Skip to main content

Advertisement

Log in

Efficacy of Native Strains of Arbuscular Mycorrhizal Fungi on Maize Productivity on Ferralitic Soil in Benin

  • Full-Length Research Article
  • Published:
Agricultural Research Aims and scope Submit manuscript

Abstract

In a context of sustainable agriculture, the use of arbuscular mycorrhizal fungi (AMF) represents a potential tool for environmentally friendly agricultural management in the face of the challenges of climate change and the reduction in the costs and disadvantages of mineral fertilization. This study therefore aims to evaluate the performance of five indigenous strains of AMF (Glomus caledonius, Rhizophagus intraradices, Funneliformis geosporum, Acaulospora capsicula, Acaulospora dilatata and Diversispora globifera) on maize productivity. The experimental design was a split-split plot with three replicates with chemical fertilizer and type of mycorrhizal fungus as factors. The different parameters of growth, yield and mycorrhization were evaluated. The results obtained showed that inoculation of corn with the native strains of AMF had a significant effect (P < 0.01) on corn growth and yield. Of all the native AMF strains, co-inoculation of G. caledonius + R. intraradices + F. geosporum in combination with 50% NPK + Urea of the recommended dose induced the best growth and an increase in maize grain yield of 62.5% compared to uninoculated plants. In addition, the root colonization rate of maize plants was 46% for a quantity of 2 and 3 spores/g of soil. The study shows the possibility of valorizing Benin’s indigenous AMF as bio-fertilizers while reducing by 50% the use of mineral fertilizers for maize cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aboubacar K, Ousmane ZM, Amadou HI, Issaka S, Zouberou AM (2013) Effet de la co-inoculation du rhizobium et de mycorhizes sur les performances agronomiques du niébé [Vigna unguiculata (L.) Walp.] au Niger. J Appl Biosci 72(1):5846–5854. https://doi.org/10.4314/jab.v72i1.99672

    Article  Google Scholar 

  2. Affokpon A, Coyne DL, Lawouin L, Tossou C, Agbèdè RD, Coosemans J (2011) Effectiveness of native West African arbuscular mycorrhizal fungi in protecting vegetable crops against root-knot nematodes. Biol Fertil Soils 47(2):207–217. https://doi.org/10.1007/s00374-010-0525-1

    Article  Google Scholar 

  3. Aguegue RM, Noumavo PA, Gustave DD, Baba-Moussa L (2017) Arbuscular mycorrhizal fertilization of corn (Zea mays L.) cultivated on ferrous soil in Southern Benin. J Agric Stud 5(3):99–115. https://doi.org/10.5296/jas.v5i3.11881

    Article  Google Scholar 

  4. Ames RN, Bethlenfalvay GJ (1987) Localized increase in nodule activity but no competitive interaction of cowpea rhizobia due to pre-establishment of vesicular-arbuscular mycorrhiza. New Phytol 106(2):207–215. https://doi.org/10.1111/j.1469-8137.1987.tb00136.x

    Article  Google Scholar 

  5. Arumugam R, Enti VR, Bingbing L, Xiaojun W, Baskaran K, Kong FF, Kit GW (2010) DAvinCi: A cloud computing framework for service robots. In: 2010 IEEE international conference on robotics and automation. IEEE, pp 3084–3089

  6. Assogba S, Noumavo PA, Dagbenonbakin G, Agbodjato NA, Akpode C, Koda AD, Aguegue MR, Bade F, Adjanohoun A, Falcon Rodriguez A, de la Noval Pons BM, Baba-Moussa L (2017) Improvement of Maize productivity (Zea mays L.) by Mycorrhizal Inoculation on Ferruginous Soil in Center of Benin. Int J Sustain Agric Res 4(3):63–76. https://doi.org/10.18488/journal.70.2017.43.63.76

    Article  Google Scholar 

  7. Azcón-Aguilar C, Barea JM (1997) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens—an overview of the mechanisms involved. Mycorrhiza 6(6):457–464. https://doi.org/10.1007/s005720050147

    Article  Google Scholar 

  8. Bagayoko M, George E, Römheld V, Buerkert A (2000) Effects of mycorrhizae and phosphorus on growth and nutrient uptake of millet, cowpea and sorghum on a West African soil. J Agric Sci 135(4):399–407. https://doi.org/10.1017/S0021859699008254

    Article  Google Scholar 

  9. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266. https://doi.org/10.1146/annurev.arplant.57.032905.105159

    Article  PubMed  CAS  Google Scholar 

  10. Balogoun I, Saïdou A, Kindohoundé NS, Ahoton EL, Amadji GL, Ahohuendo BC, Ahanchédé A (2015) Soil fertility and biodiversity of arbuscular mycorrhizal fungi associated with Cashew’s (Anacardium occidentale L.) cultivars characteristics in Benin (West Africa). Int J Plant Soil Sci 51:50–63. https://doi.org/10.9734/IJPSS/2015/13817

    Article  Google Scholar 

  11. Basu S, Rabara RC, Negi S (2018) AMF: The future prospect for sustainable agriculture. Physiol Mol Plant Pathol 102:36–45. https://doi.org/10.1016/j.pmpp.2017.11.007

    Article  Google Scholar 

  12. Bati CB, Santilli E, Lombardo L (2015) Effect of arbuscular mycorrhizal fungi on growth and on micronutrient and macronutrient uptake and allocation in olive plantlets growing under high total Mn levels. Mycorrhiza 25(2):97–108. https://doi.org/10.1007/s00572-014-0589-0

    Article  CAS  Google Scholar 

  13. Benjelloun S, El Harchli EH, Amrani Joutei K, El Ghachtouli N, Benbrahim F, El Yamani J (2014) Etude De L’importance De La Mycorhization Dans La Synthèse Des Composés Phénoliques Chez Le Maïs En Condition De Stress Hydrique. Int J Eng Sci 4(12):43–49

    Google Scholar 

  14. Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1559. https://doi.org/10.3389/fmicb.2015.01559

    Article  PubMed  PubMed Central  Google Scholar 

  15. Blal B, Morel C, Gianinazzi-Pearson V, Fardeau JC, Gianinazzi S (1990) Influence of vesicular-arbuscular mycorrhizae on phosphate fertilizer efficiency in two tropical acid soils planted with micropropagated oil palm (Elaeis guineensis Jacq). Biol Fertil Soils 9(1):43–48. https://doi.org/10.1007/BF00335860

    Article  CAS  Google Scholar 

  16. Crespo R (2015) Impact of arbuscular mycorrhizal fungi on the physiology of maize genotypes under variable nitrogen and phosphorus levels. Theses, Dissertations, and Student Research in Agronomy and Horticulture. 87. http://digitalcommons.unl.edu/agronhortdiss/87.

  17. Davet P (1996) Vie microbienne du sol et production végétale. Editions Quae

  18. Douds DD Jr, Galvez L, Janke RR, Wagoner P (1995) Effect of tillage and farming system upon populations and distribution of vesicular-arbuscular mycorrhizal fungi. Agric Ecosyst Environ 52(2–3):111–118. https://doi.org/10.1016/0167-8809(94)00550-X

    Article  Google Scholar 

  19. Duponnois R, Plenchette C, Thioulouse J, Cadet P (2001) The mycorrhizal soil infectivity and arbuscular mycorrhizal fungal spore communities in soils of different aged fallows in Senegal. Appl Soil Ecol 17(3):239–251. https://doi.org/10.1016/S0929-1393(01)00132-9

    Article  Google Scholar 

  20. Fernández F, Gómez R, Vanegas LF, Martínez MA, de la Noval BM, Rivera R (2000) Producto inoculante micorrizógeno. Oficina Nacional de Propiedad Industrial. Cuba, Patente (22641)

  21. Ferro Valdés EM, Chirino González E, Márquez Serrano M, Mirabal Báez E, Ríos Labrada H, Guevara Hernández F, Alfaro Hernández F (2013) Experiencias obtenidas en el desarrollo participativo de híbridos lineales simples de maíz (Zea mays, L.) en condiciones de bajos insumos agrícolas. Cultivos Tropicales 34(2):61–69

    Google Scholar 

  22. Fotso B, Nandjui J, Voko DRRB, Amoa JA, Brou YC, Niemenak N (2019) Native arbuscular mycorrhizal fungi increased resistance of two plantain varieties (Fhia 21 and Orishele), under water deficit conditions in Cote d’Ivoire. Microbiol Nat 1:16–28. https://doi.org/10.26167/XXWD-J920

    Article  Google Scholar 

  23. Garmendia I, Mangas VJ (2014) Comparative study of substrate-based and commercial formulations of arbuscular mycorrhizal fungi in romaine lettuce subjected to salt stress. J Plant Nutr 37(11):1717–1731. https://doi.org/10.1080/01904167.2014.889149

    Article  CAS  Google Scholar 

  24. Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46(2):235–244. https://doi.org/10.1016/S0007-1536(63)80079-0

    Article  Google Scholar 

  25. Giovanetti M, Mosse B (1980) An evaluation for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol 84:489–500. https://doi.org/10.1111/j.1469-8137.1980.tb04556.x

    Article  Google Scholar 

  26. Giovannetti M, Avio L, Salutini L (1991) Morphological, cytochemical, and ontogenetic characteristics of a new species of vesicular–arbuscular mycorrhizal fungus. Can J Bot 69(1):161–167. https://doi.org/10.1139/b91-023

    Article  CAS  Google Scholar 

  27. Glassop D, Smith SE, Smith FW (2005) Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta 222(4):688–698. https://doi.org/10.1007/s00425-005-0015-0

    Article  PubMed  CAS  Google Scholar 

  28. González Cañizares PJ (2014) Manejo efectivo de la simbiosis micorrízica arbuscular vía inoculación y la fertilización mineral en pastos del género Brachiaria (Doctoral dissertation, Instituto Nacional de Ciencias Agrícolas).

  29. Grant C, Bittman S, Montreal M, Plenchette C, Morel C (2005) Soil and fertilizer phosphorus: effects on plant P supply and mycorrhizal development. Can J Plant Sci 85(1):3–14. https://doi.org/10.4141/P03-182

    Article  Google Scholar 

  30. Hamel C, Smith DL (1991) Plant development in a mycorrhizal field-grown mixture. Soil Biol Biochem 23(7):661–665. https://doi.org/10.1016/0038-0717(91)90080-4

    Article  Google Scholar 

  31. Herrera RA, Ferrer RL, Furrazola E, Orozco MO (1995) Estrategia de funcionamiento de las micorrizas VA en un bosque tropical. Biodiversidad en Iberoamérica. Ecosistemas, evolución y procesos sociales. Programa Iberoamericano de Ciencia y Tecnología para el desarrollo. Subprograma, Diversidad Biológica. Mérida (12: 1995)

  32. Houngnandan P, Yemadje RGH, Kane A, Boeckx P, Van Cleemput O (2009) Les glomales indigènes de la forêt claire à Isoberlinia doka (Craib et Stapf) à Wari-Maro au centre du Bénin. Tropicultura 27(2):83–87

    Google Scholar 

  33. Johnson JM, Houngnandan P, Kane A, Sanon KB, Neyra M (2013) Diversity patterns of indigenous arbuscular mycorrhizal fungi associated with rhizosphere of cowpea (Vigna unguiculata (L.) Walp.) in Benin, West Africa. Pedobiologia 56(3):121–128. https://doi.org/10.1016/j.pedobi.2013.03.003

    Article  Google Scholar 

  34. Kaeppler SM, Parke JL, Mueller SM, Senior L, Stuber C, Tracy WF (2000) Variation among maize inbred lines and detection of quantitative trait loci for growth at low phosphorus and responsiveness to arbuscular mycorrhizal fungi. Crop Sci 40(2):358–364. https://doi.org/10.2135/cropsci2000.402358x

    Article  Google Scholar 

  35. Kang Y, Khan S, Ma X (2009) Climate change impacts on crop yield, crop water productivity and food security—a review. Prog Nat Sci 19(12):1665–1674. https://doi.org/10.1016/j.pnsc.2009.08.001

    Article  Google Scholar 

  36. Koda AD, Yaoitcha AS, Allagbe M, Agbodjato NA, Dagbenonbakin G, Aguegue MR, Baba-Moussa L (2020) Effect of an organic fertilizer based on native rhizophagus intraradices on Zea mays L. yield in Northern Benin. Asian J Agric Hortic Res. https://doi.org/10.9734/ajahr/2020/v5i230046

    Article  Google Scholar 

  37. Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest package: tests in linear mixed effects models. J Stat Softw 82(13):1–26. https://doi.org/10.18637/jss.v082.i13

    Article  Google Scholar 

  38. Labidi S, Jeddi FB, Tisserant B, Yousfi M, Sanaa M, Dalpé Y, Sahraoui ALH (2015) Field application of mycorrhizal bio-inoculants affects the mineral uptake of a forage legume (Hedysarum coronarium L.) on a highly calcareous soil. Mycorrhiza 25(4):297–309. https://doi.org/10.1007/s00572-014-0609-0

    Article  PubMed  CAS  Google Scholar 

  39. Leye EHM, Ndiaye M, Diouf M, Diop T (2015) Etude comparative de l’effet de souches de champignons mycorhiziens arbusculaires sur la croissance et la nutrition minérale du sésame cultivé au Sénégal. Afr Crop Sci J 23(3):211–219

    Google Scholar 

  40. Li Z, Wu N, Liu T, Chen H, Tang M (2015) Effect of arbuscular mycorrhizal inoculation on water status and photosynthesis of Populus cathayana males and females under water stress. Physiol Plant 155(2):192–204. https://doi.org/10.1111/ppl.12336

    Article  PubMed  CAS  Google Scholar 

  41. Martín-Robles N, Lehmann A, Seco E, Aroca R, Rillig MC, Milla R (2018) Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species. New Phytol 218(1):322–334. https://doi.org/10.1111/nph.14962

    Article  PubMed  Google Scholar 

  42. Morris EK, Morris DJP, Vogt S, Gleber SC, Bigalke M, Wilcke W, Rillig MC (2019) Visualizing the dynamics of soil aggregation as affected by arbuscular mycorrhizal fungi. ISME J 13(7):1639–1646. https://doi.org/10.1038/s41396-019-0369-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Nagy R, Vasconcelos MJV, Zhao S, McElver J, Bruce W, Amrhein N, Bucher M (2006) Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.). Plant Biol 8(02):186–197

    Article  PubMed  CAS  Google Scholar 

  44. Navarro-Fernández CM, Aroca R, Barea JM (2011) Influence of arbuscular mycorrhizal fungi and water regime on the development of endemic Thymus species in dolomitic soils. Appl Soil Ecol 48(1):31–37. https://doi.org/10.1016/j.apsoil.2011.02.005

    Article  Google Scholar 

  45. Noumavo PA, Kochoni E, Didagbé YO, Adjanohoun A, Allagbé M, Sikirou R, Baba-Moussa L (2013) Effect of different plant growth promoting rhizobacteria on maize seed germination and seedling development. Am J Plant Sci 4(5):1013

    Article  Google Scholar 

  46. Ortas I (2012) The effect of mycorrhizal fungal inoculation on plant yield, nutrient uptake and inoculation effectiveness under long-term field conditions. Field Crop Res 125:35–48. https://doi.org/10.1016/j.fcr.2011.08.005

    Article  Google Scholar 

  47. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55(1):158-IN18. https://doi.org/10.1016/S0007-1536(70)80110-3

    Article  Google Scholar 

  48. Pinheiro J, Bates D, DebRoy S, Sarkar D, Heisterkamp S, Van Willigen B, Maintainer R (2017) Package ‘nlme’. Linear and nonlinear mixed effects models, version, 3

  49. Plenchette C, Clermont-Dauphin C, Meynard JM, Fortin JA (2005) Managing arbuscular mycorrhizal fungi in cropping systems. Can J Plant Sci 85(1):31–40. https://doi.org/10.4141/P03-159

    Article  Google Scholar 

  50. Rillig MC, Aguilar-Trigueros CA, Bergmann J, Verbruggen E, Veresoglou SD, Lehmann A (2015) Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol 205(4):1385–1388. https://doi.org/10.1111/nph.13045

    Article  PubMed  CAS  Google Scholar 

  51. Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171(1):41–53. https://doi.org/10.1111/j.1469-8137.2006.01750.x

    Article  PubMed  CAS  Google Scholar 

  52. Rivera R, Fernández F, Hernández-Jiménez A, Martín JR, Fernández K (2003) El manejo efectivo de la simbiosis micorrízica, una vía hacia la agricultura sostenible. 1–42. In: Rivera R, Fernández K (eds) Estudio de caso el Caribe. Ediciones Instituto Nacional de Ciencias Agrícolas, La Habana, Cuba, p 166 (ISBN: 959-7023-24-5)

    Google Scholar 

  53. Ruget F, Bonhomme R, Chartier M (1996) A simplified method for estimating the leaf area growth of field-grown maize from a reduced number of measurements. Agronomie 9(16):553–561

    Article  Google Scholar 

  54. Sahraoui AL (2013) La Mycorhize à arbuscules: quels bénéfices pour l’homme et son environnement dans on contexte de développement durable? Synthèse: Revue des Sciences et de la Technologie 26(1):6–19

    Google Scholar 

  55. Saïdou A, Kossou D, Azontondé A, Hougni DGJM (2009) Effet de la nature de la jachère sur la colonisation de la culture subséquente par les champignons endomycorhiziens: cas du système ‘jachère’ manioc sur sols ferrugineux tropicaux du Bénin. Int J Biol Chem Sci 3(3):587–597. https://doi.org/10.4314/ijbcs.v3i3.45330

    Article  Google Scholar 

  56. Salvioli A, Novero M, Lacourt I, Bonfante P (2008) The impact of mycorrhizal symbiosis on tomato fruit quality. 16th IFOAM Organic World Congress, Modena, Italy, June 2008, 16–20. http://orgprints.org/view/projects/conference.html

  57. Sawers RJ, Gutjahr C, Paszkowski U (2008) Cereal mycorrhiza: an ancient symbiosis in modern agriculture. Trends Plant Sci 13(2):93–97. https://doi.org/10.1016/j.tplants.2007.11.006

    Article  PubMed  CAS  Google Scholar 

  58. Sawers RJ, Svane SF, Quan C, Grønlund M, Wozniak B, Gebreselassie MN, Jakobsen I (2017) Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytol 214(2):632–643. https://doi.org/10.1111/nph.14403

    Article  PubMed  CAS  Google Scholar 

  59. Smith FA, Smith SE, Timonen S (2003) Mycorrhizas. In: Root ecology. Springer, Berlin, pp 257–295. https://doi.org/10.1007/978-3-662-09784-7_11

  60. Tacon L (1997) Vers une meilleure prise en compte des champignons mycorhiziens dans la gestion forestière. Revue forestière française.

  61. Tchabi A, Coyne D, Hountondji F, Lawouin L, Wiemken A, Oehl F (2008) Arbuscular mycorrhizal fungal communities in sub-Saharan Savannas of Benin, West Africa, as affected by agricultural land use intensity and ecological zone. Mycorrhiza 18(4):181–195. https://doi.org/10.1007/s00572-008-0171-8

    Article  PubMed  Google Scholar 

  62. Tian H, Drijber RA, Li X, Miller DN, Wienhold BJ (2013) Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L.). Mycorrhiza 23(6):507–514. https://doi.org/10.1007/s00572-013-0491-1

    Article  PubMed  CAS  Google Scholar 

  63. Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d'un système radiculaire. Recherche de méthode d'estimation ayant une signification fonctionnelle. In: Physiological and genetical aspects of mycorrhizae: proceedings of the 1st european symposium on mycorrhizae, Dijon, 1–5 July 1985. pp 217–221

  64. Valentine AJ, Osborne BA, Mitchell DT (2001) Interactions between phosphorus supply and total nutrient availability on mycorrhizal colonization, growth and photosynthesis of cucumber. Sci Hortic 88(3):177–189. https://doi.org/10.1016/S0304-4238(00)00205-3

    Article  CAS  Google Scholar 

  65. Venables WN, Ripley BD (2002) Random and mixed effects. In: Modern applied statistics with S. statistics and computing. Springer, New York, pp 271–300. https://doi.org/10.1007/978-0-387-21706-2_10

    Chapter  Google Scholar 

  66. Vosatka M, Dodd JC (2002) Ecological considerations for successful application of arbuscular mycorrhizal fungi inoculum. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8117-3_19

    Chapter  Google Scholar 

  67. Wright DP, Scholes JD, Read DJ, Rolfe SA (2005) European and African maize cultivars differ in their physiological and molecular responses to mycorrhizal infection. New Phytol 167(3):881–896. https://doi.org/10.1111/j.1469-8137.2005.01472.x

    Article  PubMed  CAS  Google Scholar 

  68. Wu QS, Xia RX, Zou YN (2008) Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. Eur J Soil Biol 44(1):122–128. https://doi.org/10.1016/j.ejsobi.2007.10.001

    Article  Google Scholar 

  69. Wu QS, Zou YN, Abd-Allah EF (2014) Mycorrhizal association and ROS in plants. In: Oxidative damage to plants. Academic Press, pp. 453–475. https://doi.org/10.1016/B978-0-12-799963-0.00015-0

  70. Yadav J, Verma JP, Tiwari KN (2010) Effect of plant growth promoting rhizobacteria on seed germination and plant growth chickpea (Cicer arietinum L.) under in vitro conditions. Biol Forum-An Inter J 2(2):15–18

    Google Scholar 

  71. Yallou CG, Aïhou K, Adjanohoun A, Toukourou M, Sanni OA, Ali D (2010) Itinéraires techniques de production de maïs au Bénin. Fiche technique. Dépôt légal N° 4922 du 3 Décembre, Bibliothèque Nationale du Bénin, p 18

  72. Zhu JY, Pan X, Zalesny RS (2010) Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Appl Microbiol Biotechnol 87(3):847–857. https://doi.org/10.1007/s00253-010-2654-8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Institute for Agricultural Research in Benin (INRAB in French), the Agricultural Productivity Project in West Africa (APWA), the National Maize Specialization Centre (CNS-Maïs in French) for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lamine Baba-Moussa.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest with respect to the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguégué, M.R., Ahoyo Adjovi, N.R., Agbodjato, N.A. et al. Efficacy of Native Strains of Arbuscular Mycorrhizal Fungi on Maize Productivity on Ferralitic Soil in Benin. Agric Res 11, 627–641 (2022). https://doi.org/10.1007/s40003-021-00602-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40003-021-00602-7

Keywords

Navigation