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Abstract
Background  Polylactides (PLA) and poly lactide-co-glycolides (PLGA) undoubtedly are among the major drivers in the 
pharmaceutical market. Their relevance in pharmaceutics and biomedicine is well established in light of their sustainability, 
safety, tunable biodegradability, and versatility. However, polymer degradability and plasticity can somehow restrain indus-
trial developability of PLA and PLGA formulations, especially in the form of microparticles (MP).
Area covered  This review wants to deal with the known manufacturing issues of PLA/PLGA MP, debating the potential 
contribution of modern and cutting-edge manufacturing technologies to the solution of unmet production needs. Techno-
logical and regulatory aspects will be considered outlining the potential role of advanced manufacturing techniques in the 
advancement of PLA/PLGA MP production processes.
Expert opinion  The multifaceted complexity of PLA/PLGA MP manufacturing processes demands adequate standardiza-
tion and updated guidelines covering the so far unmet industrialization requirements. Novel and evolving manufacturing 
technologies will surely support the future development of bench-to-production plant transfer for such products. Careful 
evaluation of production costs is demanded in order to ensure process sustainability and patient’s outreach.

Keywords  Microparticles · PLA · PLGA · Microparticle manufacturing · Advanced manufacturing technology

Introduction

A comprehensive history outline and a description of basic 
properties of polylactide (PLA) and polylactide-co-glycolide 
(PLGA) polymers and microparticle (MP) preparation are 
broadly available in literature (Lee et al. 2016; Swider et al. 
2018) and therefore this review will not go back to the fun-
damentals on such materials and drug delivery systems but 
rather it will try to dig into the aspects impacting manufac-
turing of polyester-based MP and the new advanced tech-
nologies sought by industry. A particular emphasis will be 
given to those aspects enabling progress in the transfer to 
production scale of novel manufacturing techniques deemed 
to overcome the known limitations in the use of such poly-
mers and the relative unmet issues.

Strengths and weaknesses of PLA and PLGA 
polymers

PLA and PLGA polymers are shear thinning materials that, 
depending on their composition and molecular weight, can 
show different degree of plasticity and degradability. PLA 
polymers exist as d and l isomers according to lactic acid 
configuration, that leads to different polymer tacticity and 
therefore material properties (Baker et al. 2008; Shaver and 
Cameron 2010). As a result, while l-PLA is highly crystal-
line, d-PLA is completely amorphous. The isomerism of 
lactides influences also PLGA tacticity and physical state. 
Albeit mainly amorphous, l-PLGA and dl-PLGA polymers 
can show a certain degree of crystallinity depending on the 
lactide/glycolide ratio and stereoisomeric composition of the 
lactide monomers (Avgoustakis 2015). The knowledge of 
such properties is therefore important as crystallinity affects 
the rate of degradation and the mechanical properties of PLA 
and PLGA. As a consequence, the choice of proper polymers 
for manufacturing of PLA and PLGA MP should account for 
the insightful knowledge of these fundamental properties. 
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In fact, along with their recognized safety as FDA-approved 
parenteral materials, the undeniable attractiveness of such 
polymers in drug delivery is tightly bound to their tunable 
drug release behavior that grants sustained and extended 
drug delivery applications. The choice of copolymer com-
position and/or lactide isomer as well as polymer molecular 
weight consent to tailor MP degradation and drug release 
profile (Anderson and Shive 2012). However, this high 
versatility and workability is actually counterbalanced by 
polymer plasticity, which determines the PLA and PLGA 
attitude to undergo softening and unwanted degradation 
upon manufacturing and storage (Allison 2008). In fact, the 
tunable biodegradability of these polymers represents at the 
same time their strength and weakness as it makes them 
prone to acid- and base-catalyzed degradation. Such deg-
radation has been found to occur even in MP formulations 
when basic or acidic drugs are being encapsulated (Selmin 
et al. 2012; D’Souza et al. 2014a, 2015). Naturally, these 
phenomena affect amorphous materials most. Since PLGA 
and PLA are generally low glassy polymers, interaction with 
other materials, such as excipients, solvents, drugs, and tem-
perature can easily provoke plasticization and annealing of 
the solid matrix. Even though plasticization can be favora-
ble to processing and the manufacturing of scaffolds and 
other devices, it can be detrimental to MP manufacturing 
and storage stability and today increased efforts are directed 
to identify effective stabilization strategies (Albertini et al. 
2015; Benvenutti et al. 2018). Therefore, these features can 
represent a considerable bottleneck in the development of 
PLA and PLGA MP products. In fact, the susceptibility of 
these polymers to boundary conditions and the interaction 
with other materials, drugs included, makes PLA and PLGA 
MP manufacturing prone to high variability in the absence 
of a robust control over all process parameters that partially 
explains the lack of generic products in the market (Zhou 
et al. 2018). However, novel technologies with enhanced 
performances and stability, which will be herein discussed, 
may underpin remarkable advances in the manufacturing of 
these problematic products.

PLA and PLGA microparticles in the pharmaceutical 
market

To date, there are about 20 PLA/PLGA based products 
approved by the Food and Drug Administration (FDA) and 
the European Medicines Agency (EMA) mainly aimed to 
be administered by intramuscular or subcutaneous injection 
(Table 1) (Silverman et al. 2002; Wang et al. 2016; Tice 
2017; Qi et al. 2018; CenterWatch 2019. Other products are 
to be inserted in the periodontal cavity (e.g., Arestin®) or 
by intra-articular injection (i.e., Zilretta®). The aim of using 
polyesters in these formulations are several and in particu-
lar PLA/PLGA consent to simplify the therapeutic schedule 

(i.e., reducing the administration frequency), to minimize 
drug concentration oscillation reducing side effects and 
to improve patient’s adherence to the treatment. The low 
availability of PLA/PLGA based medicines can be mainly 
ascribed to the difficulties encountered during their devel-
opment and industrial manufacturing. However, recently, 
two new formulations reached the USA market after FDA 
approval. Zilretta® are triamcinolone acetonide loaded MP 
for intra-articular injection in the treatment of knee pain in 
patients with osteoarthritis (Kaufman 2017, 2018a). Tripto-
dur™, based on the use of triptorelin pamoate, was approved 
in 2017 for the treatment of central precocious puberty. This 
formulation is administered only twice yearly by intramus-
cular injection (2018b). In the European market, a triptore-
lin based formulation (Salvacyl® LP, Salvapar®, Moapar®) 
was approved in 12 countries from 2006 to 2014 for the 
treatment of severe sexual deviation (Debiopharm group; 
Briken et al. 2012). PLA/PLGA MP based technologies are 
being exploited for drug repurposing of commercial oral 
or extended release preparations as witnessed by the large 
number of completed clinical trials on risperidone based 
products and the ongoing efforts in several therapeutic areas 
(Table 2). These considerable research investments in such 
technologies somehow underpin the advantages of PLA/
PLGA based long acting injectables (LAI) especially for the 
treatment of chronic pathological conditions. Unfortunately, 
these advantages are overweighed by the intrinsic complex-
ity of such formulations as well as limited regulatory sup-
port. As a consequence, to date, no generic version of these 
products is available on the market even though patent pro-
tection of some of them has expired (e.g., Lupron® Depot). 
This can be explained by the difficulty in manufacturing 
PLA/PLGA MP obtaining perfectly reproducible charac-
teristics such as drug loading and drug release profile. In 
fact, slight modifications of the manufacturing process can 
deeply affect MP properties and therefore treatment safety. 
There is also a lack of suitable tools to evaluate the impact 
of MP features on their performances (D’Souza et al. 2014b, 
c). That is why the FDA’s Office of Generic Drug (OGD) 
supports research to develop in vitro-in vivo correlations 
and in vitro release testing methods (Schoubben et al. 2012; 
Leblanc 2018). 

Conventional manufacturing technology

Lab‑scale methods

Solvent evaporation and extraction

PLA and PLGA MP are often prepared by organic sol-
vent evaporation/extraction from oil-in-water (o/w) or 
water-in-oil-in-water (w/o/w) emulsions (Schoubben 
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et  al. 2009; Albertini et  al. 2015; Casagrande et  al. 
2017). This technique has been developed at the end of 
the 1970s (Hu et al. 2017). Based on the nature of the 
active pharmaceutical ingredient (API), one can choose 
to use o/w or w/o/w emulsions (Jain 2000; Rosca et al. 

2004; Lu and Park 2012; Kapoor et al. 2015; Lee et al. 
2016; Swider et al. 2018). Commonly, o/w emulsion is 
used with hydrophobic API (Ricci et al. 2005; Giovagnoli 
et al. 2010), while w/o/w emulsion is preferred for hydro-
philic API such as peptide and proteins to maximize drug 

Table 1   FDA and EMA marketed microparticles based on PLA/PLGA (not intended to be fully exhaustive)

Brand name API Administration 
route

Indication(s) Encapsulation 
technology

Encapsulation 
process

Approval/launched 
year

Arestin® Minocycline HCl Periodontal Periodontal 
disease

NA NA 2001

Bydureon® Exenatide Subcutaneous Type 2 diabetes Medisorb® Solvent evapora-
tion/extraction 
emulsion method

2012

Decapeptyl®, 
Decapeptyl® SR

Triptorelin acetate Intramuscular Prostatic cancer Debio PLGA-2® Oil-in-water emul-
sion method/
phase separation

1986

Lupron® Depot, 
Enantone®, 
Prostap® SR

Leuprolide acetate Intramuscular Endometriosis NA Water-in-oil emul-
sion

1999
Prostatic cancer 1989, 1996–1997

Lupron® Depot-
PED, Enantone®, 
Prostap® SR

Leuprolide acetate Intramuscular Central precocious 
puberty

NA Water-in-oil emul-
sion

2011

Pamorelin® LA, 
Trelstar® Depot, 
Trelstar® LA

Triptorelin pamo-
ate/embonate

Intramuscular Prostatic cancer Debio PLGA-2® Oil-in-water emul-
sion method/
phase separation

2010, 2000, 2001

Parlodel® LAR Bromocriptine Intramuscular Prolactin-secreting 
tumor

NA Spray-drying ~ 1991

Risperdal® Con-
sta™

Risperidone Intramuscular Schizophrenia, 
bipolar I disorder

Medisorb® Solvent evapora-
tion/extraction 
emulsion method

2003

Salvacyl® LP, 
Salvapar®, 
Moapar®

Triptorelin pamo-
ate/embonate

Intramuscular Severe sexual 
deviation in 
adult men

Debio PLGA-2® Oil-in-water emul-
sion method/
phase separation

2006–2014 (12 
countries in 
Europe)

Sandostatin LAR Octreotide Subcutaneous Acromegaly, 
severe diarrhea 
with metastatic 
carcinoma or 
with vasoac-
tive intestinal 
peptide-secreting 
tumors

Medisorb® Solvent evapora-
tion/extraction 
emulsion method

1997

Signifor® LAR Pasireotide pamo-
ate

Intramuscular Acromegaly, 
Cushing’s 
disease

Novartis NA 2014

Somatuline® 
Depot

Lanreotide Intramuscular Acromegaly NA NA 2007

Suprecur® MP Buserelin acetate Endometriosis NA Spray-drying 2002
Triptodur™ Triptorelin pamo-

ate/embonate
Intramuscular Central precocious 

puberty
Debio PLGA-2® Oil-in-water emul-

sion method/
phase separation

2017

Vivitrol® Naltrexone Intramuscular Alcohol depend-
ence

Medisorb® Solvent evapora-
tion/extraction 
emulsion method

2006

Opioid depend-
ence

2010

Zilretta® Triamcinolone 
acetonide

Intra-articular Osteoarthritis knee 
pain

NA NA 2017
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Table 2   PLA/PLGA MP based depot products under clinical investigation (not intended to be fully exhaustive)

Brand name API Route* Indication(s) Encapsulation technology Description Stage 

Bydureon® Exenatide SC Type 2 diabetes Medisorb® Effect of Bydureon on 
carotid atherosclerosis 
progression in T2DM

Phase 4

Copaxone® Depot Glatiramer acetate IM Primary progressive multi-
ple sclerosis

MAPI-pharma A prospective, multicenter, 
single arm, open label, 
Phase IIa study to assess 
the safety and efficacy of 
once-a-month long-acting 
intramuscular injection of 
40 mg glatiramer acetate 
(GA depot) in subjects 
with primary progres-
sive multiple sclerosis 
(PPMS)

Phase 2

Copaxone® Depot Glatiramer acetate IM Multiple sclerosis MAPI-pharma A prospective 1-year, 
open-label, two arms, 
multicenter, Phase IIa 
study to assess safety, tol-
erability and efficacy of 
once a month long-acting 
intramuscular injection 
of 80 or 40 mg glatiramer 
acetate (GA depot) in 
subjects with relaps-
ing–remitting multiple 
sclerosis (RRMS)

Phase 1
Phase 2

Sandostatin® LAR Octreotide SC Hereditary hemorrhagic 
telangiectasia

Gastrointestinal hemor-
rhage

Anemia

Medisorb® An uncontrolled, pilot-
study assessing the effi-
cacy of octreotide long-
acting release to decrease 
transfusion requirements 
and endoscopy frequency 
in patients with rendu-
osler-weber and gastroin-
testinal bleeding

Phase 2

Sandostatin® LAR Octreotide SC Angiodysplasia
vascular Malformations
Gastrointestinal hemor-

rhage
anemia

Medisorb® A multicenter, randomized, 
open-label clinical trial 
assessing the efficacy of 
octreotide in decreasing 
blood and iron require-
ments in patients with 
refractory anaemia due to 
angiodysplasias

Phase 2
Phase 3

Signifor® LAR Pasireotide IM Neuroendocrine tumors
Carcinoid Tumors

Novartis Phase II study of Pasire-
otide LAR in patients 
with metastatic neuroen-
docrine carcinomas

Phase 2

Signifor® LAR Pasireotide IM ACTH-producing pituitary 
tumour

Novartis Pilot study of Pasireotide 
LAR treatment of silent 
corticotrophin pituitary 
tumors and effects on 
plasma levels of POMC

Phase 2

Vivitrol® Naltrexone IM Opiate addiction Medisorb® Long-acting naltrexone 
for pre-release prison-
ers: a randomized trial of 
mobile treatment

Phase 3

Vivitrol® Naltrexone IM Opioid use disorders Medisorb® Depot pharmacotherapies 
for opioid-dependent 
offenders: outcomes and 
costs

Phase 3
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loading (Giovagnoli et al. 2004, 2005, 2010). In fact, it 
can be difficult to obtain high hydrophilic drug payload 
in PLA/PLGA MP. Briefly, polymer is solubilized in an 
organic solvent such as methylene chloride together with 
the hydrophobic API and emulsified under stirring or 
sonication in the aqueous phase containing the stabiliz-
ing agent (e.g., polyvinyl alcohol, PVA; hydroxypropyl-
methylcellulose, HPMC). Successively, MP hardening is 
achieved by evaporating the solvent under reduced pres-
sure and increasing the temperature. In alternative, the 
organic solvent can be extracted by pouring the emulsion 
in a large volume of aqueous phase to favor the organic 
solvent diffusion in the continuous phase (Capan et al. 
2003; D’Souza et al. 2013). Hydrophilic API are either 
solubilized in a minimum volume of water that is the 
inner aqueous phase of the w/o/w double emulsion (Gio-
vagnoli et al. 2007) or directly suspended in the organic 
phase obtaining a solid-in-oil-in-water (s/o/w) emulsion 
(Giovagnoli et al. 2008). MP characteristics (i.e., dimen-
sions, porosity, API content, release kinetics, degradation 
kinetics) depends on the polymer used and on preparation 
parameters such as the starting polymer concentration, 
o/w volume ratio, stabilizer nature and concentration, agi-
tation conditions, and solvent evaporation rate (Lu and 
Park 2012). As evidenced in Table 1, the MP products 
existing in the market are essentially prepared using the 
emulsion technology. However, it is not clear how emul-
sion is obtained and therefore if this lab-scale method or 
the membrane emulsification technology described fur-
ther on is employed.

Cryogenic solvent extraction

This technique has been developed to limit the exposure of 
sensitive peptides and/or proteins to the harsh conditions 
of the solvent evaporation/extraction method. In fact, pro-
tein exposure to the w/o interface and temperature used 
to evaporate the organic solvent can provoke denaturation 
(van de Weert et al. 2000; Bilati et al. 2005). Cryogenic 
solvent extraction consists in the nebulization of the suspen-
sion made of the protein in dichloromethane where PLA 
or PLGA has been solubilized above a beaker containing 
ethanol (Tracy 1998; Yeo et al. 2001). In particular, etha-
nol has been cooled using liquid nitrogen at a temperature 
lower that the freezing point of the suspension nebulized. 
The droplet will freeze coming in contact with the layer of 
liquid nitrogen present above the frozen ethanol and fall into 
ethanol bath. Successively, ethanol will be slightly warmed 
up thawing out dichloromethane that will diffuse in ethanol. 
As a result, MP will solidify encapsulating the protein. This 
strategy, namely ProLease® technology, has been applied 
in different marketed and non-marketed products (Johnson 
et al. 1997; Tracy 1998; Yaszemski et al. 2003).

Catalytic hydrolysis solvent removal

Besides dichloromethane, which is the solvent mainly used 
in the methods illustrated so far, ethyl acetate is an alter-
native. Its elimination from the o/w emulsion to achieve 
particle formation is obtained by catalytic hydrolysis in 
a HCl aqueous phase at about 30 °C.With respect to the 

*SC subcutaneous, IM intramuscular

Table 2   (continued)

Brand name API Route* Indication(s) Encapsulation technology Description Stage 

Vivitrol® Naltrexone IM Opioid use disorders Medisorb® Long acting naltrexone 
for opioid addiction: the 
importance of mental, 
physical and societal 
factors for sustained 
abstinence and recovery

Phase 4

Vivitrol® Naltrexone IM Opioid use disorders Medisorb® A feasibility study for 
testing the effects 
of extended-release 
naltrexone (Vivitrol) 
on recidivism and other 
participant outcomes in 
drug court settings

Phase 4

Vivitrol® Naltrexone IM Opioid use disorders Medisorb® A strategy to improve 
success of treatment dis-
continuation in buprenor-
phine responders

Phase 3
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conventional extraction procedure, acidic hydrolysis of 
ethyl acetate granted a higher ketoprofen encapsulation effi-
ciency (Lee et al. 2013). This process can have significative 
relevance with acidic API, since an acidic aqueous phase 
will limit their diffusion and loss in the continuous phase. 
Other papers used isopropyl formate (Im and Sah 2009) or 
methyl chloroacetate (Kim et al. 2007) as organic phase 
and their removal was carried out using ammonia solution 
that provoked solvent hydrolysis obtaining water-miscible 
formamide and isopropyl alcohol or chloroacetamide and 
methanol, respectively. As a result, the polymer precipitated 
encapsulating progesterone, used as a model API, with an 
encapsulation efficiency in the 64–97% range (Kim et al. 
2007; Im and Sah 2009).

Coacervation

Coacervation is another technique used to produce PLA/
PLGA MP. It is based on phase separation of the polymer 
(the coacervate) that coats the API particles. This process is 
commonly divided in three separate steps:

•	 Phase separation of the polymer that forms coacervate 
globules

•	 Adsorption of the coating polymer droplets on the API 
particle surface

•	 Solidification of the polymer around the API particles

In accordance with the triggering element that induces 
phase separation, different coacervation process can be indi-
viduated (i.e., non-solvent addition, temperature change, 
incompatible polymer addition, salting out, polymer–poly-
mer interaction). However, in the case of PLA and PLGA, 
not all the different phase separation inducing events are 
applicable (Jain 2000; Yeo et  al. 2001; Ye et  al. 2010; 
Kapoor et al. 2015; Hu et al. 2017).

Non‑solvent addition

Phase separation provoked by non-solvent addition is mainly 
employed to load water-soluble API but can also be used to 
encapsulate liposoluble API. Several parameters, such as 
polymer concentration and stirring rate, influence particle 
characteristics and non-solvent addition has to be slow to 
obtain a uniform polymer coating around the API particles 
(Jain 2000; Ding and Zhu 2018). The non-solvent must be 
selected to avoid API solubilization and it has to be miscible 
in the solvent used to solubilize the polymer. Examples of 
non-solvents that cause phase separation are silicone oil, 
vegetable oil, low molecular weight methacrylic polymers, 
which are called first non-solvents. Second non-solvents, 
used to solidify the polymer layer, can be hexane or petro-
leum ether (Thomasin et al. 1998; Yeo et al. 2001).

Salt addition

Salt addition is another strategy used to obtain phase separa-
tion of PLA/PLGA solubilized in a water miscible solvent, 
such as acetone or acetonitrile, together with the lipophilic 
API. This solution is then emulsified in water containing 
both the salting-out agent (e.g., calcium chloride, sucrose) 
and a stabilizer and is then diluted with an excess volume of 
water promoting acetone diffusion and particle solidification. 
This technique can be easily scale-up but its application is 
limited to lipophilic API and requires many washing cycles 
to remove the salting-out agent (Nagavarma et al. 2012; 
Lee et al. 2016; Swider et al. 2018). The optimization of 
the different conditions (e.g., salting out compound nature 
and concentration, solvent nature, polymer concentration) is 
essential to obtain MP and not nanoparticles (Wischke and 
Schwendeman 2008).

Current industrial methods

Spray‑drying

The spray-drying (SD) technology has evolved over time to 
meet industry requirements in several production fields. In 
drug delivery, novel principles and methodologies in drop-
let formation and drying have enabled considerable expan-
sion of SD applications, including biologicals and enteric 
formulations (Puccetti et al. 2018; Ziaee et al. 2019). This 
technique combines a relatively user-friendly setup with ver-
satility and scalability, and ensures a completely closed envi-
ronment, preventing the risk of room and personnel contami-
nation. Granting fast one-step fabrication and simultaneous 
control on particle size and morphology, SD is particularly 
suitable to process susceptible materials and for the manu-
facturing of precisely tailored dry MP formulations, with 
the logical benefit of storage stability. According to the noz-
zle and drying chamber geometries, and recovery method, 
pulmonary powders, pellets as well as sustained release 
MP can be fabricated. Since SD can be run in a nearly con-
tinuous manner, it can produce large batch sizes with high 
reproducibility, granting low levels of residual solvent in a 
closed loop configuration. Nowadays, beside the classical 
equipment several configurations have been designed with 
different manufacturing purposes.

The unmatched appeal of SD as a one-step, scalable man-
ufacturing technique has promoted a great deal of research 
in several fields and, it has been found particularly suitable 
for PLA and PLGA MP preparation (Sosnik and Seremeta 
2015). Exploiting the well-known SD capabilities, a number 
of works have investigated PLA and PLGA inhalable MP for 
tuberculosis and other infectious diseases in the attempt to 
extend the action of pulmonary treatment (Schoubben et al. 
2010; Ungaro et al. 2012; Palazzo et al. 2013; Giovagnoli 
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et al. 2014; Ibrahim et al. 2018; O’Connor et al. 2019). 
Additional applications have encompassed other antibiot-
ics, antitumoral, antioxidants and antiinflammatory drugs 
(Wagenaar and Müller 1994; Mu and Feng 2001; Gavini 
et al. 2004; Rivera et al. 2004; Youan 2004; Sastre et al. 
2007). Unfortunately, to date, none of them has reached the 
clinical stage.

For an in-depth analysis of the related issues and pro-
gresses in the field, interested readers can refer to Liang et al. 
(Liang et al. 2015), Miranda et al. (Miranda et al. 2018), Das 
et al. (Das et al. 2015), and Hickey et al. (Hickey et al. 2016).

Beyond its traditional role of controlled drying process 
and prominence in the inhalable powders area, current 
SD technologies may reshape manufacturing of inject-
able sustained release depots as well, as an alternative to 
emulsion-freeze-drying technologies (Mundargi et al. 2011; 
Guo et al. 2015; Wan and Yang 2016). In particular, SD is 
slowly emerging as a manufacturing process of controlled 
delivery systems for biomolecules and vaccines (Mueller 
et al. 2012; Allahyari and Mohit 2016; Kanojia et al. 2017). 
However, in order to climb over the ridge of compliance 
and controlled release requirements, traditional pitfalls have 
to be overcome. Among all, initial burst release and heat 
shock damage restrain most protein loaded spray-dried MP 
development (Yamaguchi et al. 2002; Mao et al. 2007). Such 
problems stem from the fast and turbulent drying process 
that results in poor control over molecular diffusion in the 
droplet. As a consequence, proteins are released fast from 
spray-dried MP due to the small particle size and the ten-
dency to migrate at the liquid–air interface.

Nonetheless, novel atomization technologies, based on 
coaxial ultrasonic, electrospray, and three-fluid pneumatic 
actuation (Kondo et al. 2014; Wan et al. 2014), will likely 
prompt the  progress towards the production of mono-
dispersed particles with a core–shell structure providing 
higher drug payloads (Han et al. 2016) and more accurate 
control on the release behavior. Such innovations have 
boosted the research in the last years and, likely, in the near 
future SD is about to become one of the main technolo-
gies in the manufacturing of controlled delivery systems for 
biopharmaceuticals.

Albeit established in some areas of pharmaceutical manu-
facturing, scale up of SD methods is not straightforward as a 
result of the intimate liaison between process conditions and 
product powder properties. Direct scaling of key parameters 
seems not to be effective due to practical limitations and 
temporal differences in physical processes, e.g. at pilot and 
production scales the particle residence time is much higher 
than at lab scale and yield may vary due to a different adhe-
sion extent to the equipment walls. Complete understanding 
of scale-dependent and scale-independent factors is there-
fore strategic along with the design and engineering of a 
pilot model accounting for critical geometrical and workout 

requirements (Al-Khattawi et al. 2018). This is one of the 
reasons for the as yet limited spray-dried depot products on 
the market.

Supercritical fluids

The properties of supercritical fluids (SCF) have been 
exploited in many different areas of pharmaceutics and 
biomedicine. Several organic solvents and almost all gases 
above their critical pressure and temperature assume pecu-
liar properties that stem their capacity to act at the same 
time as a liquid and a gas. The consequence is that such 
SCF show the solubilization capacity of a solvent along with 
high diffusivity and low viscosity. The liquid-like properties 
enable application in extraction processes, solubilization of 
substances, and matrix plasticization, while gas-like features 
enhance mass transfer and reaction selectivity. Carbon diox-
ide is preferred over other SCF due to mild supercritical 
conditions, low cost and environmental impact.

SCF technologies are today well-established industrial 
processes that can be applied to manufacturing of fine 
powders and polymeric micro- and nanocarriers each with 
advantages and disadvantages (Table 3). In general, the pro-
cess consists in the formation of solutions or dispersions by 
exploiting the SCF solvent or anti-solvent capacity and the 
subsequent coacervation induced by its fast removal through 
a rapid drop below supercritical conditions. This leads to 
solvent extraction with subsequent fast solidification of dis-
solved materials or drying of dispersed particles. SCF can 
be used as solvents or anti-solvents and solutes and over 
the years several different processes have been developed 
according to purposes (Table 3) for an in-depth description 
of which readers may refer to Kankala et al. (2017), Giro-
tra et al. (2013), Tabernero et al. (2012), and Soh and Lee 
(2019).

The arsenal of techniques today available is the result 
of about three decades of continuous research efforts that 
have led to considerable advances in the methods for the 
fabrication of tailored drug delivery systems destined to 
virtually all administration routes. Among all, PLA and 
PLGA delivery systems have benefited from the increased 
versatility of RESS and SAS techniques either for MP or 
nanoparticle formulations. Refinement in the control over 
coacervation and hardening/drying processes has granted 
successful development of PLA and PLGA MP for oral, 
pulmonary and parenteral administration. Antiinflammatory 
drugs have been microencapsulated in homogeneous inject-
able PLGA and PLA MP using RESS, SEDS, SAILA, and 
SFEE processes (Kim et al. 1996; Ghaderi et al. 2000; Chat-
topadhyay et al. 2006; Kang et al. 2008a; Kluge et al. 2009b; 
Della Porta et al. 2010; Campardelli et al. 2016; Campardelli 
and Reverchon 2017). Other examples include morphine, 
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methotrexate, and paclitaxel (Kang et al. 2008b; Chen et al. 
2012c, 2013b; Huang et al. 2015).

SAS methods have been developed to entrap water-solu-
ble compounds in PLA and PLGA MP. One strategy was to 
increase solubility in organic solvents by hydrophobic ion 
pairing, as in the case of gentamycin, nalozoxone, naltrexone 
(Falk et al. 1997) or addition of co-solvents, as in the case 
of morphine, bupivacaine, and ketamine (Lee et al. 2006; 
Zhang et al. 2012; Han et al. 2018).

The possibility to finely control working temperatures and 
boundary conditions makes SCF-based methods suitable for 
processing labile materials (Adami et al. 2011). Therefore, 
microencapsulation of proteins and peptides, such as bovine 
serum albumin, lysozyme and lipase (Young et al. 1999; 
Mishima et al. 2000; Tu et al. 2002; Kluge et al. 2009a; 
Chen et al. 2012b; Tran et al. 2013), insulin (Elvassore et al. 
2001; Della Porta et al. 2013), and monoclonal antibodies 
(Yandrapu et al. 2013), as well as vaccines (Baxendale et al. 
2011; Tavares et al. 2017) has been achieved.

The SCF technology enables the rapid and effective 
assembling of complex composite systems. In this way, 
nanoparticles can be entrapped within PLGA or PLA MP 
(Chen et al. 2009b) or can be coated with PLA and PLGA 
polymers to form core–shell structures (Chen et al. 2009c). 
This technology can be exploited to produce functional sys-
tems, as in the case of magnetic or antibacterial MP (Chen 
et al. 2009a, 2012a; Campardelli et al. 2013; Cricchio et al. 
2017), or composite PLGA/chitosan MP by PGSS (Casettari 
et al. 2011).

A continuous supercritical emulsion extraction (SEE-C) 
has been proposed for the production of PLGA MP for the 

encapsulation of proteins and polypeptides (Della Porta et al. 
2011; Campardelli et al. 2012; Falco et al. 2012). SEE-C 
shows significant improvements compared to batch config-
uration, as it exploits countercurrent packed columns that 
enable rapid, continuous extraction of the organic solvents 
and reproducible formation of PLGA MP with controlled 
and narrow size distributions. This system demonstrates that 
SCF technology can be scaled to a high-throughput continu-
ous mode to allow large production yields and batch control.

Naturally, as mentioned above, the highly efficient atomi-
zation technologies coupled to SCF can be exploited to pro-
duce inhalable powders. Lysozyme, celecoxib, deslorelin, 
and rifampicin loaded porous PLA and PLGA MP obtained 
by SAA represent a few examples (Koushik and Kompella 
2004; Koushik et al. 2004; Patomchaiviwat et al. 2008; Chen 
et al. 2013a; Dhanda et al. 2013; Kang et al. 2013). The 
advantages of SFC in the manufacturing of pulmonary dry 
powders are a higher control upon the formation of feed 
dispersion and solutions and a higher efficiency in solvent 
removal at reduced temperatures. Consequently, the obtained 
powders show a lower residue of organic solvent, thus a less 
plasticized solid matrix, and improved particle size distribu-
tion and morphology. Moreover, the lower process tempera-
tures enable processing of heat sensitive materials.

Membrane emulsification

Emulsion solvent extraction/evaporation-based methods 
still represent one of the major manufacturing processes 
for PLA and PLGA MP. As discussed above, such meth-
ods suffer from intrinsic low reproducibility and production 

Table 3   Classification of 
SCF processes employed in 
microparticle and nanoparticle 
fabrication

SCF role Process

Solvent (RESS) Rapid expansion of supercritical solutions RESS
Solute Particle from gas saturated solution PGSS
Anti-solvent (SAS) Solution enhanced dispersion by supercritical process SEDS

Supercritical fluid extraction of emulsion SFEE
Supercritical-assisted atomization SAA
Aerosol solvent extraction system ASES
Expanded liquid anti-solvent ELS
Precipitation with compressed anti-solvent PCA
Suspension-enhanced dispersion by supercritical fluids SpEDS
Supercritical anti-solvent with enhanced mass transfer SAS-EM
Gaseous anti-solvent GAS
Supercritical assisted injection in a liquid anti-solvent SAILA

Mixed Supercritical solvent impregnation SSI
Depressurization of an expanded liquid organic solution DELOS
CO2-assisted nebulization with a bubble dryer CAN-BD
SCF-assisted spray-drying SASD
SCF-expansion depressurization SFED
SCF-processing SCP
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efficiency, and limited control on particle size that strongly 
bias industrial development. In the effort to meet industrial 
requirements, over the last two decades, membrane emulsi-
fication technology has taken the lead in particular in PLA 
and PLGA MP manufacturing (Liu et al. 2005a, b, 2006, 
2011; Lloyd et al. 2014; Ramazani et al. 2016). The tech-
nique is based on a relatively simple concept. Emulsification 
is achieved by forcing a dispersed phase, usually an organic 
solution or a premixed coarse emulsion, into an aqueous 
continuous phase through a membrane of given porosity. 
The passage through the membrane produces homogeneous 
droplets, the size of which is determined by the membrane 
pore size and geometry, the droplet detachment regime from 
the membrane surface, and the flow shear resulting from the 
agitation method applied to the continuous phase (Hancocks 
et al. 2013). Additional attention should be taken in select-
ing the proper membrane wall material, depending on the 
polarity of the dispersed and continuous phases, as mem-
brane wettability, charge and permeability influence drop-
let formation (Vladisavljević et al. 2012; Silva et al. 2017). 
Overall, ideal membranes should have a uniform pore size 
distribution over a wide range of sizes to grant tuneability 
of droplet size, low hydrodynamic resistance, high mechani-
cal strength, thermal and chemical resistance, high toler-
ance to organic solvents, ease of surface modification and 
functionalization, constant wettability with respect to the 
dispersed and continuous phase, and low fabrication costs 
(Vladisavljević 2015). Shirasu Porous Glass (SPG) material 
meets the majority of the above requirements and for such 
a reason is widely employed for membrane production (Qi 
et al. 2014; Lu et al. 2017; Gu et al. 2018).

For a complete treatment of the method, readers may refer 
to Vladisavljević et al. (Vladisavljević et al. 2016) and Pia-
centini et al. (Piacentini et al. 2014, 2017).

Benefits of membrane emulsification include enhanced 
droplet size control, low shear stress and energy require-
ment, equipment setup flexibility. This technique is therefore 
suitable for high throughput production of precisely tuned 
and highly homogenous MP with sizes between < 1 and 100 
μm (Gasparini et al. 2008). Two main membrane emulsifi-
cation modalities exist: moving continuous phase or mov-
ing membrane (Fig. 1). In the first, the continuous phase is 
kept under movement by stirring or unidirectional or pulsed 
flow. In addition, vibrating elements generate a mixing effect 
that favors the emulsification process of the droplets pro-
truding from the membrane. The second modality consists 
in a membrane cartridge containing the inner phase that is 
maintained under rotational or vibrational motion in the 
continuous phase (Fig. 1). The moving membrane emulsifi-
cation method is considered superior as it prevents droplet 
damage due to the shear when circulating the continuous 
phase, shows a higher scale-up reproducibility, and can limit 

manufacturing costs as a result of a reduced energy demand 
as well.

The energy involved is usually very low compared to 
other homogenization techniques. Indeed, this important 
aspect underpins the industrial development of this manu-
facturing technique.

Progresses towards industrialization allowed the develop-
ment of several PLA and PLGA technology platforms. Batch 
and continuous operation devices are currently available. 
The first is made up of a pressurized chamber, in which a 
membrane separates the dispersed phase and a constantly 
stirred continuous phase (Fig.  2a–c). The continuous 

Fig. 1   Particle production using the membrane emulsification tech-
nology. The membrane is shown in grey, continuous phase in blue 
and dispersed phase in yellow. Two different process modalities exist: 
the moving continuous phase and the moving membrane. In the first, 
the external continuous phase is kept under mixing by a stirring bar 
or moved by a linear unidirectional or pulsed flow generated by a flow 
pump. In the second, it is the filter system to be maintained under 
rotational (red arrow) or vibrational (blue arrows) motion. In both the 
modalities, the movement generated is essential to allow the detach-
ment of the droplets stemming from the membrane and their diffusion 
in the continuous phase. Adapted from Piacentini et al. (2014). (Color 
figure online)
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operation device is instead a typical cross-flow apparatus in 
which the dispersed phase is continuously pumped through 
the membrane and recirculated (Fig. 2d) (Ho et al. 2013).

The undeniable attractiveness of the emulsion-based 
technologies is witnessed by the number of products in 

the market that exploit such platforms as also reported in 
Table 1.

The possibility to finely tune size and composition of 
PLA and PLGA MP by adopting proper multiple emulsifi-
cation processes affords fabrication of complex composite 
particles. In this regard, a rotating membrane emulsification 
system was employed for the preparation of iron nanopar-
ticle loaded PLGA MP for tumor arterial embolization and 
magnetic ablation (Liang et al. 2017).

W/o/w emulsions are generally employed for hydrophilic 
compounds, such as many proteins (Ma 2014) and insulin 
(Liu et al. 2006). Furthermore, a w/o/w emulsion followed 
by premix rotational membrane emulsification enabled the 
fabrication of bovine serum albumin loaded mPEG-PLGA 
MP possessing proper pulmonary delivery features (Zhao 
et al. 2018).

These evidences demonstrate that this technology shows 
great potential as it couples brilliant performances in the 
production of precisely tailored uniform MP with versatility 
and limited costs.

Spray freeze‑drying

Potentially scalable technologies are today available which 
combine well known techniques into a one-step manufac-
turing process. One of the most promising for the prepara-
tion of PLGA and PLA MP is spray freeze-drying (SFD) 
of drug-polymer solutions/dispersions that enables a broad 
range of applications, particularly for proteins and biologics 
(Wanning et al. 2015). Spray freeze-drying is a well-estab-
lished process since its first appearance in 1964 (Werly and 
Bauman 1964) in the food and pharmaceutical industry for 
processing and powder engineering (Ishwarya et al. 2015; 
Dutta et al. 2018).

The principle of combining spraying with lyophilization, 
rather than with common exsiccation processes, provides 
several advantages. Beyond the note improvement of drug 
solubilization and amorphization that minimizes potential 
phase separation phenomena (Vo et al. 2013), SFD shows 
its full potential in processing and encapsulation of unsta-
ble proteins and peptides for drug delivery and vaccination 
purposes (Cheow et al. 2011). Most important, SFD can 
provide additional control over MP morphology and size 
distribution. Compared to conventional freeze-drying, SFD 
is economically preferable in terms of time and energy con-
sumption (Claussen et al. 2007). Moreover, the production 
of a flowable bulk powder, in place of filled vials, enables a 
considerable increase in production plant flexibility, allow-
ing easy dosage adjustments.

In this regard, spray freeze-dried human growth hormone 
and recombinant human vascular endothelial growth factor 
loaded PLGA MP showed low burst release and the behavior 

Fig. 2   Membrane emulsification devices. a–c Batch operation 
devices: the inner organic phase is pressurized through the membrane 
by a syringe or a controlled pumping system; the mixing effect is 
obtained by stirring the static continuous phase with a stirring bar; 
the organic solvent is evaporated and the dispersed particles recov-
ered by filtration. d Continuous operation device: both the inner 
organic phase or the continuous phase flow through two separate 
loops that connect the respective reservoirs to the emulsifying cham-
ber allowing continuous operation. Adapted from Piacentini et  al. 
(2014)
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could be controlled by prior tuning of spray-freezing condi-
tions (Cleland et al. 2001; Costantino et al. 2004).

A comparison of SFD with SD showed that the lipid-
PLGA particles obtained by SFD exhibited improved char-
acteristics in terms of size, yield, flowability, aqueous recon-
stitutibility, and aerosolization efficiency (Wang et al. 2012), 
supporting the usefulness of SFD even for the production of 
inhalable PLGA powders. Furthermore, SFD demonstrated 
superior performances compared to SD in encapsulating 
darbepoetin alfa, an erythropoiesis-stimulating protein, in 
PLGA MP in terms of yield and particle size control (Burke 
et al. 2004).

Beyond the highlighted virtues, a SFD caveat is the rela-
tive complexity of equipment setup at pilot/production scale, 
which demands particular care in the lab-to-plant transfer 
process, thing that can bear on manufacturing costs.

Other technologies

Hot‑melt extrusion

A well-known method for the encapsulation of hydropho-
bic drugs in PLA and PLGA matrices is hot-melt extrusion 
(HME). The technique consists in a series of continuous 
processes in which micronized drugs are dispersed in a 
polymer melt, extruded, and then cooled down and ground 
or milled into fine particles (Wichert and Rohdewald 1990; 
Makadia and Siegel 2011). If spherical particles are desired, 
the obtained ground or milled particles can be dispersed in 
a hot polymer or surfactant solution (Crowley et al. 2007; 
Lang et al. 2014).

In fact, it is possible to produce injectable MP depots 
by coupling HME with micronization methods, such as wet 
milling or jet-milling in order to obtain spherical particles 
(Nykamp et al. 2002; Guo et al. 2017b). HME is a cost-
effective method characterized by the absence of an organic 
solvent, continuous operation, and easy scale up. However, 
several limitations should be accounted many of which relate 
to drug exposure to thermal treatment and the often large 
number of steps required to produce smooth spherical MP 
(Wischke and Schwendeman 2008).

Potentially, the method could suit not only the encapsu-
lation of hydrophobic but even of hydrophilic drugs that 
could be dispersed in the polymer matrix as a micronized 
solid. Nevertheless, the use of high temperatures discour-
ages the application to biomolecules and biologics. Moreo-
ver, it should be minded that non-porous particles are usu-
ally obtained, feature that could slow down excessively the 
release of water-insoluble drugs.

Spray‑congealing

Another potentially appealing technique that to date has 
been sparingly employed for the production of PLA and 
PLGA MP is spray congealing (SC). This method consists 
in a unit operation in which a liquid melt is atomized into a 
cooling chamber. The liquid is atomized into a congealing 
gas, droplets are promptly frozen, and particles solidify upon 
removal of the gas. Several configurations exist in which a 
liquid melt or a solution can be processed. The congealing 
media in the cooling chamber change accordingly and can 
be a gas or a frozen non-solvent, which is usually layered 
with liquid nitrogen to favor the successive cryogenic solvent 
removal, see also the section referred to cryogenic solvent 
extraction (Cordeiro et al. 2013). In many ways, SC shows 
hybrid features between SD and HME. As such, SC is a 
platform suitable for the microencapsulation of thermosen-
sitive compounds, particularly proteins and peptides (Yeo 
et al. 2001).

As anticipated above, a modified SC technique has been 
developed in the Alkermes’ ProLease® platform (Johnson 
et al. 1997). This technology has been employed for the man-
ufacturing of Nutropin Depot®, a Genentech’s somatotropin 
drug product discontinued in 2004. The Alkermes platform 
was also used in the Merck Serono’s Prolease r-hFSH, a 
sustained release formulation of recombinant human follicle 
stimulating hormone for the treatment of infertility, and the 
Janssen’s Procrit Prolease, a recombinant human erythropoi-
etin to control red blood cells production, both discontinued 
at phase 1 clinical and pre-clinical stage, respectively.

In situ forming microparticles

Worth citing is a strategy that does not rely on any peculiar 
process or equipment, but consists in an injectable solution 
that precipitates in situ forming a sustained release MP depot 
(Royals et al. 1999; Jain et al. 2000; Luan and Bodmeier 
2006).

Drug/polymer solutions are dissolved in water-miscible 
solvents, such as n-methyl pyrrolidone or dimethylsulfoxide 
(DMSO), that are then emulsified in an external oil phase. 
Upon injection, the solvent diffusion causes precipitation 
of the polymer resulting in MP entrapping the drug to 
be released. Naturally, safety issues limit types of solvents 
and oils that thus have to be carefully selected (Wischke and 
Schwendeman 2008).

This approach overcomes some drawbacks of conven-
tional techniques, including manufacturing costs and com-
plexities of manufacturing processes. Several FDA-approved 
long-acting depots exploiting this technology are available 
in the market (Table 4). An example is the leuprolide acetate 
depot which releases the drug over months.
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Advanced manufacturing technologies

Microfluidics

Microfluidics is a technique that is quickly growing and 
that consents to prepare particles of the same dimensions 
and therefore characterized by a reproducible drug release 
pattern (Lee et al. 2016). To produce PLA/PLGA particles, 
a microfluidic device that may have different geometries 
is required. The device comprises of several microchan-
nels, etched or molded in different materials such as glass, 
silicone or poly(dimethylsiloxane) (PDMS), that are con-
nected together. These microchannels are filled in thanks 
to inlets and fluids flow rate is controlled by micropumps 
and microvalves until they are withdrawn through the device 
outlet (Swider et al. 2018). This relatively new strategy of 
PLA/PLGA MP production can be scaled up when PDMS 
devices are employed since their production is easy, cheap 
and grants the fabrication of channels with reproducible 
dimensions. This is on the contrary harder to obtain with 
glass devices. The limit of using PDMS microfluidics is 
their swelling behavior in contact with organic solvent such 
as methylene chloride. To avoid this problem, the micro-
channels inner surface can be coated with a PVA/glycerol 
solution (Duncanson et al. 2012; Li et al. 2015). Polymeric 
MP are produced exploiting single, double or multiple 
emulsions that can be formed in the device choosing the 
proper microchannel geometry. Particle dimensions can be 
easily tailored modifying the solvent nature, the polymer 
and stabilizer concentration, and the flow rate of the dif-
ferent solutions. Monodisperse droplets are obtained since 
the emulsion formation is strictly controlled passively or 
actively handling the flow rate, the volume ratio of the aque-
ous and organic phases, and the device geometry. The main 
difference between the active and passive technique is the 

use of additional accessories for the active technique such 
as microvalves, heaters that require energy to be actuated 
(Vladisavljević et al. 2013). Device microchannel geometry 
can be divided in T-junction, flow-focusing and co-flow 

Table 4   PLA//PLGA based in situ forming depot technologies and products marketed or under clinical development (not intended to be fully 
exhaustive)

Investigational or brand API Indication(s) Encapsulation technology Development stage

Atridox® Doxycycline Periodontitis AtriGel® Marketed
Atrisorb® Doxycycline Periodontitis AtriGel® Marketed
CAM2029 Ocreotide Acromegaly and neuroendo-

crine tumors
FluidCrystal® Phase I–II

CAM2032 Leuprolide acetate Prostate cancer FluidCrystal® Phase I–II
CAM2038 Buprenorphine Opioid dependence FluidCrystal® Approved
CAM4072 Setmelanotide Genetic obesity FluidCrystal® Phase I–II
Eligard® Leuprolide acetate Prostate cancer AtriGel® Marketed
mdc-iRM Not known Schizophrenia BEPO® Phase III
mdc-CWM Not known Pain and inflammation BEPO® Phase II
Perseris™ Risperidone Schizophrenia AtriGel® Approved
Sublocade® Buprenorphine Opioid dependence AtriGel® Marketed

Fig. 3   Microfluidic channel geometries; a T-junction geometry: the 
aqueous phase flows orthogonally into the oil phase; b flow-focusing 
geometry: the oil phase enters orthogonally the channel while the 
aqueous phase flows coaxially into the oil phase flow; the oil phase 
flows through a bottleneck junction and the pressure drags the aque-
ous droplets into the oil stream; c co-flow geometry: the aqueous 
phase enters coaxially into the co-current oil phase flow; the oil phase 
pressure pushes the aqueous droplets into the parallel oil stream. 
Adapted from Swider et al. (2018)
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geometries (Fig. 3). The T-junction microfluidic device pos-
sesses two inlets: the continuous phase flows through hori-
zontally, while the organic phase containing the polymer is 
introduced from the second inlet and encounters the aqueous 
phase perpendicularly. In the flow focusing device, the con-
tinuous phase is introduced in the two side channels while 
the organic phase flows through the central channel. The 
organic phase is then forced to pass through a thin orifice 
by the symmetric shear forces of the aqueous phase meeting 
the organic solution from the two lateral channels (Martín-
Banderas et al. 2005; Keohane et al. 2014; Perez et al. 2015; 
Li et al. 2015). The flow-focusing geometry device usually 
consents to obtain smaller droplets and therefore smaller 
particles than T-junction microfluidics due to the shearing 
forces applied (Xu et al. 2009; Vladisavljević et al. 2013). 
In the co-flow system (third geometry), both phases flow in 
the same direction but in two different coaxial microchan-
nels. The organic phase flows in the inner channel, while the 
continuous phase flows in the outer microchannel. To obtain 
double or multiple emulsions, different geometries can be 
combined, such as the flow-focusing microchannels with the 
co-flow system (Duncanson et al. 2012).

Electrospray

The main difference between electrospinning and electro-
spray is the polymer solution concentration. To obtain par-
ticles, it is necessary to work with a low polymer concentra-
tion. The electric field applied to the syringe containing the 
polymer solution pushes the polymer outside the syringe 
needle to form monodispersed particles on the receiving 
grounded electrode (Oliveira and Mano 2011). Electro-
spray has the great advantage of being a one-step process. 
By tuning the voltage intensity applied, the solution flow 
rate, the drying time and rate, that depend on the distance 
between the needle tip and the collection plate and on the 
solvent vapor pressure, respectively, it is possible to produce 
particles with specific features in terms of dimensions and 
morphology (Berkland et al. 2004; Xie et al. 2010). The use 
of concentric coaxial nozzle conveying two different fluids 
(i.e., the inner one that is surrounded by the outer fluid) is an 
evolution of the electrospray process (Lee et al. 2010; Han 
et al. 2016). The encapsulation efficiency is commonly 100% 
and particles are characterized by a core of API surrounded 
by a PLA/PLGA outer layer. Electrospray apparatuses 
equipped with a coaxial nozzle are particularly indicated 
for the encapsulation of peptides and proteins, considering 
the high drug loading and the limited stress to which the 
drug is exposed (Xie and Wang 2007; Xie et al. 2008; Ye 
et al. 2010). Recently, ranibizumab has been encapsulated 
with 70% efficiency and a high activity preservation (Zhang 
et al. 2015).

Microfabrication methods

Soft lithography is a family of techniques, including micro-
contact printing, micro-molding, nano-transfer printing, 
having in common the use of an elastomeric mold. Soft 
lithography is for instance the technique used to produce 
the microfluidic device mentioned above. The material used 
to produce the mold is commonly PDMS because of its low 
cost, biocompatibility, low toxicity, chemical inertness, 
and its mechanical flexibility and durability. PDMS mold 
can be fabricated with micro- or nanostructures to produce 
micro- or nanoparticles as reported in the paper by Guan 
et al. (Guan et al. 2006). Associating both micro-contact 
printing and micro-transfer molding, PLGA particles of dif-
ferent shape and size were produced evidencing the versatil-
ity of these techniques with respect to the lab-scale meth-
ods (Guan et al. 2006). To speed up and facilitate particle 
recovery from the mold, a template of gelatin was prepared 
exploiting the sol–gel phase transition of hydrogels. In this 
way, once the organic solvent containing PLGA evaporated, 
particles were recovered dissolving the gelatin mold in water 
at 40 °C and centrifugating the resultant suspension. This 
strategy is easily scalable, cheap and the conditions to which 
API are exposed are mild, making this technique advanta-
geous to prepare MP for drug delivery (Acharya et al. 2010, 
2011). These microfabrication methods are also reported in 
literature under the acronym PRINT that stands for Particle 
Replication In Nonwetting Templates (Fig. 4) (Enlow et al. 
2011; Perry et al. 2011; Swider et al. 2018). This technol-
ogy is mainly adopted for the production of nanoparticles 
but can also be applied to produce MP loaded with differ-
ent API, both hydrophilic and lipophilic (e.g., doxorubicin) 
(Enlow et al. 2011). The main difference with respect to the 
processes described previously is the use of a different mate-
rial to produce the mold. In particular, highly fluorinated 
perfluoropolyether (PFPE) elastomer is employed instead of 
PDMS. This new elastomer does not swell in the presence 
of organic solvents and is therefore advantageous in com-
parison to PDMS. It also possesses a low surface energy, a 
high gas permeability, a low toxicity, good mechanical and 
elastic properties and is chemically stable and resistant to 
solvents. The PRINT platform consents to produce particles 
of potentially any shape and size characterized by high load-
ing efficiency with low polydispersity index. Monodisperse 
particles have the great advantage of showing a predictable 
drug release pattern and are therefore very suitable for drug 
delivery applications (Swider et al. 2018).

Inkjet technology

Inkjet printing is another technology that consents to con-
trol the shape and the dimensions of the particles produced 
(Ramazani et al. 2016; Gupta et al. 2017). The ink consists 
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in an organic solution or in a w/o emulsion containing the 
polymer that is PLA or PLGA and the API. The inkjet tech-
nology has first been proposed by Berkland et al. with the 
name of Precision Particle Fabrication® (PPF) technology 
(Berkland et al. 2001). Using this technique, PLGA MP with 
dimensions in the range 30–85 μm were obtained starting 
from an emulsion. In particular, an ultrasonic transducer was 
employed to break the liquid jet emitted from the nozzle into 
droplets. The nozzle was sunk in a water bath containing a 
stabilizer where the solvent was progressively evaporated 
to recover monodispersed particles (Berkland et al. 2007). 
Besides ultrasounds, a piezoelectric actuator can be used 
to break the inkjet in small droplets. In this case, several 
parameters of the ink such as volatility, viscosity and surface 
tension have to be optimized to be processable. With a single 
30 μm nozzle, 24,000 drops per second corresponding to 
86 million particles or 8 mL/h can be generated. Using this 
kind of nozzle submerged in an aqueous phase stabilized 
with polyvinyl alcohol, monodispersed particles with dimen-
sions of about 15 μm were obtained (Böhmer et al. 2010). 
Palmer et al. also used a piezoelectric actuator to produce 
octreotide acetate and ciclosporin A loaded polyester par-
ticles. Here, the API and the polymer were solubilized in 
DMSO and inkjetted in a transverse anti-solvent flow that 
was water or tert-butanol/water solution (Fig. 5). The possi-
bility to scale-up this technology was studied using an inkjet 
device featuring 256 nozzles working at 2–4 kHz frequency 
producing more than 1 million particles per second (Palmer 

et al. 2017). With the same scale-up purpose, Orbis Bio-
sciences, Inc. (Orbis Biosciences 2019), founded by Berk-
land and Fishback, has developed an inkjet device able to 
produce kg/h and even kg/min particles with dimensions 
comprised in the range 10 μm to 1 mm. The other impor-
tant advantages of this technique are the absence of material 
wastage, reduction of manufacturing cost and process steps 
(Lee et al. 2012; Qi et al. 2018). A variant of the process 
previously described has been reported by Lee et al. Droplets 
were produced using a continuous mode piezoelectric device 
and particles were recovered after 2 h drying of the ink that 
was printed on a glass slide. The particles showed distinctive 
paclitaxel release rate according to shape (Lee et al. 2012).

Combined technologies

PLA and PLGA MP were produced using different com-
bined technologies. PLGA particles were prepared using a 
inkjet process followed by thermally induced phase separa-
tion (TIPS). Briefly, a PLGA solution in dimethyl carbon-
ate was inkjetted using a piezoelectric actuator and drop-
lets were collected in liquid nitrogen to freeze the solvent, 
obtaining phase separation. The solvent was finally removed 
by vacuum freeze-drying to recover porous particles (Go 
et al. 2014). Spray-drying is an industrial production method 
of PLA/PLGA particles that suffers of some drawbacks 
such as the large particle size distribution and morphol-
ogy related to the atomization technology. To obtain more 

Fig. 4   Particle production using the PRINT method. The mold is ini-
tially prepared using PDMS, gelatin or PFPE by wetting the silicon 
wafer with micro- and nanosized patterns and is photocured to gener-
ate an elastomeric PRINT mold; then a solution of the polymer and 
the API is poured in the mold cavities using a film-split technique 
against a high-surface-energy polyethylene terephthalate counter 
sheet; particles of the desired shape and dimensions are obtained by 

solvent evaporation, photocuring or temperature quenching. The solid 
particles are removed by contact with an adhesive layer and freed by 
dissolving the adhesive layer. Reprinted by permission from Springer 
Nature: Springer eBook, Pharmaceutical Powder and Particles by 
Anthony J. Hickey and Stefano Giovagnoli, American Association of 
Pharmaceutical Scientists, 2018
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homogeneous particle size and morphology, it is possible 
to combine SD with several droplet generation processes 
able to generate monodisperse droplets. To this aim, inkjet 
droplet generators or microfluidic jet were combined with 
SD obtaining uniform particles with tuneable characteristics 
for the encapsulation and controlled delivery of API (Liu 
et al. 2015). Another combined technology consists in the 
production of microdroplets with uniform dimensions using 
an ultra-fine particle processing system (UPPS) followed 
by solvent evaporation in a spray-dryer. The use of UPPS 
allows to evaporate the solvent at ambient temperature as a 
result of the long path the droplets have to travel. UPPS uses 
a nozzle that feeds the solution or suspension at the center 
of a rotating disk (1000–16,000 rpm) that drives the fluid 
towards its circumference obtaining a thin fluid layer that 
is nebulized in fine droplets. The droplets travel in the body 
cavity of the UPPS where endocentric airflow and tangent 
air vortex progressively dry the droplets (Zhu et al. 2015). 

These combined technologies were used to produce risperi-
done (Fu et al. 2012) and exenatide loaded PLGA MP (Zhu 
et al. 2015) with good encapsulation efficiency, homogene-
ous dimensions and prolonged in vitro release. This com-
bined technology is particularly advantageous because heat 
sensitive macromolecules can be encapsulated under mild 
conditions (Zhu et al. 2015).

Technological and regulatory barriers

In recent years, the interest in depot drug delivery systems 
has experienced a noticeable growth in light of novel market 
opportunities. The extension of life expectancy, the general 
population aging, and striking risk factors, especially across 
industrialized areas, have led to a significant increase of 
chronic ailments. Chronic conditions place emphasis on the 
required high compliance of treatment in terms of dosing 
frequency and self-medication. Therefore, to achieve such a 
goal, prolonged and sustained action and low-invasive and 
easy administration modalities are compulsory. In this sce-
nario, depot systems find a logical prominent position, which 
explains the estimated growth of this market area over the 
next few years (Greystone Research Associates 2018).

Biodegradable PLA and PLGA depots assume a natural 
leading role in this development pipeline for the aforemen-
tioned properties of such polymers and the vast possibility 
of formulation and modulation of their drug release behav-
ior. Such a flexibility and versatility are witnessed by the 
several proprietary technologies that have been employed 
to produce a number of marketed PLGA and PLA sustained 
release depots (Table 1). The possibility of a long-term sus-
tained release and safety of these formulations raise attrac-
tive perspectives for the treatment of chronic or semi-chronic 
conditions particularly when precise adherence to therapy 
is required, e.g., the case of antipsychotic therapies. On the 
other hand, compliance of administration modality can be 
met by existing and emerging smart needle-free injection 
technologies, which enable a dramatic reduction of inva-
siveness and sterility concerns as well as improved usability 
(Barolet and Benohanian 2018). These technologies exploit 
the transient permeation effect provoked by high speed jets 
of liquids or colliding particles. Skin permeabilization is the 
result of the shockwave produced by the liquid or gas/parti-
cles impinging the stratum corneum and causing a reversible 
disruption of the skin layers over a microseconds timeframe 
(Fig. 6). The propelling power is provided by mechanical 
forces such as spring actuated plungers, compressed gas, e.g. 
nitrogen and carbon dioxide, and electrical power (Kale and 
Momin 2014; Schoubben et al. 2015).

Modern injectors show considerable advantages com-
pared to syringes or pen injectors (Guo et al. 2017a), such 
as a disposable nozzle, no sterility preservation issues, and 

Fig. 5   Particle production using the inkjet technology. The piezo-
electric actuator a nebulizes the polymer and the API solution, b in a 
transverse anti-solvent flow e, pumped with a pulseless micropump d 
from an anti-solvent reservoir (c). Adapted from Palmer et al. (2017)
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patient-friendly and high compliance features. Several FDA-
approved injectors have been marketed and regulated by spe-
cific guidelines (FDA Guidance for Industry 2013).

Therefore, today technologies are available to move PLA/
PLGA MP depots towards a new industrial era. Unfortu-
nately, the technical and regulatory gap that separates inject-
able PLA/PLGA MP depots from well-established pharma-
ceutical products, e.g. oral, is still dramatically wide. Official 
validated methods for MP testing, in particular dissolution 
and stability assays, are lacking. Non-compendial drug 
release methods such as dialysis sac, reverse dialysis sac, 
and sample-and-separate have been proposed (Andhariya 
and Burgess 2016), but no standardization is warranted. A 
possible option may be the flow-through cell based USP 
apparatus 4 that has been found to grant good sink con-
ditions, minimize microsphere aggregation, better mimic 
in vivo conditions, and it better suited long-term release 
studies (Rawat et al. 2011; Tomic et al. 2016). Recently, even 
the use of an orbital shaker based method has been positively 
evaluated, yet its application is far behind standardization 
(Garner et al. 2018).

Due to the long duration of action of PLA/PLGA depots, 
accelerated studies are desirable to shorten the testing period 
either for release or stability assessment. However, albeit some 
studies have demonstrated feasibility of accelerated release 
or stability assays, since such experiments are performed at 
increased temperatures, reliability and consistency of such 
approaches should be always checked and no standardization 
has been achieved so far. The reason is the effect of tempera-
ture on the low glassy polyester matrix, which tends to anneal 
if the testing temperature approaches the polymer glass transi-
tion temperature. Such critical features apply also to stability 
testing of MP. In this regard, directions are provided by the 
ICH Q1A guidelines that establish the proper conditions to 
assess product quality (ICH Q1A 2003).

This lack of compendial or biorelevant in vitro testing 
and related characterization standards as well as of adequate 
guidelines deeply hinder developability of PLA/PLGA depots. 
Indeed, bioequivalence assessment for these products is basi-
cally unmet. The reason is that PLGA/PLA heterogeneity and 
differences in manufacturing methods deeply influence the 
product physicochemical properties and thus release behavior 
and bioavailability. Even under high qualitative and quanti-
tative sameness, bioequivalence may not be ensured (Zheng 
et al. 2017). Furthermore, adequate clinical settings along with 
sterilization requirement are another unmet challenge that are 
under intense evaluation.

All such reasons explain the to date absence of PLGA/PLA 
based generic drug products. The increased effort directed to 
overcome such considerable challenges has led to dedicated 
initiatives by regulatory agencies. The FDA’s OGD has issued 
seven specific recommendations for MP products as guidance 
on bioequivalence study design (Wang et al. 2016) and it is 
working to develop recommendations for PLA/PLGA-based 
drug products.

Recognizing these challenges, a FDA’s regulatory science 
research program was started in 2012 under the generic drug 
user fee amendments and is currently under implementation by 
OGD to provide new tools to support generic product develop-
ment. Under this aegis, OGD has granted multiple research 
projects on PLA/PLGA based drug products involving MP, 
implants, and in situ gelling systems. These projects encom-
passed development of in vitro-in vivo correlations, in vitro 
release testing methods, characterization of PLA/PLGA 
polymers and formulations, and modeling and simulation 
of PLA/PLGA-based drug products. In spite of such efforts, 
none of the ongoing programs has completed its task so far, 
even though progresses in the field are continuous. Recently, 
an approach based on reverse engineering has been proposed 
to support generic development for 1-month Lupron® depot 
(Zhou et al. 2018). This could represent a valuable strategy to 
be expanded to other PLA/PLGA based depots.

Fig. 6   Needle-free injection device injecting a high-speed jet of liq-
uid (a) or of powder (b). In the first case, a piston pushes the liquid 
through a nozzle, which produces a jet at > 100  m/s (velocity); the 
jet starts the formation of a hole on the skin through surface erosion, 
fracture, or other skin disruptive processes; a few tens of microsec-
onds of prolonged impingement of the jet provokes progressive 
increase of hole depth; the liquid accumulates in the skin hole slow-
ing down the jet and further increase of the hole is stopped; the con-
sequent stagnation favors diffusion of the liquid into the skin. In the 
case of powder injections, a chamber filled with the powder is pres-
surized with a gas and a jet is generated by rupture of a membrane 
set; the particles impinge the skin surface leading to formation of a 
hole into the skin depositing in a spherical pattern, penetrate across 
the stratum corneum, and distribute completely into the stratum cor-
neum and the viable epidermis; to produce a proper powder jet, par-
ticle densities of about 1 g/cc and a mean diameter > 20 μm are desir-
able. Adapted from Kale and Momin (2014)
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Current scenario and future perspectives

The overall picture drawn so far looks rather twisted and the 
road to generic PLA/PLGA MP based products seems wind-
ing and full of barriers. These products may allow different 
routes of administration, such as pulmonary and parenteral, 
and a sustained effect that is highly beneficial to the treat-
ment of chronic disease conditions. Availability of generic 
products, especially for LAI, would ease patient’s access 
and adherence to therapy, considering the high production 
and market costs. This is particularly true if considering 
schizophrenic patients who have to be treated under rigorous 
medical control. A single long-term injection would improve 
compliance and nearly erase the non-adherence risk.

In particular, LAI products show a higher cost/effective-
ness compared to oral antipsychotic treatment (Yang et al. 
2009) with reduced hospital admissions, relapse rates and 
length of inpatient stay, especially for patients who may be 
at risk of non-adherence with oral antipsychotics (Peng et al. 
2011; Nikolić et al. 2017).

Cost comparison of antipsychotic LAI versus other phar-
maceutical forms clearly shows that LAI products may be 
more expensive compared to tablets or other injectables, 
however the difference is by far counterbalanced by the 
lower costs that burden on the health system for hospitaliza-
tion, home visit and medical assistance (Ravasio et al. 2015; 
Patel et al. 2018; González et al. 2018). Similar considera-
tions have been found to apply even in other therapeutic 
areas such as cancer and contraception (Ayyagari et al. 2017; 
Di Giorgio et al. 2018).

The clinical benefits of LAI are evident although their 
employment is still controversial as dosing flexibility and 
self-management skills might be undermined. Therefore, 
clinicians ought to be required to prescribe LAI treatments 
on a case by case basis by evaluating patient’s risks and 
benefits (Mutsatsa 2017).

Naturally, this overall positive cost/effectiveness profile of 
LAI applies to PLA/PLGA MP based LAI as well. For this 
reason and the expired or expiring patent coverage for several 
products marketed in the 90s, the European Medicine Agency 
and the FDA are increasingly committed in the establishment 
of proper standards and guidelines useful to underpin the 
generic development of these peculiar products (EMA 2014).

As we have tried to point out in this review, the unmet 
aspects of PLA/PLGA MP based product development are 
reciprocally interconnected and influential on either the 
regulatory or manufacturing side. In fact, the progress of 
manufacturing techniques is hindered not only by the high 
complexity of such products but also, to a significant extent, 
by the absence of adequate standards and specific regula-
tions, which impact the assessment of suitable clinical set-
tings as well. Such a scenario is complicated further by the 

high costs associated with the technology employed to date 
for the manufacturing of PLA/PLGA MP based products. 
As highlighted above, victims of such miscalculations have 
been the discontinued Genentech’s Nutropin Depot®, Merck 
Serono’s Prolease r-hFSH, and Janssen’s Procrit Prolease, all 
employing the Alchermes’ Prolease® platform. Unsustain-
able management costs were at the origin of Nutropin dis-
continuation and, beyond undeclared issues, they also likely 
impaired the development of the other products that never 
reached the market.

This negative experience suggests that the choice of the 
manufacturing technology should be accurately weighed 
and it should evolve withholding an intrinsic simplicity 
and control. These aspects are crucial as they considerably 
impact the health technology assessment (HTA) process. In 
this regard, we have already underlined the importance of a 
proper evaluation of the manufacturing technology costs in 
HTA for advanced pharmaceutical forms that requires the 
contribution of an expert working side by side with clini-
cians (Panzitta et al. 2015). Unfortunately, still this aspect 
demands full implementation.

Seeing the glass half-full, the new opportunities driven 
by the novel emerging manufacturing technologies con-
cisely described in this review will surely push forward the 
development of innovative and more reliable manufacturing 
methods for PLA/PLGA MP based depots. The contribu-
tion of the technology advancements recorded in the last 
years hold promises for the future assessment of robust and 
high-throughput manufacturing processes. Proper cost man-
agement favored even by new technological solutions may 
grant a bright future development for techniques such as 
SD and SCF that, albeit at present demanding, clearly hold 
considerable advantages compared with other techniques, 
especially considering the current tendency towards continu-
ous manufacturing. In addition, microfluidics and membrane 
emulsification methods and combined techniques, such as 
TIPS and UPPS may help to meet the so far unmet demand 
for lean and efficient PLA/PLGA based products manufac-
turing system.

However, the future of this promising products is pend-
ing upon the fulfilment of updated and novel quality stand-
ards and guidelines for the consolidation of development 
processes.
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