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Abstract Expansin refers to a family of proteins present in the plant cell wall which has important roles in plant cell

growth, emergence of root hairs, meristem function and other developmental processes. A major constraint to rice

production is submergence of rice by flash flooding. In our earlier study, we had identified 21 novel sequences related to

expansin gene families in the genome of indica rice using genome-wide analysis. Development of a tool for the prediction

of these expansin genes using computational approaches might significantly enhance rice gene annotation. ExpansinPred, a

novel computational method based on radial basis function (RBF) and support vector machines (SVMs) for prediction of a-

expansins (EXPA) and b-expansins (EXPB), is presented in this work. Two large families of expansin genes have been

discovered in plants, namely EXPA and EXPB. The experimental data are curated from NCBI and include 24 EXPA and

20 EXPB, of indica rice, after redundancy elimination. The proper window length for a potential expansin was optimized

as 4 for EXPA and EXPB with prediction accuracies 100 % each for both classifiers for RBF classifier. For SVM, the

window length was optimized as 3 for EXPA and 4 for EXPB with prediction accuracies 90 and 100 %, respectively. To

evaluate the prediction performance of ExpansinPred, cross-validation, independent dataset validation and jackknife

validation were carried out. ExpansinPred was also compared with four more algorithms namely Naı̈ve Bayes, sequential

minimal optimization, J48 and random forest. To further prove that species-specific predictor is much better than general

tool, ExpansinPred was compared with an All-plant tool and also with plants other than rice as test set. The different

statistical analyses carried out demonstrated that the proposed algorithm is a useful computational tool for rice genome

annotation, specifically for predicting expansin gene family, and can benefit rice research community.
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Introduction

Flooding is one of the most important environmental

stresses worldwide and has a dramatic effect on the growth

and yield of various crops. When subjected to submer-

gence, one of the biggest problems encountered by plants is

energy deficit caused by inhibition of respiration as the

oxygen supply is severely hampered. Among the 42 biotic

and abiotic stresses affecting rice production, submergence

has been identified as the third most important constraint

for higher rice productivity in India, because it sometimes

results in near total yield loss [33].

Deep-water rice responds to submergence with rapid stem

elongation, which is preceded by large increase in expansin

mRNA [8]. Expansins are proteins that break the crosslinks

(hydrogen bonds) between cellulose microfibrils and other cell

wall constituents, loosening the cell wall fabric. These plant cell

wall loosening proteins are known to be involved in a variety of
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other developmental processes in which cell wall enlargement

and modification occur [13]. They characteristically cause cell

wall stress relaxation and irreversible wall extension [24]. This

process is essential for cell enlargement. They are typically

250–275 amino acids long and are made up of two domains

preceded by a signal peptide. Four families of expansins are

currently recognized in plants on the basis of phylogenetic

sequence analysis [14]. They are designated a-expansin

(EXPA), b-expansin (EXPB), expansin-like A (EXLA) and

expansin-like B (EXLB). Among these, a-expansin and b-ex-

pansin proteins have been demonstrated experimentally to

cause cell wall loosening [15], whereas EXLA and EXLB

proteins are known only from their gene sequences.

Twenty-one novel sequences related to expansin fami-

lies were identified in our early work on genome-wide

analysis in Oryza sativa spp. indica [18]. Development of a

genome-wide prediction tool for expansins will signifi-

cantly help in the advancement of rice genome annotation.

In the present study, we explored the performance of basic

local alignment search tool (BLAST) for the annotation of

expansin genes from indica rice, which produced less

accurate results. Therefore, it was decided to explore

machine learning algorithms to predict expansin genes.

Here, we propose a novel gene prediction tool called Ex-

pansinPred, for predicting EXPA and EXPB. The models

for creating this tool were developed using the classifiers

radial basis function (RBF) in WEKA and support vector

machine in SVMlight [32]. Statistical accuracy and predic-

tion of this tool were tested using cross-validation, inde-

pendent data test and jackknife validation.

Methods

Dataset

Twenty-four EXPA and twenty EXPB, belonging to indica

rice, from NCBI database, were used in this study. For

conducting independent data test, around 10 % of the

EXPA and EXPB were kept aside, which means three

EXPA and four EXPB were randomly selected from the

original set for the creation of test set and remaining were

used for the training set.

Features

Initially, for all four nucleotides (A, T, C and G), different

window lengths were generated [2]. In order to produce

different features based on nucleotides, the frequency of

occurrence of the four nucleotide bases was considered,

and this method also created a standard window size

among all the selected sequences. In the first method of

feature extraction (3-mer), 64 feature vectors were

generated based on the occurrence of three nucleotide

bases at a time in a sequence. Similarly to generate higher

dimensional feature vectors, 256 features (4-mer), 1,024

features (5-mer) and 4,096 features (6-mer) were consid-

ered in the source dataset using a PERL program.

Support Vector Machine (SVM)

Support vector machine, a machine learning method, has

been applied for many kinds of pattern recognition prob-

lems. The principle of the SVM is to transform the samples

into a higher dimension space called Hilbert space. A

separating hyperplane is sought in this space called the

optimal separating hyperplane in such a way as to maxi-

mize its distance from the closest training samples. SVM is

a supervised machine learning technology founded theo-

retically on statistical learning theory [31]. Recently, SVM

has been successful in solving many biological problems,

such as predicting protein subcellular locations [19] and

protein secondary structures [16]. In this work, the feature

vector of each expansin gene was transformed into a higher

dimension space through linear kernel function.

The Machine Learning Algorithms

We have used WEKA machine learning workbench [20] to

implement Naı̈ve Bayes, sequential minimal optimization

(SMO), RBF, random forest (RF) and J48 decision tree

algorithms.

Naı̈ve Bayes

Naı̈ve Bayes is a classification model based on Bayes

theorem [25]. This classifier assumes that the effect of a

variable value on a given class is independent of the other

variables values which are called class conditional inde-

pendence. It is made to simplify the computation, and

hence, the word ‘‘Naı̈ve’’ is considered. Naı̈ve Bayes is

actually a special case of a Bayesian Network, in which

each attribute node (corresponding to an attribute variable)

has the class node (corresponding to the class variable) as

its parent, but does not have any other parent. Given the

class variable, Naive Bayes does not represent any variable

dependencies.

Sequential Minimal Optimization (SMO)

Sequential minimal optimization [26] is one of the most

popular algorithms for large margin classification by SVM.

It is a new SVM learning algorithm which is conceptually

simple, easy to implement, often faster and has better

scaling properties than a standard SVM algorithm. It is an

algorithm for efficiently solving the optimization problem
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which arises during the training of SVMs. It is a fast and an

efficient version of SVM implemented in WEKA.

Radial Basis Function (RBF)

Radial basis function network is a kind of multilayer, feed-

forward artificial neural network [3]. An RBF network has

three layers, namely the input layer, the hidden layer and

the output layer. The input layer in RBF network broad-

casts the coordinates of the input vector to each of the

nodes in the hidden layer. Based on the associated RBF,

each node in the hidden layer produces activation. Finally,

each node in the output layer computes a linear combina-

tion of the activations of the hidden nodes. The activation

functions associated with the hidden nodes and the weights

associated with the links between the hidden layer and the

output layer determine how an RBF network reacts to a

given input stimulus. In our model, once feature vectors

were fed into input layers, then the links between nodes are

iteratively updated until convergence. The output layer

finally produced the decision of ‘‘expansin’’ or ‘‘non-

expansin.’’

Random Forest (RF)

Random forest has been applied effectively in various

biological problems [5, 6, 21, 23, 29, 30]. It is an ensemble

method generating many trees using recursive partitioning

and then aggregating the results [4]. Using a bootstrap

sample of the training data, each tree is independently

constructed. For each tree, two-third of the training sam-

ples are used for constructing the tree and the remaining

one-third of the samples are used to test the tree. These left

out data, named ‘‘Out of Bag,’’ is used to attune the per-

formance of each tree. The generalization error of a forest

of tree classifiers depends on the strength of the individual

trees present in the forest and the correlation between them.

J48 Decision Tree

A J48 decision tree is a predictive machine learning model

that decides the target value (dependent variable) of a new

sample based on various attribute values of the available

data. The internal nodes of a decision tree denote the dif-

ferent attributes, and the branches between the nodes tell

the possible values that these attributes can have in the

observed samples, while the terminal nodes tell the final

value (classification) of the dependent variable. The attri-

bute that is to be predicted is known as the dependent

variable, since its value depends upon, or is decided by, the

values of all the other attributes. The other attributes, which

help in predicting the value of the dependent variable, are

known as the independent variables in the dataset.

Similarity Search

For sequence similarity searches, we have used BLAST

which compares a set of given data against a database of

sequences [1]. This tool conducts similarity search for

predicting the function of a new sequence against a data-

base of annotated sequences. Here, we conducted a tenfold

cross-validation for predicting a-expansin and b-expansin

using BLAST, and result of the same is analyzed in the

results section.

Performance Evaluation

In statistical prediction, three methods often used to

examine a predictor for its effectiveness are independent

dataset test, cross-validation test and jackknife test [22]. In

the independent dataset test, although none of the data to be

tested occurs in the training dataset used to train the pre-

dictor, the selection of data for the testing dataset could be

quite arbitrary unless it is sufficiently large. For the cross-

validation test, the practical procedure often used in liter-

ature is the fivefold, eightfold or tenfold cross-validation.

In k-fold cross-validation, data are divided into k subsets of

(approximately) equal size. The net is trained k times, each

time leaving out one of the subsets from training, but using

only the omitted subset to compute whatever error criterion

of interest. If k equals the sample size, this is called ‘‘leave-

one-out’’ cross-validation. The problem with the cross-

validation examination is that the number of possible

selections in dividing a target dataset is an astronomical

figure even for a very simple dataset [17, 28]. Therefore,

any result by the cross-validation test only represents one

of the many possible results and hence cannot avoid the

uncertainty either.

Leave-one-out cross-validation is easily confused with

jackknifing. Both involve omitting each training case in

turn and retraining the network on the remaining subset.

But cross-validation is used to estimate generalization

error, while jackknifing is used to estimate the bias of a

statistic. In the jackknife cross-validation, each of the data

in the benchmark dataset is in turn singled out as a tested

one and the predictor is trained by the remaining ones.

During the jackknifing process, both the training dataset

and testing dataset are actually open, and a data will in turn

move from one to the other. The jackknife cross-validation

can exclude the memory effects during entire testing stage,

and also the outcome thus obtained is always unique for a

given benchmark dataset. Jackknifing is usually considered

as the most rigorous and objective test among the other

tests [9]. In the jackknife, some statistic of interest is

computed in each subset of the data. The average of these

subset statistics is compared with the corresponding sta-

tistic computed from the entire sample in order to estimate
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the bias of the latter. Therefore, of the above three exam-

ination methods, the jackknife test has been widely rec-

ognized [27, 29] and used by investigators to examine the

accuracy of various predictors [7, 8, 10–12]. On applying

jackknifing for the dataset with regard to EXPA and EXPB,

it can be concluded from the tables (Tables 1, 2, 3) that

data used for validation are unbiased.

Performance Evaluation

To compare the gene prediction accuracy, the standard

performance measures on prediction by Burset and Guigo

[33] were applied. The measures sensitivity (Sn), specificity

(Sp), accuracy (Acc), precision (Pr) and Mathew correla-

tion coefficient (MCC) were applied. Sensitivity and

specificity relate to the test’s ability to identify positive

results and negative results. Accuracy (Ac) is the propor-

tion of the total number of predictions that were predicted

correct, and precision (Pr) is the proportion of the positive

cases that were predicted correct. However, when the

number of positive results and negative results differs too

much from each other, the MCC should be included to

evaluate the prediction performance. The value of MCC

ranges from -1 to 1, and a positive MCC value stands for

better prediction performance.

Among the data with positive prediction by Expansin-

Pred, the real positives are defined as true positives, (TP)

(the number of correctly predicted genes), while the others

are defined as false positives, (FP) (the number of pseu-

dogenes (non-expansins) wrongly predicted. Among the

data with negative hits by ExpansinPred, the real positives

are defined as false negatives, (FN) (the number of true

genes missed in the prediction), while the others are

defined as true negatives, TN (the number of correctly

predicted pseudogenes). The performance measurements of

sensitivity (Sn), specificity (Sp), accuracy (Acc), precision

(Pr) and MCC are given below in Equs. 1–5:

Table 2 Comparison of the prediction performances of different algorithms for a- and b-expansins using independent dataset test and jackknife

validations

Algorithm Window

length

Independent data test validation Jackknife validation

Sensitivity

(%)

Specificity

(%)

Accuracy

(%)

Precision

(%)

MCC Sensitivity

(%)

Specificity

(%)

Accuracy

(%)

Precision

(%)

MCC

a-Expansins

RBF 3 100 100 100 100 1 97 100 98 100 0.98

4 100 100 100 100 1 100 100 100 100 1

5 100 0 40 40 0 100 100 100 100 1

6 100 0 40 40 0 100 100 100 100 1

Naı̈ve

Bayes

3 25 100 70 100 0.4 100 100 100 100 1

4 50 100 80 100 0.61 100 100 99 100 0.86

5 100 100 100 100 1 100 100 100 100 1

6 100 100 100 100 1 100 100 100 100 1

J48 3 75 100 90 100 0.8 100 100 100 100 1

4 50 100 80 100 0.61 96 88 97 77 0.94

5 50 50 50 40 0 96 91 93 92 0.87

6 25 100 70 100 0.4 87 96 98 86 0.97

b-Expansins

RBF 3 100 100 100 100 1 100 100 100 100 1

4 100 100 100 100 1 100 100 100 100 1

5 25 100 70 100 0.4 98 93 99 93 0.98

6 100 0 40 40 0 100 0 100 100 0

Naı̈ve

Bayes

3 0 100 60 0 0 100 100 100 100 1

4 0 100 60 0 0 99 100 90 0 0.59

5 100 100 100 100 1 92 100 99 100 0.8

6 100 50 70 57 0.5 100 98 99 100 0.99

J48 3 100 100 100 100 1 100 100 100 100 1

4 75 100 90 100 0.8 95 100 98 100 0.98

5 100 100 100 100 1 85 96 92 89 0.83

6 75 100 90 100 0.8 92 100 89 62 0.7
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Sensitivity =
TP

TP + FN
� 100 ð1Þ

Specificity =
TN

FP + TN
� 100 ð2Þ

Accuracy ¼ TPþ TN

TP + TN + FP + FN
� 100 ð3Þ

Precision ¼ TP

TP + FP
� 100 ð4Þ

MCC =
TPXTNð Þ�ðFPXFNÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ TP + FNð Þ TN + FPð ÞðTN + FN
p

ð5Þ

ROC Curves

The ROC curve is a fundamental tool used for diagnostic

test evaluation. In a ROC curve, the true positive rate

(sensitivity) is plotted in function of the false positive rate

(1-specificity) for different cutoff points of a parameter.

Each point on the ROC curve represents a sensitivity/

specificity pair corresponding to a particular decision

threshold. The area under the curve (AUC) is a measure of

how well a parameter can distinguish between two diag-

nostic groups (abnormal/normal).

Results and Discussion

The prediction performances of ExpansinPred were eval-

uated by independent data test, cross-validation test and

leave-one-out cross-validation test, and the biasedness of

the dataset was further validated by jackknife validation.

The various statistical results of ExpansinPred conducted

for EXPA and EXPB using WEKA and SVM are reported

in tables (Tables 1, 2, 3).

Table 3 Classification accuracies of three kernels using SVM (for a- and b-expansin prediction models)

Kernel Window

length

Independent data test validation Jackknife validation

Sensitivity

(%)

Specificity

(%)

Accuracy

(%)

Precision

(%)

MCC Sensitivity

(%)

Specificity

(%)

Accuracy

(%)

Precision

(%)

MCC

a-Expansins

Linear 3 75 100 90 100 0.8 93 100 97 100 0.95

4 50 100 80 100 0.61 100 1 100 100 1

5 25 100 70 100 0.48 100 100 100 100 1

6 100 0 40 40 0 100 100 100 100 1

Polynomial 3 25 100 70 100 0.48 53 100 78 100 0.68

4 50 100 80 100 0.61 100 1 100 100 1

5 25 100 70 100 0.48 100 100 100 100 1

6 0 100 60 0 0 100 100 100 100 1

RBF 3 100 0 40 40 0 69 0 40 53 0.24

4 100 0 40 40 0 100 100 100 100 1

5 100 0 40 40 0 100 100 100 100 1

6 100 0 40 40 0 100 100 100 100 1

b–Expansins

Linear 3 75 100 90 100 0.8 100 100 100 100 1

4 100 100 100 100 1 98 100 99 100 0.98

5 100 100 100 100 1 93 100 97 93 0.93

6 50 100 80 100 0.61 100 100 100 100 1

Polynomial 3 75 100 90 100 0.8 88 100 95 100 0.91

4 0 100 60 100 0 100 100 100 100 1

5 0 100 60 100 0 100 100 100 100 1

6 0 100 60 0 0 100 100 100 100 1

RBF 3 100 0 40 40 0 100 100 100 100 1

4 100 0 40 40 0 100 100 100 100 1

5 100 0 40 40 0 100 100 100 100 1

6 100 0 40 40 0 100 100 100 100 1
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Performance of ExpansinPred in WEKA

We performed threefold, fivefold, eightfold and leave-one-

out cross-validations along with independent data test with

varying window length of 3–6 to evaluate the performance

of ExpansinPred. For EXPA, in the case of various cross-

validation tests and independent data tests, ExpansinPred

achieved positive average MCC value for all the classifiers

but best values were obtained for RBF network model with

a window length of 4 and prediction accuracy of 100 %

(Tables 1, 2). Hence, window length four can be consid-

ered optimal for EXPA which has good prediction

accuracy.

Similarly for EXPB, threefold, fivefold, eightfold and

leave-one-out cross-validations along with independent

data test with varying window length of 3–6 were per-

formed. Experimental results show that ExpansinPred

achieved positive average MCC value for all window

lengths with all machine learning algorithms for both

cross-validation test and independent data test. Analyzing

the results, we have taken window length 3 or 4 as optimal

for EXPB with RBF network as the classifying algorithm

and prediction accuracy of 100 % (Tables 1, 2).

Performance of ExpansinPred in SVMlight

We carried out independent data test using SVM with

window length varying from 3 to 6. Test was carried out

with linear, polynomial and RBF kernels. For each kernel,

different parameters were tested and one with the best

result was reported. In the case of EXPA, linear kernel was

found to have the best prediction accuracy of 90 % with

window length of 3 and for b-expansins linear kernel with

4 or 5 window length had best prediction accuracy of

100 % (Table 3). Hence, from the table, it can be con-

cluded that linear kernel has the best average value for all

statistical measures for both expansins with window length

3 for a-expansins and 4 or 5 for EXPB.

Prediction Using BLAST and ExpansinPred

BLAST allows comparing our sequence against a database

of sequences and informs if our sequence matches any of

the sequences in the database [1]. In this study, we have

conducted a tenfold cross-validation of EXPA and EXPB

and compared the performance of BLAST against Expan-

sinPred which is reported in Table 4. Each sequence in the

testing dataset was used as a BLAST query sequence, and

remaining sequences (training dataset) were used as a

BLAST database. It was observed from the table that a-

expansins obtained an accuracy of 88 % for BLAST which

was less when compared to ExpansinPred as the number of

hits obtained was low. Similarly for EXPB, BLAST

obtained an accuracy of only 86 % compared to Expan-

sinPred. This implies that similarity-based search method

may not be the best method for the annotation of expansin

genes.

Comparison with All-Plant Model

To prove the advantage of a species-specific predictor, an

All-plant model was built and compared with Expansin-

Pred. In the case of EXPA, to build an All-plant model

sequences from four plants viz. maize (Zea mays), Arabi-

dopsis (Arabidopsis thaliana), castor (Ricinus communis)

and tomato (Solanum lycopersicum) were selected. These

were trained using the RBF model and SVM linear model

with window size 4 for EXPA. All-plant dataset for EXPA

contained 57 sequences. For EXPB, a total of 31 sequences

from three plants namely maize, Arabidopsis and tomato

were chosen for building an All-plant model. Here, the

plant model was trained using RBF model and SVM linear

Table 4 Prediction result of a-

and b-expansins with similarity

search tool BLAST (tenfold

cross-validation used)

Test a-Expansins b-Expansins

No. of sequences

given

Correctly

predicted

Accuracy

(%)

No. of sequences

given

Correctly

predicted

Accuracy

(%)

1 10 9 90 8 6 75

2 10 9 90 8 7 87.5

3 10 10 100 8 6 75

4 10 9 90 8 7 87.5

5 10 7 70 8 8 100

6 10 8 80 8 7 87.5

7 10 9 90 8 6 75

8 10 8 80 8 7 87.5

9 12 11 91 8 7 87.5

10 12 12 100 9 9 100

88.1 86
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model with window size 5 which was found to be the best

model for EXPB.

On comparison of ExpansinPred with corresponding

All-plant method based on rice independent training set, it

was reported for EXPA that ExpansinPred was 50 % more

accurate than All-plant method in the case of RBF model

and 30 % more accurate than SVM linear model (Table 5).

Taking the case of EXPB, ExpansinPred was found to be

more accurate than All-plant method with an increase in

accuracy of 40 % (Table 5). Similarly for SVM too, Ex-

pansinPred performed better than All-plant method with

accuracy of 100 % and MCC value of 1. Here, we have

taken enough datasets from different plant species, where

they were trained with the best classifier for EXPA and

EXPB, respectively. Methodology applied for creating and

validating the model was also identical. All these results

clearly revealed that a model specific to a species is always

more advantageous than a general one.

Performance of ExpansinPred with Other Plants

To further prove that species-specific predictor are much

accurate than general predictor, we cross-checked the

performance of ExpansinPred with plants individually. For

this, ExpansinPred with RBF and SVM model was cross-

checked with four plants viz. maize, Arabidopsis, castor

and tomato for EXPA. Similarly for EXPB, ExpansinPred

with RBF and SVM model was cross-checked with three

plants viz. maize, Arabidopsis and tomato. The results

obtained for both the models in the case of EXPA and

EXPB (independent data test) for different plants are tab-

ulated in the Table 6. The table reveals low accuracy and

MCC value for each plant of EXPA and EXPB as com-

pared to ExpansinPred with indica rice. The difference in

the performance of ExpansinPred with Oryza sativa and

other plants again indicates that species-specific predictor

is always superior to general prediction systems.

Table 5 Comparison of All-

plant model with ExpansinPred

model

Method Algorithm Sn (%) Sp (%) Acc (%) Prec (%) MCC

All-Plant(WEKA)

a-Expansins RBF 0 100 50 0 0.00

b-Expansins 0 90 60 0 -0.19

ExpansinPred (WEKA)

a-Expansins RBF 100 100 100 100 1.00

b-Expansins 100 100 100 100 1.00

All-Plant (SVM)

a-Expansins Linear kernel 75 50 60 50 0.25

b-Expansins 100 93.33 95 83 0.88

ExpansinPred (SVM)

a-Expansins Linear kernel 75 100 90 100 0.8

b-Expansins 100 100 100 100 1.00

Table 6 Performance of

ExpansinPred (a- and b-

expansins) on other plants

Plants SVM(linear) RBF

Sn Acc MCC Sn Acc MCC

a-Expansin

Arabidopsis 11.8 33 -0.23 73.3 64 0.24

Maize 20 47 -0.21 71.4 71 0.41

Castor 11.8 33 -0.23 52.9 59 0.22

Tomato 0 41 -0.42 100 82 0.70

b-Expansin

Arabidopsis 0 63 0 0 56 -0.20

Maize 21.4 54 0.32 78.6 83 0.68

Tomato 0 48 0 0 43 -0.23
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ROC curves

To evaluate the classifier stringently, we further plotted the

ROC curves with AUC based on independent test perfor-

mance of ExpansinPred with respect to EXPA and EXPB.

The prediction performance of RBF network algorithm for

EXPA and EXPB with different window lengths is repre-

sented in the figures (Figs. 1, 2). The ROC curve for the

perfect classifier will produce a curve along the left and top

boundary of the square and will receive a score of one.

Description of Web Server

ExpansinPred, a dynamic web server, has been imple-

mented using the best performing module of SVM and

WEKA and can be accessed at http://14.139.158.

118/expansin. The common gateway interface (CGI)

scripts of the web server have been written in PERL and

PHP, and web interface to access user requests has been

designed using HTML. The web page has the option for

the user to enter the queries in the FASTA format either

by pasting the query or by uploading the sequence in the

form of a file. The output will be obtained in a user-

friendly format. The overall description of the method-

ology applied in constructing ExpansinPred has been

represented in the Fig. 3.Fig. 2 ROC curves for the RBF network algorithm with respect to

EXPB. This curve is drawn for the best algorithm with four window

lengths

Fig. 3 Schematic diagram showing the architecture of web-based tool. The figure shows the flow diagram of the architecture of the

ExpansinPred tool

Fig. 1 ROC curves for the RBF network algorithm with respect to

EXPA. This curve is drawn for the best algorithm with four window

lengths
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Conclusions

Tools and resources are being developed to maximally

construe the rice genome sequence. A major difficulty with

rice annotation is the lack of accurate gene prediction

programs. Similar to all completed genomes, rice has a

substantial number of genes that are hypothetical in that

they are predicted solely on the basis of gene prediction

programs making it vital that the quality of gene prediction

programs for rice be improved further.

Identification of expansin genes from sequence dat-

abases is difficult due to poor sequence similarity. In this

work, we present a new method for expansin prediction

based on RBF network for EXPA and EXPB implemented

in WEKA and linear kernel in SVM for both EXPA and

EXPB implemented in SVMlight. The performance was

found to be highly satisfactory. Comparisons between

different machine learning algorithms (Naive Bayes, RBF

network, Random forest, SMO and J48) were also carried

out. Very high prediction accuracies for the three valida-

tion tests show that ExpansinPred is a potentially useful

tool for the prediction of EXPA and EXPB.
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