
the relationship between gas and neighboring blood and tis-
sues (Fix et al. 2015). Lipid shell materials are the most
common microbubbles, which are approximately 3 nm in
thickness and are composed of phospholipids that are frozen

by block copolymers, thus forming lipid shell microbubble
emulsions (2-4 um in diameter) (Fig. 6b: left panel) (Fix
et al. 2015; Khan et al. 2018a). Figure 6b (right panel) shows
the rapid transport of encapsulated oxygen to deoxygenated
RBCs (Tao and Ghoroghchian 2014). The permeability of
oxygen ranges from 107 cm/s to 1073 cm/s in lipid shell
microbubbles (Fix et al. 2015). The compositions and char-
acteristics of different phospholipid microbubbles are listed
in Table 13.

Protein-shelled MNBs are synthesized by protein dena-
turation and emulsification, which form a monolayer shell
around the core gas. These shells are rigid and beneficial for
their stability, half-life, and amphiphilicity. Protein shell-
type microbubble formulations, such as Albunex (commer-
cial products), have been accepted by the FDA for com-
mercial use. The thickness of the protein shell was 15 nm,
whereas the diameter of the bubble was 1-15 um (Sirsi
and Borden 2009; Swanson and Borden 2010; Khan et al.
2018a). Polymer shells are tenacious and thicker than other
shells. They was able to improve stability; however, owing to
oscillation defense until the shell cracked, echogenicity was
decreased (Fix et al. 2015). Their thickness is 150-200 nm;
during ultrasound, they are more resistant to expansion and
compression. MNBs are synthesized using several processes,
including sonication, microfluidic devices, agitation, inkjet
processes, and laser ablation (Hernot and Klibanov 2008;
Sirsi and Borden 2009; Khan et al. 2018a).

Preclinical assessment (in vivo) for evaluation of efficacy
and safety of oxygen transport through O, microbubbles

Researchers have established different therapeutic methods
for artificial transportation of oxygen. Microbubbles, which
showed more oxygenation during hypoxic conditions, have
been applied in several animal models to assess their effi-
cacy (Table 14). Instead of intravenous administration, some
MNBs are used for peritoneal oxygenation in animal models
with a large peritoneal surface area. The main advantage is
their smooth penetration for catheterization in the peritoneal
cavity, wherein oxygen circulates safely and the mesothe-
lium acts as a gas permeable barrier (Feshitan et al. 2014).
Furthermore, DSPC, PEG-40-S (9:1) was administered
peritoneally in lung-injured rats, which showed higher oxy-
gen-carrying capacity (Feshitan et al. 2014). These results
suggested a probable benefit of MNBs for hypoxic patients
(Legband et al. 2015). Surfactant-stabilized microbubble,
SE61,,, was more workable for oxygenation in hypoxic tis-
sues in mice (Eisenbrey et al. 2015). DSPC, (DSPE-PEG-
2000Amine), and (DSPE-PEG-2000-Biotin) was applied to
MDA-MB-231 breast cancer cells to assess the performance
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Fig.6 a Structure of different shell-type MNBs [Reprinted with per-
mission from (Khan et al. 2018a). Copyright © 2018, The Authors.
MDFPI], b Transport of oxygen from lipid shell microbubbles to deox-
ygenated RBCs. Left panel: oxygen gas core is placed within 2 nm

of oxygen nanobubbles in a customized hypoxic chamber;
results showed improved cell conditions (Khan et al. 2018b).
Phospholipid oxygen microbubbles have been used in
injured rats to evaluate the effect of peritoneal microbubble
oxygenation on acute respiratory distress syndrome; OMBs
were able to increase oxygen supplementation (Fiala et al.
2020).

phospholipid monolayer, right panel: oxygen delivery in the blood
vessel [Reprinted with permission from (Tao and Ghoroghchian
2014) Copyright © 2014, Elsevier Ltd]

Conclusion

The necessity of RBC substitutes as well as AOCs is
increasing with the increase in demand for blood transfu-
sion in patients with life-threatening anemia. Therefore,
researchers aspire to amplify biocompatible AOC imple-
mentation. However, the US FDA has not yet approved any

@ Springer
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Table 13 Properties of different O, micro/nanobubbles

Micro/nano bubbles Compositions Size of particle

Lipid shell types (i) 1,2-Distearoyl-sn-glycero-

3-phosphocholine (DSPC)
(ii) 1,2-distearoyl-sn-glycero-
3-phosphoethanolamine-N-
[amino(polyethyleneglycol)]
(DSPE-PEG)
DSPC, PEG-40-S (9:1)

—4 um

DSPC, BRIJ 100 2—4 um (polydis-
perse)
F-PC, DMPC 3 um, 4 um

DSPC or 1,2-dipalmitoyl-sn-
glycero-3-phosphocholine
(DPPC), PEG 40S

DSPC, N-(Carbamoyl- 1033+72 nm
methoxypolyethylene glycol (1 day)
5000)-1,2-dipalmitoyl- 1069 + 53 nm
cephalin sodium (DPPE- (3 days)
MPEG5000) 1055+ 89 nm

(7 days)
Protein shell type Bovine serum albumin Multi-size
Polymer shell types Chitosan 708 +51.3 nm

Dextran with or without poly- With PVP:

vinylpyrrolidone (PVP) 410+5 nm
Without PVP:
550+30 nm

Surfactants stabi-
lized microbub-
bles

Span 60, D-alpha tocopheryl
polyethylene glycol 1000
succinate (TPGS)

disperse)

Approximately 3 nm

3 um (polydisperse)

3.1+0.1 pm (poly-

Delivery of gas Synthesis method References
95% oxygen, 5% Sonication Kwan et al. (2012),
perfluorobutane McEwan et al.

(2015), Fix et al.
(2015), Khan et al.
(2018a)

70 vol% oxygen Sonication Feshitan et al. (2014),
Khan et al. (2018a)

From microparticles Sonication Kheir et al. (2012)

(70%), oxygen
transport within

4 secs
Oxygen Agitation, sonica- Gerber et al. (2007),
tion Khan et al. (2018a)
>50 vol % Sonication Swanson et al. (2010)
gas(oxygen)

Increase sixfold Mechanical agita- Yang et al. (2018)

of pO, levels in tion
1 min
Oxygen Sonication Swanson and Borden

(2010)

Fix et al. (2015),
Khan et al. (2018a)

Oxygen; Perfluoro-
pentane

High shear mixer

Oxygen; Perfluoro-  Sonication Fix et al. (2015),
pentane Khan et al. (2018a)
Oxygen - Fix et al. (2015)

oxygen-carrying RBC substitutes due to several of their
side effects. Thus, scientists are expanding their research
areas, which may contribute significantly to this field. Both
HBOCs and PFOC:s are the most significant AOC systems;
PFOCs are more cost-effective than HBOCs because of
their synthetic characteristics and ease of formulation.
Additionally, they can be preserved at room temperature
for more than 1 year, and can easily penetrate small blood
vessels and arterial blockages for oxygen transport. Fur-
thermore, PFOCs have shown better performance and
acted as a safeguard for Hb-bound oxygen in the circula-
tion until it reached hypoxic tissues. They are chemically
resistant to heat and do not undergo metabolic transforma-
tion in vivo. Hence, PFOCs are a secure choice as AOCs
as compared to HBOCs, which exhibit side effects such as
immune reactions (except some modified LEH conjugated

@ Springer

with PEG2K and non-phospholipid hexadecyl-carbamoyl
methyl hexadecanoate which is immune neutral and well
tolerated in repeated dose), high blood pressure, and short
half-life. Furthermore, A-AOC may illustrate a new aspect
in this field because they showed better biocompatibility
and longer half-life circulation. They also demonstrated
tissue protection from hypoxic conditions in animal mod-
els. In addition, the synthetically produced porphyrin
system is another potential perspective that requires more
research. Finally, oxygen-carrying MNBs are used to cure
tumor hypoxia and hypoxemic conditions to increase the
partial pressure of oxygen in the affected area, although
accurately delivered concentrations of therapeutic oxy-
gen are a significant concern during human use. Further
research is needed to assess the utility of AOC in improv-
ing these substitutes.
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