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Abstract
The management of carbapenem-resistant infections is often based on polymyxins, tigecycline, aminoglycosides and their 
combinations. However, in a recent systematic review, we found that Gram-negative bacteria (GNB) co-resistant to carbap-
anems, aminoglycosides, polymyxins and tigecycline (CAPT-resistant) are increasingly being reported worldwide. Clini-
cal data to guide the treatment of CAPT-resistant GNB are scarce and based exclusively on few case reports and small 
case series, but seem to indicate that appropriate (in vitro active) antimicrobial regimens, including newer antibiotics and 
synergistic combinations, may be associated with lower mortality. In this review, we consolidate the available literature to 
inform clinicians dealing with CAPT-resistant GNB about treatment options by considering the mechanisms of resistance 
to carbapenems. In combination with rapid diagnostic methods that allow fast detection of carbapenemase production, the 
approach proposed in this review may guide a timely and targeted treatment of patients with infections by CAPT-resistant 
GNB. Specifically, we focus on the three most problematic species, namely Klebsiella pneumoniae, Pseudomonas aerugi-
nosa and Acinetobacter baumannii. Several treatment options are currently available for CAPT-resistant K. pneumonia. 
Newer β-lactam-β-lactamase combinations, including the combination of ceftazidime/avibactam with aztreonam against 
metallo-β-lactamase-producing isolates, appear to be more effective compared to combinations of older agents. Options for 
P. aeruginosa (especially metallo-β-lactamase-producing strains) and A. baumannii remain limited. Synergistic combination 
of older agents (e.g., polymyxin- or fosfomycin-based synergistic combinations) may represent a last resort option, but their 
use against CAPT-resistant GNB requires further study.
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Introduction

For the management of carbapenem-resistant Gram-nega-
tive bacteria (GNB), clinicians often resort to combination 
therapy based on polymyxins (including colistin or poly-
myxin B), aminoglycosides and tigecycline [1, 2]. However, 
in a recent systematic review of the literature, we found that 
GNB with simultaneous resistance to carbapenems, amino-
glycosides, polymyxins and tigecycline (CAPT-resistant), 
are increasingly being reported worldwide [3]. The CAPT-
resistance phenotype is predominantly encountered in Aci-
netobacter baumannii, Klebsiella pneumoniae and Pseu-
domonas aeruginosa. It typically affects severely ill patients 
and patients in intensive care units, but the potential for 
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hospital-wide dissemination or between health-care facili-
ties has been well documented [3].

All-cause mortality of patients with infections by CAPT-
resistant GNB is high (ranging from 20 to 71%) [3]. The 
limited available clinical evidence, based on case reports and 
small case series, seems to indicate that appropriate treat-
ment (based on in vitro susceptibility) with newer antibiotics 
or synergistic combinations may reduce mortality [3]. How-
ever, guidance about treatment options for CAPT-resistant 
bacteria is lacking.

This review aims to consolidate the available literature to 
inform clinicians dealing with CAPT-resistant GNB about 
the available treatment options by considering the mecha-
nisms of carbapenem resistance of the three most problem-
atic GNB species, namely K. pneumoniae, A. baumannii and 
P. aeruginosa [3–5].

Rationale for treatment selection based 
on the mechanisms of carbapenem 
resistance for CAPT‑resistant GNB

The mechanisms of resistance to carbapenems (predomi-
nantly carbapenemase production, as discussed later) are 
independent of the mechanisms of resistance to last resort 
antibiotics such as polymyxins (resistance predominantly 
mediated by plasmid- or chromosomally mediated modi-
fication of the lipopolysaccharide [6–9]), aminoglycosides 
(predominantly mediated by aminoglycoside modifying 
enzymes or 16S ribosomal RNA methyltransferases [10]), 
and tigecycline (predominantly mediated by overexpression 
of efflux pumps [8, 11, 12]). Therefore, newer β-lactam/β-
lactamase inhibitor antibiotics and combinations that can 
overcome resistance mediated by carbapenemase production 
are still useful for CAPT-resistant GNB.

The usefulness of an approach based on the mechanism 
of resistance becomes clearer when laboratory methods to 
rapidly determine the mechanism of resistance are availa-
ble to the clinician [13–16]. Delays in determining antimi-
crobial susceptibility with traditional growth-based labora-
tory methods, such as broth microdilution, disk diffusion, 
gradient tests and agar dilution, may result in inappropri-
ate empirical therapy, which may be associated with pro-
longed hospital stay and increased mortality [3, 17–19]. 
Rapid diagnostic methods, such as nucleic acid-based tests 
that detect carbapenemase genes, phenotypic assays that 
detect hydrolysis of carbapenems including MALDI-TOF 
mass spectrometry, and immunochromatographic assays, 
allow faster detection of carbapenemase production and 
many methods can even determine the most prevalent 
types of carbapenemases (e.g., KPC, VIM, NDM, OXA-
48-like) [15, 16, 20–23]. Many of these methods can be 
implemented directly on spiked blood cultures [23, 24], 

allowing even earlier identification of the mechanisms of 
resistance and targeted treatment in a timely manner.

However, considering the limitations of some rapid 
diagnostic methods regarding the detection of rare or 
novel β-lactamase variants [23, 25–27], susceptibility 
to the selected treatment regimen should always be con-
firmed with traditional growth-based methods. Pending 
such confirmation (and taking into consideration local 
epidemiological data), it may be reasonable to use com-
bination empirical therapy for severely ill patients at risk 
for carbapenem-resistant infections [17].

Brief overview of the mechanisms 
of resistance to carbapenems

Understanding the molecular mechanisms of resistance 
to carbapenems is the most useful first step to guide the 
treatment of CAPT-resistant GNB. Several mechanisms 
can result in resistance to carbapenems [28]: (1) produc-
tion of carbapenemases, (2) mutation of porins resulting 
in reduced outer membrane permeability, (3) overexpres-
sion of efflux pumps, (4) target modification (rare). A 
combination of these mechanisms is also possible. The 
mechanisms used by each of the three species reviewed 
here vary significantly in prevalence, not only between 
different species but also between different countries or 
regions [10, 29–33].

Carbapenem resistance in K. pneumoniae

Production of carbapenemases, which are typically acquired 
by horizontal gene transfer, is the predominant mechanism 
responsible for carbapenem resistance in K. pneumoniae 
[10, 34]. The type of carbapenemase is highly variable in 
different geographical regions [10, 29, 30]. Metallo-beta lac-
tamases (MBL) appear to be substantially more prevalent 
in Asia (especially the Indian subcontinent) and in some 
European countries [29, 30], with an increasing prevalence 
following the introduction of ceftazidime/avibactam [35]. In 
contrast, OXA-48-like carbapenemases are most prevalent 
in countries of the Mediterranean Basin, especially Turkey 
[10, 29]. In the USA, Canada, Latin America, China and 
some European countries (mainly Italy and Greece), KPCs 
are the most prevalent carbapenemases [10, 29, 36]. The 
frequency of carbapenemase-negative carbapenem-resistant 
K. pneumoniae is also highly variable in different countries 
and continents [10, 30, 34]. Porin mutations or efflux pump 
overexpression (often combined with the production of beta-
lactamases) appear to be responsible for the resistance in 
carbapenemase-negative K. pneumoniae [37–40].
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Carbapenem resistance in P. aeruginosa

In contrast to K. pneumoniae and other Enterobacterales that 
acquire carbapenem resistance predominantly by horizontal 
gene transfer of carbapenemases, resistance in P. aerugi-
nosa is predominantly mediated by chromosomal mutations 
resulting in loss or reduction of porin OprD, overexpres-
sion of the cephalosporinase AmpC and overexpression 
of efflux pumps [41–43]. For example, only about 20% of 
carbapenem-resistant P. aeruginosa in Europe [41] and 4.3% 
in Canada [44] produced carbapenemases, predominantly 
metallo-β-lactamases (specifically VIM and IMP). How-
ever, the prevalence of MBL among carbapenem-resistant 
P. aeruginosa is rising [41] and in some settings the majority 
(70–88%) of carbapenem-resistant P. aeruginosa isolates are 
MBL producers [32, 33]. Furthermore, GES-type carbap-
enemases are increasingly being reported in P. aeruginosa 
[44–47].

Carbapenem resistance in A. baumannii

Similar to P. aeruginosa, reduced membrane permeability 
and upregulation of efflux pumps are important mechanisms 
of resistance in A. baumannii [48, 49]. However, produc-
tion of Class D carbapenemases (OXA-23 being by far the 
most widespread in most countries), and less commonly 
Class A (including KPC and GES) and Class B (MBL) 
carbapenemases, is the major mechanism of carbapenem 
resistance in A. baumannii [49–51]. In contrast to OXA-48 
carbapenemases of Enterobacterales which are inhibited by 
avibactam, A. baumannii’s oxacillinases are resistant to all 
beta-lactamase inhibitors currently in clinical use, including 
vaborbactam, relebactam, and avibactam [52–55]. Notably, 
carbapenem resistance in A. baumannii is rising and in many 
regions, especially in Europe and the Middle East, the vast 
majority of A. baumannii are resistant to carbapenems [56]. 
For example, about 80% of A. baumannii associated with 
hospital-acquired infections in Europe are carbapenem-non-
susceptible [57, 58].

Options for CAPT‑resistant K. pneumoniae

Several treatment options are available for non-MBL 
carbapenemase-producing K. pneumoniae. Ceftazidime/
avibactam [59, 60] is active against both Class A (KPC) 
and Class D (especially OXA-48-like) carbapenemase-pro-
ducing K. pneumoniae, whereas meropenem/vaborbactam 
[61] and imipenem/relebactam [62] are only active against 
Class A carbapenemases. A limitation of ceftazidime/avi-
bactam is the potential for emergence of resistance during 
treatment due to KPC mutations [63–67]. These mutations 
may reverse the susceptibility to carbapenems [65, 67, 68], 

but switching to carbapenem monotherapy in such cases 
may re-select for carbapenem resistance [69]. Meropenem/
vaborbactam [70] and imipenem/relebactam [62] remain 
active against some KPC variants conferring resistance to 
ceftazidime/avibactam, and against the recently described 
VEB-25 extended spectrum β-lactamase that has been 
associated with ceftazidime/avibactam resistance [26]. 
Furthermore, emergence of resistance may be less likely 
compared to ceftazidime/avibactam [66, 71]. Finally, sev-
eral case reports and small series have reported successful 
treatment of CAPT-resistant KPC-producing K. pneumo-
niae with a double carbapenem combination [72–75]. The 
rationale of this combination is that ertapenem due to its 
higher affinity with the carbapenemase enzyme acts as a 
suicide inhibitor, allowing higher levels of the second car-
bapenem (typically meropenem or doripenem) [72–75].

On the other hand, options for MBL-producing K. 
pneumoniae are limited. The novel β-lactam–β-lactamase 
inhibitor combinations, including ceftazidime/avibactam 
[59], ceftolozane/tazobactam [76], meropenem/vabor-
bactam [77] and imipenem/relebactam [55], are inactive 
against MBL-producing GNB [78]. In contrast, the com-
bination of aztreonam with avibactam may restore activity 
against MBL-producing isolates [60, 79], because aztre-
onam is not hydrolyzed by MBLs and avibactam effec-
tively inhibits other beta-lactamases (ESBL, KPC and 
OXA-48) that can hydrolyze aztreonam. The combination 
aztreonam–avibactam is not currently available, but the 
combination of ceftazidime–avibactam plus aztreonam 
has been used successfully against infections by MBL-
producing bacteria [80–83].

Plazomicin is more active compared to alternative ami-
noglycosides against carbapenem-resistant Enterobacterales 
regardless of the mechanism of carbapenem resistance [10], 
and is active against polymyxin-resistant Enterobacterales, 
regardless of the mechanism of polymyxin resistance [84]. 
However, production of 16S-rRNA-methyltransferases 
(which confer resistance to plazomicin) is encountered in 
up to 60% of MBL-producing K. pneumoniae [10].

Several options are also available for carbapenemase-neg-
ative carbapenem-resistant K. pneumoniae. Plazomicin is 
active against the majority (95%) of carbapenemase-negative 
carbapenem-resistant Enterobacterales [10]. Isolates with 
outer membrane permeability changes (typically OmpK35 
and OmpK36 porin mutations) often remain susceptible to 
ceftazidime/avibactam [85–87], meropenem/vaborbactam 
[88] and imipenem/relebactam [62, 89], albeit with higher 
MICs. A theoretical concern in such cases is that with an 
MIC closer to the susceptibility breakpoint, emergence of 
resistance may be more likely by stepwise accumulation of 
multiple chromosomally mediated resistance mechanisms, 
including mutations resulting in reduced membrane per-
meability, overexpression of efflux pumps, overexpression 
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of β-lactamases or mutations attenuating the effect of 
β-lactamase inhibitors [87, 90].

Other potential options for CAPT-resistant K. pneu-
moniae include eravacycline, fosfomycin and cefiderocol. 
Eravacycline is more potent compared to tigecycline and 
may be active against some tigecycline-resistant strains 
(especially considering the current EUCAST susceptibility 
breakpoint for tigecycline) [91, 92]. Successful use of fosfo-
mycin against extensively drug-resistant K. pneumoniae has 
been reported in small case series, often in combination with 
other antimicrobials [93, 94]. Despite concerns about devel-
opment of resistance during treatment, this does not appear 
to be a problem in clinical practice possibly because fosfo-
mycin resistance may carry a biological fitness cost [95, 96].

Finally, synergistic combinations, such as colistin-based 
combinations [97, 98] or combination of fosfomycin with 
carbapenems [94, 99], may prove useful last-resort options, 
but pharmacodynamic/pharmacokinetic (PK/PD) and clini-
cal studies are lacking, especially against isolates co-resist-
ant to all components of the combinations [3]. Synergistic 
combinations based on ceftazidime/avibactam (combined 
with fosfomycin + aztreonam or meropenem) have also been 
reported for the treatment of ceftazidime/avibactam-resistant 
strains [26]. Combinations exploiting multiple heterore-
sistance is another interesting option and may be effective 
against pan-resistant K. pneumoniae based on in vitro and 
in vivo animal data [100].

Based on the above evidence synthesis, treatment options 
for CAPT-resistant K. pneumoniae are summarized in Fig. 1.

Options for CAPT‑resistant P. aeruginosa

In contrast to CAPT-resistant K. pneumoniae, merope-
nem–vaborbactam and plazomicin are not useful for CAPT-
resistant P. aeruginosa. The activity of meropenem–vabor-
bactam is similar to that of meropenem alone [61] and 
plazomicin is not better than older aminoglycosides against 
P. aeruginosa [10].

On the other hand, ceftazidime/avibactam and ceftolo-
zane/tazobactam may retain activity against selected CAPT-
resistant P. aeruginosa strains. Both are less prone to outer 
membrane permeability changes (porin loss/efflux pumps) 
and neither is affected by AmpC (ceftolozane is stable 
against AmpC and avibactam restores the activity of cef-
tazidime by inhibition of AmpC) [101, 102]. Therefore, both 
ceftazidime/avibactam and ceftolozane/tazobactam remain 
highly active (81–92% [101, 103–106]) against non-MBL 
carbapenem-resistant P. aeruginosa, but susceptibility may 
be much lower (41–48% [45, 103]) in isolates co-resistant to 
multiple anti-pseudomonal beta-lactams (ceftazidime, piper-
acillin/tazobactam and cefepime). Generally, ceftolozane/
tazobactam appears to be more potent than ceftazidime/

avibactam in non-carbapenemase-producing P. aeruginosa 
[101, 102], and has been used successfully against ventila-
tor-associated pneumonia by CAPT-resistant P. aeruginosa 
[107].

Resistance to ceftazidime/avibactam and ceftolozane/
tazobactam is usually the result of structural modifications 
of AmpC (in addition to overexpression) or horizontally 
acquired carbapenemases [108, 109]. Imipenem-relebactam, 
another option against non-MBL producing P. aeruginosa 
[110], is not affected by AmpC mutations that confer resist-
ance to ceftazidime/avibactam and ceftolozane/tazobactam 
[110]. However, GES-producing P. aeruginosa strains are 
resistant to both imipenem/relebactam [46, 47] and ceftolo-
zane/tazobactam [45, 111], but may be susceptible against 
ceftazidime/avibactam [45, 111].

Neither imipenem/relebactam nor ceftolozane/tazobac-
tam or ceftazidime/avibactam is active against MBL-pro-
ducing P. aeruginosa [55, 59, 76]. Furthermore, in contrast 
to MBL-producing K. pneumoniae, aztreonam/avibactam 
cannot overcome resistance against most MBL-producing 
P. aeruginosa due to mechanisms of resistance to aztre-
onam independent of beta-lactamases [112]. Nevertheless, 
the combination of ceftazidime/avibactam with aztreonam 
may be useful against selected strains, with intermediate/
borderline MICs to aztreonam or ceftazidime/avibactam [81, 
113]. Cefiderocol on the other hand is stable to hydrolysis by 
all carbapenemases (including MBL and OXA) and is not 
affected by porin/efflux pumps mutations [114–116]. It is 
therefore a useful option when everything else is ineffective.

Fosfomycin has also been used successfully against 
CAPT-resistant P. aeruginosa [93]. However, fosfomycin 
monotherapy should be avoided in P. aeruginosa infections 
given the risk of emergence of resistance during treatment 
[117–119]. Finally, various synergistic combinations (e.g., 
based on colistin [120, 121], fosfomycin [122, 123] or ami-
noglycosides [45]) may represent a last resort treatment 
option. The combination of ceftolozane–tazobactam with 
amikacin [45] or fosfomycin [122] may also be effective 
based on in vitro evidence.

Based on this evidence synthesis, treatment options for 
CAPT-resistant P. aeruginosa are summarized in Fig. 2.

Options for CAPT‑resistant A. baumannii

Options for CAPT-resistant A. baumannii are limited. This 
is reasonable considering the multiple concurrent mecha-
nisms of resistance in A. baumannii, including reduced 
membrane permeability, increased efflux and Class B and 
D carbapenemase production. None of the new β-lactam–β-
lactamase inhibitor combinations (meropenem/vaborbactam, 
imipenem/relebactam, ceftazidime/avibactam, ceftolo-
zane/tazobactam, aztreonam/avibactam) are active against 
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carbapenem-resistant A. baumannii [61, 124–127]. Further-
more, plazomicin does not have better activity compared to 
alternative aminoglycosides [10], and A. baumannii appears 
to be intrinsically resistant to fosfomycin [96, 128].

Potential currently available options for CAPT-resistant 
A. baumannii include minocycline, eravacycline and cefi-
derocol. Eravacycline is more potent compared to tige-
cycline and may be an option against some tigecycline-
resistant A. baumannii strains [92, 129–131]. Minocycline 
has also been proposed as an option and has been used 

against carbapenem-resistant isolates [132], but its role 
and activity against CAPT-resistant isolates is unclear, 
especially considering that its susceptibility breakpoints 
are unclear [133] and the lack of modern PK/PD studies 
and randomized controlled trials [134]. Finally, cefidero-
col is active against most A. baumannii, but cefiderocol-
resistant strains have already been reported [114, 135]. 
Ampicillin/sulbactam and trimethoprim/sulfamethoxazole 
have been used against carbapenem-resistant A. baumannii 

Abbrevia�ons; IMI/REL= imipenem/relebactam, CAZ/AVI= ce�azidime/avibactam, C/T= ce�olozan/tazobactam, MVB= 
meropenem/vaborbactam
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Fig. 1   Treatment options for CAPT-resistant K. pneumoniae depend-
ing on the mechanism of resistance to carbapenems. 1 Several rapid 
methods are available or under development that can detect both the 
production and the type of carbapenemases [20–23]. Because rare or 
novel β-lactamase variants may not be detectable by some methods 
[23, 25–27], susceptibility should always be confirmed with tradi-
tional growth-based methods and combination therapy may be rea-
sonable pending such confirmation, especially in severe infections 
[17]. 2 CAZ/AVI is active against both Class A and some Class D 
carbapenemases [59] and is less affected by outer membrane perme-
ability changes (porin mutations or efflux pumps) [85, 86]. CAZ/
AVI can be combined with aztreonam to overcome resistance to 
MBL [80–82]. Notable, however, is the potential for  emergence of 
resistance during treatment due to KPC mutations [63–66] and due 
to the recently described VEB-25 extended spectrum β-lactamase 
[26]. 3 MVB and IMI/REL are active against Class A (KPC) car-
bapenemase producers, but not against Class B or Class D carbap-
enemase producers [61, 62]. Both remain active against some KPC 
variants that confer resistance to CAZ/AVI [70] and against the 
recently described VEB-25 extended spectrum β-lactamase that has 
been associated with CAZ/AVI resistance [26]. MVB and IMI/REL 
may also be active against isolates with porin mutations, but major 
OmpK35 or OmpK36 disruptions may be associated with resistance 
[62, 88]. Emergence of resistance may  be less likely compared to 

CAZ/AVI monotherapy [66, 71]. 4 Double carbapenem combinations 
may be useful if CAZ/AVI, MVB and IMI/REL are not available 
(or not an option due to higher cost) and have been used effectively 
against KPC-producing CAPT-resistant K. pneumoniae [72–75]. 5 
Plazomicin is active against 93% of KPC-producing, 42% of MBL-
producing (co-production of 16S-rRNA-methyltransferases), 87% of 
OXA-producing, and 95% of carbapenemase-negative carbapenem-
resistant Enterobacterales [10]. 6 Fosfomycin has been shown to be 
effective against XDR/PDR K. pneumoniae [93, 94], but its activity is 
highly variable [96]. 7 Cefiderocol is stable against hydrolysis by all 
carbapenemases (including MBL) and its mechanism of bacterial cell 
entry is independent of porin channels and efflux pumps. Therefore, 
cefiderocol appears to be a useful option when no other antibiotic is 
active [114, 115]. 8 Eravacycline is more potent compared to tige-
cycline and may be active against some tigecycline-resistant strains 
[91, 92]. 9 Options include combinations based on colistin [97, 98], 
fosfomycin [94, 99] and ceftazidime/avibactam [26], and combina-
tions exploiting multiple heteroresistance [100]. 10 Beta-lactam-
based regimens (double carbapenem, newer β-lactams–β-lactamases 
and the combination of CAZ/AVI with aztreonam) have been better 
studied compared to other options, and have been associated with bet-
ter outcomes compared to older agents and their combinations [66, 
166–169, 171, 172]
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[131, 136–138], but their role and activity against CAPT-
resistant isolates are less clear.

Until cefiderocol or other new antibiotics (such as combi-
nations with Class D carbapenemase inhibitors [52]) become 
widely available, or in cases of cefiderocol resistance, 

synergistic combinations may represent the only option 
for CAPT-resistant A. baumannii. Polymyxin-based syn-
ergistic combinations (e.g., with rifampicin, carbapenems, 
ampicillin/sulbactam, fosfomycin, glycopeptides, tigecycline 
and minocycline) are the most studied, but have been tried 

Abbrevia�ons; IMI/REL= imipenem/relebactam, CAZ/AVI= ce�azidime/avibactam, C/T= ce�olozan/tazobactam, MVB= 
meropenem/vaborbactam

C/T 2

CAZ/AVI 2 
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High-dose amikacin 6

Synergis�c 
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C/T and CAZ/AVI- resistant due to 
AmpC muta�ons

Mechanism of carbapenem 
resistance?

MBL-carbapenemaseGES-carbapenemase

CAZ/AVI 2

IMI/REL 3
Second-line op�ons

Fig. 2    Treatment options for CAPT-resistant P. aeruginosa depend-
ing on the mechanism of resistance to carbapenems. 1 The prevalence 
of carbapenemases varies substantially in different regions, but may 
be very high in some settings [31–33, 41]. MBL are the predomi-
nant carbapenemases in P. aeruginosa, but GES carbapenemases 
are increasingly being reported [45–47] Neither IMI/REL nor CAZ/
AVI or C/T is active against MBL-producing P. aeruginosa [55, 59, 
76], while GES carbapenemases may inactivate IMI/REL [46, 47] 
and C/T [45, 111] but not CAZ/AVI [45, 111]. Because rare or novel 
β-lactamase variants may not be detectable by some rapid methods 
[23, 25–27], susceptibility should always be confirmed with tradi-
tional growth-based methods and combination therapy may be rea-
sonable pending such confirmation, especially in severe infections 
[17]. 2 Both CAZ/AVI and C/T are unaffected by the most com-
mon mechanism of resistance in P. aeruginosa (OprD porin muta-
tions, overexpression of efflux pumps, overexpression of AmpC) 
[101, 102]. Resistance to CAZ/AVI and C/T is usually the result of 
structural modifications of AmpC (+ overexpression of AmpC) or 
horizontally acquired carbapenemases [108, 109]. GES-type carbap-
enemases may confer resistance to C/T but not to CAZ/AVI [45]. 3 
IMI/REL is unaffected by the most relevant mutation-driven β-lactam 
resistance mechanisms of P. aeruginosa [110]. Moreover, IMI/REL 
is not affected by AmpC mutations that confer resistance to ceftazi-
dime/avibactam and ceftolozane/tazobactam [110]. IMI/REL is inef-
fective against MBL- and GES-producing P. aeruginosa strains [46, 

47]. 4 Cefiderocol is stable against hydrolysis by all carbapenemases 
(including MBL) and its mechanism of bacterial cell entry is inde-
pendent from porin channels and efflux pumps. Therefore, cefiderocol 
appears to be a useful option when no other antibiotic is active [114, 
115]. 5 Alternative antibiotics (if available) may be preferable taking 
into account the concerns for emergence of resistance during treat-
ment with fosfomycin [96, 117]. When fosfomycin is used it should 
be combined with a second antibiotic. 6 High-dose aminoglycoside 
therapy (such as amikacin 50 mg/kg/day) may be a useful option for 
CACT-resistant P. aeruginosa with borderline MIC (e.g., amikacin 
MIC = 16 mg/dl) and can be combined with hemodialysis to reduce 
nephrotoxicity [184, 186, 187]. 7 Until cefiderocol becomes widely 
available, synergistic combinations (e.g., based on colistin [120, 121], 
fosfomycin [122, 123], aminoglycosides [45] and C/T [45, 122]) 
may sometimes represent the only treatment option, but PK/PD and 
clinical studies are needed. Other options are ineffective for CAPT-
resistant P. aeruginosa: The activity of MVB against P. aeruginosa is 
similar to that of meropenem alone [61].: Plazomicin is no better than 
other aminoglycosides against P. aeruginosa [10].: Similar to other 
tetracyclines, P. aeruginosa is resistant to eravacycline [91].: Aztre-
onam/avibactam cannot overcome resistance against most MBL-pro-
ducing P. aeruginosa [112], but may be useful against selected strains 
with borderline/intermediate MICs to aztreonam or ceftazidime/avi-
bactam [81, 113]
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predominantly against carbapenem-resistant polymyxin-sus-
ceptible A. baumannii, and clinical benefit has not yet been 
found in most studies [2, 139–144]. Differences between 
in vitro and in vivo conditions, such as insufficient drug 
concentrations, insufficient exposure time to synergistic 
concentrations, host immune-pathogen interactions and fit-
ness cost associated with polymyxin resistance have been 
proposed as potential explanations [140, 141, 145]. Further-
more, most studies on polymyxin-based combinations have 
been conducted with colistin [146]. However, polymyxin 
B has important pharmacokinetic advantages and is less 
nephrotoxic [147–149], and according to a recent interna-
tional consensus should be preferred over colistin except 
for lower urinary tract infections [146]. Therefore, clinical 
data are needed to assess the impact of polymyxin B-based 
combination regimens [146].

Despite the above limitations, polymyxin-based combina-
tions may be useful for the management of CAPT-resistant 
A. baumannii based on in vitro and animal studies [120, 144, 
150–152] and limited clinical data [153–158]. For example, 
the combination of colistin with rifampicin has been used 
successfully against colistin-resistant A. baumannii pneu-
monia [154] and colistin-resistant A. baumannii postsurgi-
cal meningitis [156, 157]. Notable is the synergy between 
colistin and agents that are not active against Gram-negative 
bacteria (such as linezolid and vancomycin), suggesting that 
colistin may exert a sub-inhibitory permeabilizing effect that 
allows increased entry of other drugs into the bacteria [150, 
159].

High-dose ampicillin–sulbactam combined with merope-
nem and polymyxins is another promising combination [153, 
160, 161], and has been used successfully against CAPT-
resistant A. baumannii ventilator-associated pneumonia 
[153]. Furthermore, based on a recent in vitro study, the 
combination sulbactam/avibactam (which can be currently 
achieved by combining ampicillin/sulbactam with ceftazi-
dime/avibactam) may be useful against non-MBL-producing 
A. baumannii [162]. The rationale of this combination is that 
avibactam can inhibit most of the beta-lactamases that can 
affect the activity of sulbactam [162].

Tigecycline-based combinations have also been proposed, 
but have predominantly been studied against tigecycline-
susceptible strains, or in combination with an in vitro active 
agent (predominantly colistin) [163]. Although data regard-
ing tigecycline-based combinations against CAPT-resist-
ant GNB are limited, such combinations are often used in 
clinical practice given the lack of other options [158, 164]. 
Synergistic combinations with minocycline may also prove 
useful [144], but currently available data are very limited.

In summary, older agents (including minocycline, ampi-
cillin/sulbactam and trimethoprim/sulfamethoxazole) may 
be an option against CAPT-resistant A. baumannii if in vitro 
active and have been used mainly in combination with other 

agents. Among newer (currently approved) agents, eravacy-
cline and cefiderocol are other options. If none of the above 
options are active, or where newer agents are not yet avail-
able, polymyxin-, tigecycline- and sulbactam-based syner-
gistic combinations may prove useful, but their role against 
CAPT-resistant strains remains understudied.

Selecting between the different options

Randomized controlled trials providing robust evidence to 
guide the selection of one agent over the other are lacking [3, 
66, 165]. Approval of newer antimicrobials is usually based 
on non-inferiority trial designs, which have several limita-
tions including insufficient power to assess the superiority 
of one antimicrobial over the other and even the possibility 
of bias favoring non-inferiority [165]. Furthermore, trials of 
new antimicrobials are often conducted in patients with car-
bapenem-susceptible infections and their results are extrap-
olated to patients with more resistant infections based on 
in vitro susceptibility data [14, 165]. Post-marketing adap-
tive randomized controlled trial designs have been proposed 
to assess newer antimicrobials for patients with multidrug-
resistant GNB infections, who were not included in earlier 
phase studies [165]. Use of rapid diagnostic methods, com-
bined with utilization of algorithms guided by mechanisms 
of resistance (such as those proposed here), may guide a 
more efficient targeting of newer antimicrobials in clinical 
trials [14, 165].

The available evidence, predominantly based on real rife 
observational data, suggests the superiority of beta-lactam-
based therapy (i.e., double-carbapenem [166] or newer 
β-lactam–β-lactamase combination regimens such as ceftazi-
dime/avibactam [66, 167–170], meropenem/vaborbactam 
[66, 171] or imipenem/relebactam [172]) over older anti-
microbial options (including polymyxins, aminoglycosides, 
tigecycline and their combinations) against carbapenem-
resistant Enterobacterales. Furthermore, in a recent multi-
center observational study, the combination of ceftazidime/
avibactam with aztreonam was associated with significantly 
lower clinical failure, mortality and length of stay compared 
to other active agents (including combinations of polymyx-
ins, tigecycline, aminoglycosides and fosfomycin) for blood-
stream infection by MBL-producing Enterobacterales (pre-
dominantly K. pneumoniae) [83]. Moreover, ceftazidime/
avibactam has been used successfully as salvage therapy 
against infections by carbapenem-resistant K. pneumoniae 
that have failed various combination regimens [173]. Cef-
tazidime/avibactam and meropenem/vaborbactam appear to 
have similar efficacy, although emergence of resistance dur-
ing treatment is more common with ceftazidime/avibactam 
monotherapy [71]. Nevertheless, based on limited available 
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data, ceftazidime/avibactam monotherapy and combination 
therapy are associated with similar outcomes [170, 174].

Clinical data for other options (including fosfomycin, 
eravacycline, minocycline, plazomicin, cefiderocol, syner-
gistic combinations) against carbapenem-resistant bacteria 
are still limited. The results of the prematurely terminated 
CARE trial seem to favor plazomicin over colistin-based 
combinations, although the number of patients enrolled was 
very small [175]. Eravacycline appears to be a good option 
extrapolating from trials of carbepenem-susceptible infec-
tions [177], but data against carbapenem-resistant infections 
are limited [176]. Minocycline has shown favorable efficacy 
against carbapenem-resistant A. baumannii [132, 178], but 
the activity of minocycline against tigecycline-resistant 
strains is unclear considering the lack of modern PK/PD 
studies and unclear susceptibility breakpoints [133, 134]. 
Intravenous fosfomycin has been used successfully against 
extensively drug-resistant and CAPT-resistant GNB in small 
case series [93, 94]. Cefiderocol has been used successfully 
as a last resort option, but the limited available data against 
carbapenem-resistant bacteria are conflicting [179]. Finally, 
several in vitro studies have evaluated synergistic combi-
nations, but clinical data against isolates co-resistant to all 
components of the combinations are limited to small series 
or case reports [3, 153, 154, 156–158].

Treatment regimen for the combination 
of ceftazidime/avibactam with aztreonam

With the currently recommended treatment regimen for 
ceftazidime/avibactam (2 + 0.5 g every 8 h by 2 h intrave-
nous infusion, adjusted for renal function) a high probability 
(> 90%) of target attainment against MIC ≤ 8 mg/l can be 
achieved regardless of older age, obesity, augmented renal 
clearance, or severity of infection [180, 181]. Prolonged or 
continuous infusion of ceftazidime/avibactam does not seem 
to improve PD target attainment compared to the standard 
2 h infusion [182]. However, the optimal regimen for the 
combination of ceftazidime/avibactam with aztreonam for 
MBL-producing Enterobacterales remains unclear [13, 83]. 
In the largest cohort, the regimen used was: ceftazidime/
avibactam 2 + 0.5 g every 8 h (administered as a prolonged 
8 h infusion in half of the patients and as a 2 h infusion in 
the rest) and aztreonam 2 g every 8 h (administered as a 2 h 
infusion) [83]. Based on a recent study using a hollow-fiber 
infection model comparing the effect of various regimens on 
bacterial killing and suppression of resistance, the follow-
ing were proposed [183]: (1) simultaneous administration of 
ceftazidime/avibactam with aztreonam is preferred to stag-
gered administration (ceftazidime/avibactam first, followed 
by aztreonam), (2) continuous infusion and standard 2 h 
infusion appear to be equally effective, (3) a total daily dose 

of 8 g aztreonam may be superior to 6 g. However, only two 
NDM-1-producing E. coli and K. pneumoniae strains were 
used in the study and validation of these results in more 
strains is necessary [183].

PK/PD considerations and dosing strategies 
for overcoming resistance

Reviewing the dosing regimens and PK/PD considerations 
for each of the antimicrobials discussed in this manuscript 
is beyond the scope of this review. However, it is worth 
highlighting the potential of attaining PD targets in selected 
cases when the MIC is above the susceptibility breakpoint 
with higher dose (for concentration-dependent antimicrobi-
als) or prolonged/continuous infusion regimens (for time-
dependent antimicrobials). For example, two patients with 
renal failure and sepsis by pandrug-resistant P. aeruginosa 
were successfully treated with high-dose amikacin mono-
therapy (25 and 50 mg/kg/day, respectively) despite an MIC 
of 16 mg/L [184]. Continuous venovenous hemodiafiltration 
was used to enhance extrarenal clearance of amikacin and 
achieve low trough concentrations to reduce the risk of oth-
erwise unavoidable nephrotoxicity [185]. In both patients, 
the peak amikacin concentration was eight to ten times the 
MIC and renal function was preserved [184]. Combining 
high-dose aminoglycosides (to achieve PD targets) with 
hemodialysis (to increase clearance and decrease nephro-
toxicity) is an interesting option [186, 187], especially when 
no alternatives are available, but requires further study.

Based on PK/PD modeling with Monte Carlo simulations, 
optimized prolonged infusion treatment regimens to over-
come resistance have been proposed for a variety of time-
dependent antimicrobials whose efficacy is best predicted by 
the time that the antibiotic’s concentration is above the MIC 
(% T > MIC, or % f T > MIC considering the free, unbound 
drug concentration). For example, two-step administration 
of meropenem (1.5 g administered intravenously over 5 min 
followed by a 6 h infusion of 0.5 g, repeated every 8 h) can 
achieve a > 90% probability of target attainment for carbap-
enem-resistant isolates with MIC up to 128 mg/L (consid-
ering a target 50% f T > MIC), or up to 32 mg/L (consider-
ing a higher target of 50% f T > 5 × MIC) [188]. Regarding 
ceftolozane/tazobactam, an extended (4–5 h) infusion may 
perform better compared to shorter or longer infusions, espe-
cially in patients with augmented renal clearance, and has 
been proposed to achieve target attainment (40% fT > MIC) 
for P. aeruginosa strains with MIC up to 32 mg/dl [189]. 
Furthermore, prolonged or continuous infusion of sulbac-
tam may allow target attainment (60% T > MIC) against A. 
baumannii strains with sulbactam MIC up to 32 mg/L [190, 
191]. Finally, administration of fosfomycin as prolonged 
infusion (6 h infusions of 8 g every 8 h) may allow target 
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attainment (70% T > MIC in this study) for P. aeruginosa 
with MIC up to 128 mg/L, while continuous infusion of 
16 g/day may allow target attainment for strains with MIC up 
to 96 mg/L [192]. However, fosfomycin-resistant subpopu-
lations rapidly emerge, especially from strains with higher 
baseline MIC and fosfomycin heteroresistance [118, 119, 
193, 194]. Therefore, the benefits of prolonged or continu-
ous fosfomycin infusion may be more apparent when used 
in synergistic combination regimens [118, 192], especially 
when the second antibiotic can counterselect resistance 
amplification by exploiting multiple heteroresistance [100]. 
Clinical data for the use the above options are not available.

Direct delivery at the site of infection may also be an 
option to achieve sufficient antibiotic concentration and 
attain PD targets. For example, a case of meningitis by 
pandrug-resistant P. aeruginosa (with amikacin MIC 
32 mg/L) was successfully treated with intraventricular 
amikacin [195]. PK/PD considerations for intrathecal 
administration of antibiotics are discussed in detail in a 
recent review [196]. Intravesical administration of anti-
biotics (e.g., colistin or aminoglycosides [197, 198]) may 
also be an option for lower urinary tract infections, but 
clinical data against CAPT-resistant GNB are lacking.

Conclusions

Understanding the molecular mechanisms of resistance 
and the local epidemiology of these mechanisms is cru-
cial in guiding decision-making when selecting appropri-
ate (in vitro active) antimicrobials for the management 
of CAPT-resistant GNB. This understanding becomes 
particularly useful in the presence of laboratory methods 
that can rapidly determine the molecular mechanisms of 
resistance. Several such methods are available, including 
lower-cost phenotypical assays, and are suitable for micro-
biology laboratories of any capacity. This review shows 
that several treatment options are available against CAPT-
resistant K. pneumoniae and against non-MBL CAPT-
resistant P. aeruginosa, but controlled trials to guide the 
selection of one agent over the other are still lacking. On 
the contrary, options for MBL-producing P. aeruginosa 
and CAPT-resistant A. baumannii are limited. Cefiderocol 
and other novel agents under development are promising 
future options. Until new agents become widely available 
in clinical practice, more research (including PK/PD and 
outcome studies) on the effectiveness of synergistic com-
binations or optimized prolonged infusion regimens might 
help.
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