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Abstract Myeloid-derived suppressor cells (MDSCs) are

originated and differentiated population from common

hematopoietic progenitor cells. Generally, in the late stage

of inflammation, MDSCs differentiation and expansion are

promoted to suppress the over-activated immune system so

that the immune system can maintain the homeostasis.

Recently, it has been revealed that MDSCs accumulate in

cancer patients and tumor-bearing experimental animals,

and these tumor-derived MDSCs suppress anti-tumor

immunity by secreting immunosuppressive cytokines

including reactive oxygen species and inducible nitric

oxide synthase. This fact prompts scientists to shed light on

MDSCs as significant targets for anti-cancer immunother-

apy. However, due to morphological, phenotypic, and

functional heterogeneities of MDSCs, it is not easy to

develop therapeutic strategies targeting MDSCs. In this

review, we will summarize recent progress on defined

subsets of MDSCs and their strategies to suppress T cell-

mediated anti-tumor immunity.
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The discovery of MDSCs

MDSCs appeared to the scientific field in the late 1970s

(Strober 1984; Holda et al. 1985; Ribechini et al. 2010). At

that time, this was just a formerly unknown immune cell

population which possesses immunosuppressive features,

but it was enough to attract scientists. Firstly, MDSCs were

isolated from bone marrow and spleens from tumor-chal-

lenged mice, and it was revealed that those isolated cells

were able to suppress T cell responses both in vivo and

in vitro against tumor cells (Roder et al. 1978; Subiza et al.

1989). Because of its immunosuppressive functions and

immature status, MDSCs were also called as natural sup-

pressor cells, immature myeloid cells, and myeloid sup-

pressor cells. Finally, the naming issue has been fixed by

Gabrilovich and his colleagues in 2007 as they suggest the

unification of the name: ‘‘MDSC’’ which is reflecting both

origin of those cells and the function after 37 years of its

discovery (Gabrilovich et al. 2007). From that point,

MDSCs are uprising as a novel immune cell population

that regulates innate and adaptive immunity by inactivating

T cells. Studies for MDSCs have been accelerated since

2000, but many things about MDSCs are behind the veil

and waiting for being elucidated.

The subsets of MDSCs

Under the united name of MDSC, many subsets of MDSCs

have been defined, and these various subsets reflect the

heterogeneity and complexity of MDSCs. At first, MDSCs

were defined as cells which express Gr-1?CD11b? as cell

surface molecules but not express the typical expression

marker of mature macrophages and dendritic cells (DC) in

mice (Bronte et al. 1998). With specific antibodies that
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recognize the surface molecules of MDSCs (Talmadge and

Gabrilovich 2013), mouse MDSCs are classified as two

major subsets of MDSCs: granulocytic MDSCs (G-

MDSCs) have similar morphologies with granulocytes and

monocytic MDSCs (M-MDSCs) have similar morpholo-

gies with monocytes (Sica and Bronte 2007; Movahedi

et al. 2008). Generally, G-MDSCs are distinguished as they

express CD11b?Ly6G?Ly6Clow, while M-MDSCs express

CD11b?Ly6Glow/-Ly6Chigh on their surfaces (Movahedi

et al. 2008; Youn et al. 2008). Unlike mice, human MDSCs

do not express Gr-1. Instead, human MDSCs are charac-

terized as CD11b?CD33?HLA-DR-. Furthermore,

CD15?CD11b?CD33?HLA-DR- population corresponds

to G-MDSCs, and CD14?CD11b?CD33?HLA-DR- pop-

ulation corresponds to M-MDSCs (Nagaraj and Gabrilo-

vich 2010; Greten et al. 2011; Dumitru et al. 2012;

Filipazzi et al. 2012; Poschke and Kiessling 2012; Meirow

et al. 2015). Until now, there are many subsets that are not

clarified because of their ambiguous expression levels of

surface molecules like Ly6G and Ly6C. Thus, it is not easy

to exactly classify them into G-MDSCs or M-MDSCs.

Many of these intermediate subsets of MDSCs are still

discovering.

Recently, fibrocytic MDSCs (F-MDSCs) are character-

ized as a novel MDSC subset in human (Abrams and

Waight 2012; Zhang et al. 2013; Mazza et al. 2014; Zoso

et al. 2014; Gunaydin et al. 2015). F-MDSCs show tumor-

associated circulating fibrocyte phenotypes and have T

cell-mediated immunosuppressive functions. F-MDSCs

seem to express CD11blowCD11clowCD33?IL-4Ra? on

their surfaces (Mazza et al. 2014; Gunaydin et al. 2015).

According to Zhang et al. (2013), F-MDSCs might express

HLA-DR unlike other human MDSCs. Although it is clear

that F-MDSCs with fibrocytic phenotypes show immuno-

suppressive functions, little is known how F-MDSCs dif-

ferentiate from common HSCs and suppress T cells.

On the other hand, it is still unclear what factors drive

MDSC differentiation into two or more different subsets

from same precursor cells. It was revealed that tumor-in-

duced granulocyte colony-stimulating factor (G-CSF) is

one of those factors (Waight et al. 2011; Abrams and

Waight 2012; Luyckx et al. 2012; Kawano et al. 2015). Our

recent study also showed that the serum G-CSF level is

associated with the inhibition of expansion and differenti-

ation of G-MDSCs in tumor-bearing adiponectin knockout

mice (Han et al. 2013). Nonetheless, the mechanism and

crucial factors that drive the differentiation from common

progenitor cells into various types of MDSC subsets should

be further elucidated and identified.

The immunosuppressive functions of G-MDSCs

MDSCs produce immunosuppressive factors such as reac-

tive oxygen species (ROS), inducible nitric oxide synthase

(iNOS), arginase 1, and IL-10 to suppress the proliferation

or activities of anti-cancer T cells or macrophages (Fig. 1).

Basically, arginase produces urea and ornithine from

arginine, which leads to depletion of arginine. In turn,

MDSCs suppress the proliferation of T cells effectively,

because arginine is a key nutritional substrate for T cell

proliferation (Ochoa et al. 2007; Munder 2009; Rodriguez

et al. 2009). MDSCs also secret immunosuppressive

cytokine IL-10, which leads to immunosuppressive regu-

latory T cells (Treg) activation as well as the induction of

the anti-inflammatory M2 macrophage differentiation, and

the expansion of MDSC population by tumor growth

contribute to immune escape of tumor cells through these

suppressive effects of IL-10 (Sinha et al. 2007; Heim et al.

2015). Besides of these common suppressive mechanism

including arginase expression and IL-10 secretion,

G-MDSCs tend to primarily use ROS as the mechanism for

Fig. 1 Strategies of G-, M-, and

F-MDSCs for T cell

suppression. MDSC myeloid-

derived suppressor cell, G-

MDSC granulocytic MDSC, M-

MDSC monocytic MDSC, F-

MDSC fibrocytic MDSC, ROS

reactive oxygen species, iNOS

inducivle nitric oxide synthase,

NO nitric oxide, IL-10

interleukin 10, IDO indoleamine

oxidase, TCR T cell receptor,

Treg regulatory T cell, M2 u
M2 macrophage
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immune suppression (Kusmartsev et al. 2004; Sinha et al.

2005; Nagaraj et al. 2007; Nefedova et al. 2007; Ando et al.

2008; Markiewski et al. 2008; Youn et al. 2008; Corzo

et al. 2009). G-MDSCs-produced ROS inhibits the antigen-

specific T cell responses by disrupting the physical inter-

action between T cell receptors (TCRs) on T cells and

peptide/major histocompatibility complexes (MHCs) on

antigen presenting cells (Kusmartsev et al. 2004; Nagaraj

et al. 2007; Meirow et al. 2015). Moreover, G-MDSCs-

produced ROS reacts with NO, which leads to the pro-

duction of peroxynitrite. Then, the resulted peroxynitrite

strongly induces the nitration of TCRs followed by the

apoptosis of T cells (Nagaraj et al. 2007; Corzo et al. 2009;

Raber et al. 2014). This finding suggests that G-MDSCs

contribute to develop tumor-specific T cell tolerance.

The immunosuppressive functions of M-MDSCs

While G-MDSCs use ROS as the effector of immune

suppression, M-MDSCs primarily utilize iNOS, arginase,

and IL-10 (Bronte and Zanovello 2005). Similar to arginase

which depletes arginine as T cell nutrient, iNOS produces

NO and citrulline from arginine, and eventually T cell

proliferation is inhibited by arginine depletion. Besides of

arginine depletion, iNOS-induced NO also downregulates

JAK3/STAT5 signaling which is crucial molecular sig-

naling for T cell survival by reducing the phosphorylation,

leading to the apoptosis of T cells (Rodriguez and Ochoa

2008; Dilek et al. 2012). In addition to iNOS and arginase,

IL-10 produced from M-MDSCs also contributes to the

interruption of T cell activation by inducing Foxp3?Treg

(Huang et al. 2006; Serafini et al. 2008). Given that

M-MDSCs can effectively suppress T cells by humoral

action with their immunosuppressive cytokines, physical

interaction between M-MDSCs and T cells may be less

required than G-MDSCs.

The immunosuppressive functions of F-MDSCs

Zhang et al. reported that hematopoietic stem cells (HSC)-

derived fibrocytes suppress T cell proliferation through

indoleamine oxidase (IDO) production, and that those

immunosuppressive fibrocytes are suggested as a novel

MDSC subset (Zhang et al. 2013). In 2014, Zoso et al.

named this population as F-MDSCs and showed that the

physical interaction between F-MDSCs and T cells induces

the production of IDO in F-MDSCs and that F-MDSCs-

produced IDO promotes the expansion of immunosup-

pressive Foxp3 ? Treg cells (Zoso et al. 2014). Previous

study showed that tryptophan is an essential amino acid for

T cell proliferation and activation, and that IDO depletes

tryptophan by degrading it to formylkynurenine, which

leads to the inhibition of T cell proliferation during anti-

gen-specific T cell activation in turn (Lee et al. 2002,

Zhang et al. 2013). Besides of this previously known

tryptophan depletion mechanism, Zoso et al. also showed

that 3-hydroxyanthranilic acid, a downstream metabolite

for IDO-mediated tryptophan degradation, promotes Treg

differentiation by inducing the secretion of immunosup-

pressive transforming growth factor-b from DCs. (Baban

et al. 2009, Yan et al. 2010, Zoso et al. 2014). Therefore, it

is conceivable that F-MDSCs-produced IDO is a major

immunosuppressive molecule to suppress T cells.

Expansion and activation of MDSCs

Mature lymphocytes are originated from the differentiation

of HSCs (Fig. 2) (Sica and Bronte 2007). Under infection

or tumor-bearing condition, the HSC differentiation into

mature immune cells is unfinished and remained as less

differentiated cells, MDSCs (Bronte et al. 2000). This

special condition prepares the expansion and accumulation

of MDSCs. Then the issue is rising up: do tumors regulate

the expansion and accumulation of MDSCs? The answer is

yes. MDSCs are expanded and activated by tumor-driven

cytokines including stem cell factor (SCF), G-CSF, mac-

rophage colony-stimulating factor (M-CSF), granulocyte–

macrophage colony-stimulating factor (GM-SCF), and

vascular endothelial growth factor, IL-4, and IL-6. Those

cytokines activate signal transducer and activator of tran-

scription 3 (STAT3) which is the key molecule of the

expansion and activation of MDSCs (Condamine and

Gabrilovich 2011). Cytokine-activated STAT3 upregulates

the transcription of gene set related to the expansion and

immunosuppressive activity of MDSCs. STAT3 activation

upregulates the transcriptions of calcium-binding pro-

Fig. 2 Tumor-mediated MDSC formation. G-CSF granulocyte col-

ony-stimulating factor, GM-CSF granulocyte macrophage colony-

stimulating factor, M-CSF macrophage colony-stimulating factor, IL-

6 interleukin 6, HSC hematopoietic stem cell,MDSC myeloid-derived

suppressor cell, ROS reactive oxygen species, iNOS inducible nitric

oxide synthase, IL-10 interleukin 10, Treg regulatory T cell
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inflammatory proteins S100A8 and S100A9 (Foell et al.

2007) in HSCs. In turn, the increase in S100A8 and

S100A9 inhibits dendritic cell differentiation and promotes

the MDSC expansion, accumulation, and the recruitment

the MDSCs to the tumor site (Cheng et al. 2008). CCAAT-

enhancer-binding protein b which is reported as a crucial

factor for the MDSC expansion is also upregulated by

STAT3 (Marigo et al. 2010). In addition, STAT3 increases

the transcription of p47phox which is a component of

nicotinamide adenine dinucleotide phosphate oxidase

(NOX2). Concerning that NOX2 directly increases ROS, it

is certain that STAT3 positively regulates the immuno-

suppressive activities of MDSCs as well as expansion of

MDSCs (Corzo et al. 2009).

Conclusion

The nature of MDSCs is to terminate or suppress exces-

sively activated immune system so that the immune sys-

tems can be back to the peaceful state after inflammation

reaction. This homeostatic immune regulation device

contributes to protect our body from autoimmunity. How-

ever, due to their immune suppressive roles, tumors easily

pervert MDSCs to build up the tumor-friendly environment

through the inhibition of T cells and the activation of M2

macrophages and Treg cells. Recently, it has been revealed

that MDSCs would suppress the homing of tumor antigen-

specific T cells to tumor site by reducing the expression of

L-selectin on the surfaces of T cells (Hanson et al. 2009).

The novel mechanism that MDSCs prepare tumor-favor

environment is unveiling. These accumulating reports

support the fact that reducing numbers and interfering

functions of MDSCs would be good strategies for the

development of anti-cancer therapy in the near future.

Therefore, to put this forward, elucidating and under-

standing of full story of MDSCs is required to use these

‘double-edged swords’ in a smart way.
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