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Abstract
Background Surgical site infection (SSI) is a post-operative complication of high concern with adverse impact on patient 
prognosis and public health systems. Recently, SSI pathogens have experienced a change in microbial profile with increasing 
reports of non-tuberculous mycobacteria (NTM) as important pathogens.
Aim of the study
The study aimed to detect the prevalence of NTM among cases with SSIs and describe their species using matrix-assisted 
laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) and PCR-based microarray.
Methods The study was conducted with 192 pus samples collected from patients with SSI. Mycobacterial investigations 
were done in the form of Ziehl–Neelsen (ZN) smears for acid-fast bacilli, automated mycobacterial culture to isolate myco-
bacteria, followed by immunochromatography test to predict NTM. NTM-positive cultures were tested by MALDI -TOF 
MS and PCR-based microarray to reach species-level identification.
Results Mycobacterial growth was found in 11/192 samples (5.7%) and identified as 4 NTM and 7 M. tuberculosis isolates 
with prevalence of 2.1% and 3.64%, respectively. The NTM species were described by MALDI-TOF as M. abscessus, M. 
porcinum, M. bacteremicum, and M. gordonae. Microarray agreed with MALDI-TOF in identifying one isolate (M. absces-
sus), while two isolates were classified as belonging to broad groups and one isolate failed to be identified.
Conclusions The prevalence of NTM among SSI was found to be low, yet have to be considered in the diagnosis of myco-
bacteria. Employing advanced technologies in diagnosis is recommended to guide for appropriate treatment.
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Introduction

Surgical site infection (SSI) is one of the most common 
forms of post-operative complications and hospital-
acquired infections [1, 2]. It adversely affects patients 
by causing delayed wound healing, increased length of 
hospital stay, prolonged use of antibiotics and increased 
mortality [3].

For proper management of infectious diseases, it is essen-
tial to accurately identify the causative pathogens. The sur-
veillance data of the last two decades suggest a change in 
the profile of microorganisms causing SSIs, with available 
reports on the occurrence of SSIs by mycobacteria [4]. M. 
tuberculosis (MTB) attracts most global concern; however, 
infections caused by non-tuberculous mycobacteria (NTM) 
exist and may be overlooked due to limitations of conven-
tional diagnostics in reaching accurate identification. Several 
reports on infections by NTM have been lately presented due 
to the achieved advance in diagnostic technologies [4–6]. 
Atypical NTM have existed in nature over the years and 
reported in history as causative agents for different types 
of infections including post-operative infections [7]. It is 
postulated that contaminated water or surgical instruments 
might be possible sources of post-operative infection [6]. It 
has been reported that rapid grower NTM are responsible 
for most of atypical mycobacterial cutaneous and soft tissue 
surgical infections, where environmental contamination is 
usually the source [8, 9]. Clinical diagnosis of mycobacte-
rial infections is considered challenging, and suspicion is 
usually built on late, mild, however persistent clinical pres-
entation with poor response to antibiotics [10, 11]. Missed 
diagnosis may lead to inappropriate treatment and unfavora-
ble emergence of antimicrobial resistance; therefore, appro-
priate laboratory diagnosis is considered essential [12, 13]. 
Moreover, in mycobacterial infections, it is crucial to dif-
ferentiate atypical mycobacteria from M. tuberculosis due to 
their different therapeutic regimens [5], which necessitates 
the provision of rapid and accurate laboratory diagnostic 
methods for proper identification [12, 13].

Traditionally, the identification of NTM was carried out 
by conventional phenotypic biochemical tests. However, 
these methods were laborious and unable to identify a wide 
spectrum of species [14]. In this context, many researchers 
employed the advanced developed technologies such as 
matrix-assisted laser desorption ionization–time of flight 
mass spectrometry (MALDI-TOF MS) and molecular 
DNA hybridization LCD chip array in identification of 
mycobacteria offering more rapid and accurate diagnosis 
[15, 16]. To this end, the present work aimed to study 
the prevalence of atypical mycobacteria among patients 
with SSI and characterize their species using MALDI-TOF 
assay and DNA hybridization LCD chip array.

Materials and methods

Study design

This study was conducted with a total of 192 non-repeat 
pus samples prospectively collected from patients evaluated 
at surgery outpatient clinics of Kasr Al-Ainy Hospital in 
Cairo University in the period from January 2020 to Janu-
ary 2021. The charged physician asked for mycobacterial 
culture for patients who developed symptoms and signs of 
post-operative SSI, with failed microbial isolation in usual 
bacterial culture and no improvement on prescribed antibiot-
ics suggestive of mycobacterial etiology. Demographic data 
were collected from the electronic records on the laboratory 
information system for patients infected by NTM.

Sample collection

Pus samples were collected from surgical sites through nee-
dle aspiration or a surgical procedure under complete aseptic 
precautions. Swabs were not recommended because of lim-
ited culture material. All samples were transported with no 
delay to the main mycobacteriology laboratory following the 
required biosafety measures. Full mycobacterial investiga-
tions were carried out in the form of ZN smears, automated 
culture for isolation of mycobacteria, followed by identifica-
tion and differentiation between atypical mycobacteria and 
M. tuberculosis using immunochromatography assay, phe-
notypic MALDI-TOF assay and molecular LCD chip array.

ZN smears

Smears were prepared from the thickest purulent part of the 
specimen. Dried and fixed smears were stained according to 
Ziehl–Neelsen procedure, then examined microscopically 
for the presence of acid-fast bacilli (AFB) [14].

Isolation of mycobacteria using automated MGIT 
culture

Mycobacterial growth indicator tube (MGIT) culture was 
held using the BD  BACTEC™  MGIT™ 960 system (Bec-
ton–Dickinson, Franklin Lakes, NJ, USA), which is a high-
capacity continuous monitoring growth system. This auto-
mated system is reported to be faster and more reliable than 
the conventional culture on Lowenstein–Jensen (LJ) solid 
medium [14, 15]. The collected samples were inoculated 
in (MGIT) liquid culture method, with enrichment supple-
ment (oleic acid–albumin–dextrose–citric acid [OADC]) and 
antimicrobial supplement (polymyxin B, nalidixic acid, tri-
methoprim, and azlocillin [PANTA]). Inoculated tubes were 
incubated in the device for up to a period of 40 days. Positive 
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mycobacterial growth in MGIT culture was confirmed by 
making ZN smears to examine for the presence of AFB and 
secondarily inoculated on LJ medium to increase harvest for 
further identification.

Identification of non‑tuberculous Mycobacterium 
(NTM)

In positive MGIT growth cultures, the NTM isolates were 
differentiated from M. tuberculosis by their rapid growth 
(within 7 days incubation), colony morphology and pigment 
production on LJ media. NTM identification was confirmed 
by negative reaction with immune-chromatography assay 
(BD MGIT TBc ID, Beckton Dickinson Diagnostic, Sparks, 
USA). In this assay, 100 μl of the positive liquid culture was 
used to fill the sample well according to the manufacturer’s 
instructions. The principle of the test relied on a clearly pink 
to red visible line within 15 min that can be read when the 
antigen MPT64 (a mycobacterial protein secreted from M. 
tuberculosis complex cells) binds to the anti-MPT64 mono-
clonal antibody conjugated on the test strip [16, 17].

Species characterization of NTM using MALDI‑TOF 
and LCD array

The isolated NTM in MGIT culture were characterized to 
the species level with the use of MALDI-TOF Biotyper 
microflex LT system mass spectrometer (Bruker Daltonics, 
Bremen, Germany) and LCD Array  MycoDirect 1.7 (Chipron 
GmbH, Berlin, Germany). The steps of the identification 
process by MALDI-TOF MS involves inactivation and 
extraction; then, unique fingerprints for the extracted pro-
teins were generated for analysis. Protein extraction was 
performed from solid Mycobacterium according to the man-
ufacturer’s instructions and the protocol used in several stud-
ies [18, 19]. Following extraction, an aliquot was placed onto 
a steel plate and covered with a chemical matrix, then loaded 
on the device where protein ionization occurred by laser. 
The ions were separated according to the mass/charge (m/z) 
ratio of 2,000–20,000 Da. The generated proteomic profiles 
were analyzed through the database of Mycobacteria Library 
Software v2.46. Reliable identification is assessed based on 
the highest similarity between spectra from samples and 
in the database. According to the Bruker system, a score 
value of ≥ 1.8 codes for “high confidence genus and species 
identification”; however, a value of ≥ 1.6–1.79 denotes “low 
confidence species identification” [18].

Positive MGIT cultures were tested by low-cost, low-den-
sity (LCD) DNA microarray for NTM identification using 
LCD Array  MycoDirect 1.7 kit (CHIPRON GmbH, Berlin, 
Germany), which is a DNA hybridization kit designed for 
identification of M. tuberculosis complex and other non-
tuberculous mycobacteria. It is based on two polymerase 

chain reactions which are combined prior to hybridization 
into one array. Identifying non-tuberculous Mycobacterium 
depends on Primer mix A, which is directed against highly 
conserved motifs flanking the internal transcribed spacer 
region (ITS) of the 16SrRNA gene, whereas M. tuberculo-
sis is identified by primer mix B, which is directed against 
the insertion element IS6110 [20]. All procedures were per-
formed following the manufacturer’s instructions. The LCD 
chip was scanned using Chip Scanner PF 2700 and the data 
were analyzed by Slide Reader V7.00.01 (CHIPRON GmbH, 
Berlin, Germany).

Statistical analysis

Data were coded, entered and analyzed using the Statistical 
Package for the Social Sciences (SPSS) version 28 (IBM 
Corp., Armonk, NY, USA). Data were described and cal-
culated as frequencies (number of cases) and percentages. 
Sensitivity, specificity and 95% confidence interval were 
measured for ZN microscopy compared to the gold stand-
ard culture.

Results

Out of a total 192 processed pus samples of patients sus-
pected with mycobacterial infections by charged physicians, 
MGIT culture showed positive mycobacterial growth in 11 
samples (5.7%). Compared to the gold standard mycobac-
terial culture, ZN smear showed true positive results in 
seven samples (smear positive/culture positive); however, 
four samples had false-negative smear results (smear nega-
tive/culture positive) and no samples showed false-positive 
smears. ZN smear showed a sensitivity of 63.6% (95% con-
fidence interval: 0.316–0.87) and specificity of 100% (95% 
confidence interval: 0.97–1.00). The results of mycobacte-
rial laboratory workup of pus samples (n = 192) are illus-
trated as shown in Fig. 1.

The phenotypic characteristics of the grown isolates 
and the immunochromatography assay divided the isolated 
mycobacteria into M. tuberculosis (n = 7) and NTM (n = 4), 
with prevalence of 3.64% and 2.1% of 192 suspected pus 
samples, respectively. NTM accounted for 36.4% of myco-
bacterial isolates: three were classified as rapid growers and 
one as a slow grower (Table 1).

The species of the four NTM isolates were characterized 
by MALDI-TOF MS and LCD array as described in Table 1. 
Using MALDI-TOF MS, NTM isolates were identified as M. 
abscessus (high confidence), M. porcinum (high), M. gordo-
nae (low), and M. bacteremicum (low). The LCD array was 
able to characterize the species of three out of four NTM 
isolates, but one isolate failed to be identified. One NTM 
species was identified as M. abscessus in agreement with 
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MADI-TOF identification, while the two other NTM were 
broadly classified as one belonging to broad II and the other 
belonging to broad III. These isolates could not be identified 
to species level, as many mycobacterial species deliver PCR 
fragments of equal or similar size that evolved in a group 
known as “Broad”.

Patients infection by NTM (n = 4) had a history of open 
abdominal operations except one who had laparoscopic 
surgery and another who had mesotherapy injection. Three 

patients were male smokers and two of them were diabetic, 
while no one had a history of HIV infection (Table 1).

Discussion

Atypical NTM is not of lesser concern than M. tuberculo-
sis in causing post-operative infections [21]. To the best of 
our knowledge, data on the prevalence and types of NTM 
among SSI patients in our country are still limited. In an 
effort to bridge this gap, we tried to highlight the impor-
tance of considering atypical NTM among post-operative 
mycobacterial infections and avoid being mistaken for MTB. 
Moreover, there is a need to emphasize the role of employ-
ing MALDI-TOF and PCR-based array technologies in 
improving mycobacterial identification and encourage their 
adoption in developing countries according to the available 
financial resources.

In the present study, mycobacterial isolates were grown 
with prevalence of 3.64% and 2.1% for MTB and NTM, 
respectively. The NTM rate was consistent with that reported 
by a study in India (1.2%) [22]. Another Indian study 
reported higher NTM rates (10.9%), which likely occurred 
in another Brazilian study that confirmed NTM in 144 out 
1051 suspected surgical mycobacterial infections [4, 21]. 
Variable rates might be due to different geographical areas, 
study population, types of samples and methods of detec-
tion. Of note, most of the previously published reports on 
NTM were among pulmonary or extra-pulmonary infections 
other than SSI and limited publications were available for 
NTM among SSI, apart from some studies on outbreaks, 
case reports or case series [6, 8]. In our study, NTM were 
isolated from four patients who underwent open operation, 
mesotherapy injection or laparoscopic procedure, mostly 

Table 1  Growth characterization and species identification of NTM isolates with clinical data for infected patients (n = 4)

a MALDI-TOF score value for confidence level of identification; a) 1.80–3.00: high confidence and secure genus and species identification, b) 
1.60–1.79: secure genus identification with low confidence species identification, c) 0.00–1.59: no reliable identification. DM: diabetes mellitus. 
H/O: patient history of risk factors
b  Broad III group of undifferentiated NTM including M. porcinum
c  Broad II group of undifferentiated NTM including M. gordonae

Isolate no MALDI-TOF MS LCD array Growth characterization Intervention H/O

Species Scorea Rate of growth Pigment Colony mor-
phology

1. M. abscessus 1.81 M. abscessus Rapid growing Non-pigmented Smooth Mesotherapy 
injection

DM

2. M. porcinum 1.82 Broad IIIb Rapid growing Non-pigmented Rough Open lapa-
rotomy

Chemotherapy 
smoker

3. M. gordonae 1.64 Broad II c Slow growing Scoto-chromo-
gen

Smooth, yellow Laparoscopic 
operation

Smoker

4. M. bacteremi-
cum

1.69 Unidentified Rapid growing Scoto-chromo-
gen

Yellow Open lapa-
rotomy

Smoker 
DMcancer

Fig. 1  Flowchart of mycobacterial laboratory workshop results of pus 
samples (n = 192) 
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suggested to have originated from contaminated water or 
equipment [10, 23, 24].

In terms of laboratory diagnosis, ZN smear is considered 
a simple and cost-effective method, but of low-test sensitiv-
ity [25]. This was supported by ZN sensitivity of our study 
(63.6%) which well matched with that reported by another 
study (66.9%) [25]. In our study, we used immunochroma-
tography BD  MGIT™ assay that was encouraged by several 
studies for initial differentiation of NTM from M. tubercu-
losis [17, 26]. MALDI-TOF and LCD array were used for 
further characterization of the four recovered NTM isolates 
from pus culture. MALDI-TOF managed to identify four 
NTM species, where confident species identification was 
high in two isolates, however low in the other two isolates. 
This was as guided by the manufacturer; however, no global 
cutoff has been established for the species-level identifica-
tion of the entire range of mycobacteria [18, 27–30]. In our 
study, the LCD array agreed with MALDI-TOF in character-
izing one NTM isolate (M. abscessus); however, two NTM 
were broadly identified as Broad II and Broad III classes and 
one NTM was undetected. This could be explained by the 
many mycobacterial species delivering PCR fragments of 
similar size, thus evolving into a group known as “Broad” 
[31].

M. abscessus in our study was previously reported by 
several studies as a clinically important pathogen [10, 32]. 
M. porcinum was first described in pigs, while in human 
beings it was reported as a cause of cellulitis, central catheter 
infections, and pneumonitis [33, 34]. M. bacteremicum had 
previous reports of challenged diagnosis by VITEK MS, but 
was successfully detected by 16srRNA [35]. This species 
was previously reported from post-laparotomy infections 
[36]. M. gordanae was previously detected in post-traumatic 
as well as respiratory samples among immunosuppressed 
patients [37, 38].

In the last decade, few advanced technologies have 
evolved to overcome the flaws in conventional methods 
including being time consuming and only able to character-
ize a narrow spectrum of species [39, 40]. MALDI-TOF 
MS has been witnessed as a rapid and reliable tool for NTM 
identification, which includes a wide mycobacterial spectra 
in software databases, as many as 149 different Mycobacte-
rium species [19]. However, some challenges were reported 
related to the extraction protocol, cost of the device and the 
need for a primary bacterial isolate [18, 19, 41–43]. LCD 
microarray is a rapid and reliable hybridization method with 
species-specific oligonucleotide probes that may reach a 
100% sensitivity in mycobacterial identification [20, 44–47]. 
LCD microarray might not outperform MALDI-TOF due to 
a narrower spectrum of NTM species identification, besides 
its high cost; however, it has the privilege of enabling myco-
bacterial detection and identification directly from the sam-
ple, unlike MALDI-TOF [20, 31].

Of note, from our experience in work, the LCD array 
device is less expensive than MALDI-TOF as a diagnostic 
instrument; however, it has a higher running cost regarding 
testing a sample. After all, every healthcare setting shall 
evaluate the cost/benefit aspect in choosing the optimum 
diagnostic method to adopt in the laboratory and avoid 
underreporting due to defective diagnosis.

Our study had the following limitations: a) demo-
graphic data and type of surgery were available only for 
patients with NTM infections (n = 4); however, data for 
the rest of the patients were missing, b) LCD microarray 
could not be used for detection of mycobacteria directly 
from the samples due to financial barriers and was con-
fined only to identifying the four recovered NTM isolates 
from pus culture.

Conclusion

Clinicians should be aware of NTM in the diagnosis of 
mycobacterial surgical site infections. The present study 
detected four NTM isolates with a prevalence of 2.1% 
among surgical site infections submitted for mycobacterial 
culture. M. abscessus, M. bacteremicum, M. porcinum, and 
M. gordanae were characterized by MALDI-TOF. LCD 
array agreed with MALDI-TOF in identifying M. absces-
sus. Both assays play a vital role in improving mycobacte-
rial identification, but require continuous update to expand 
the identification spectrum of mycobacterial species.
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