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Abstract
This study presents an in-depth spatiotemporal analysis of mangrove ecosystems along Egypt’s Red Sea coast, utilizing sat-
ellite imagery and GIS to examine changes from 2003 to 2022. We evaluate the effects of hydrological factors, specifically 
rainfall and runoff -presented by Stream Power Index-, on mangrove growth patterns. Results indicate a significant increase 
in mangrove areas, with a notable annual growth rate, despite a reduction in a specific region. This research highlights the 
integral role of catchment area runoff (R2 = 0.735, R = 0.857, P-value = 0.003 < 0.05, CV = 70.26%), rather than direct rainfall, 
in mangrove expansion, contributing to the understanding of mangrove resilience and informing sustainable coastal manage-
ment strategies. The study bridges a significant research gap by mapping decadal mangrove changes, offering insights into 
the dynamics affecting these crucial ecosystems.

Keywords  Satellite imagery · Image classification · Climate change · Mangrove mapping · Google Earth · Decadal 
variations

Introduction

Mangroves are valuable ecosystems that provide multiple 
benefits for humans and nature, such as coastal protection, 
biodiversity conservation, and livelihood support (Menén-
dez et al. 2020). Moreover, they act as a carbon sink that 
can sequester carbon dioxide (CO2) in the soil underneath 
at higher rates per hectare than tropical forests (Omar et al. 
2019; Maurya et al. 2021). Although mangrove occupies less 
than 0.5% of the global marine environment, they sequester 
around 13% of the total carbon stored by the coastal ecosys-
tem (Alongi 2014). Therefore, several studies have proved 
the effectiveness of mangroves as a natural climate solu-
tion that contributes to decreasing climate change impacts 
(Murdiyarso et al. 2015; Macreadie et al. 2021). Mangroves’ 

growth can be affected by several factors, namely, climatic 
conditions, geomorphological location, salinity, and human 
interventions (Irsadi et al. 2019; Rastogi et al. 2021; Afefe 
2021). However, mangroves are also threatened by vari-
ous factors, such as climate change, sea level rise, land use 
change, pollution, and overexploitation (Afefe 2021; Mosa 
et al. 2022; Bhowmik et al. 2022). In addition, hydrological 
processes and climatic factors including precipitation and 
temperature can change the composition and distribution of 
mangroves as they control mangrove nutrients and coastal 
hydrodynamics (Eslami-Andargoli et al. 2009; Moslehi et al. 
2021).

Recognizing the importance of the mangrove ecosys-
tem and the problems it faces that caused its declination, it 
is important to monitor and understand the dynamics and 
drivers of mangrove distribution and change at different 
spatial and temporal scales. Unfortunately, it is challenging 
to quantify the rate of disappearance or increase of man-
grove trees, as most of the areas are logistically difficult 
to access or located in remote locations, besides the high 
cost of field surveying, which is also time-consuming. In 
addition, having historical information regarding the pre-
vious mangrove areas to aid in the monitoring process is 
also challenging. Therefore, effective mapping approaches 
are required, which can take place using remote sensing 
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techniques. Remote sensing is a powerful tool for mapping 
and monitoring crops and vegetation across different spa-
tial and temporal scales. Many mangrove ecosystem stud-
ies have employed multi-spectral satellite data to determine 
spatiotemporal change (Khairuddin et al. 2016; Fernando 
and Senanayake 2023). The same strategy can be used to 
monitor mangrove vegetation as remote sensing can help 
assess the status and distribution of mangroves at local and 
global scales (Hu et al. 2020). Mangroves in Egypt are an 
untapped area of research, there is a knowledge gap when 
it comes to mapping mangroves extent and identifying its 
growth factors. The Red Sea is one of the most saline and 
arid regions in the world, where mangroves face harsh envi-
ronmental conditions and limited freshwater inputs. Despite 
their ecological and socio-economic importance, there is a 
lack of comprehensive and up-to-date information on the 
status and trends of mangroves along the Red Sea shoreline 
in Egypt. Several studies have mostly examined the current 
spatial distribution of mangroves (Saleh 2007; Blanco-Sac-
ristán et al. 2022), their physical and chemical characteristics 
(Afefe et al. 2019), and their relation to sea levels (Gilman 
et al. 2007), however, they overlooked the hydrological and 
climatic factors. Furthermore, to the best of our knowledge, 
no published work has historically monitored the change in 
mangroves in Egypt.

This paper uses satellite imagery and GIS techniques to 
fill these gaps by conducting a spatiotemporal analysis of 
mangrove distribution and change along the Red Sea shore-
line in Egypt. The study further explores the influence of 
rainfall and runoff, two prominent hydrological variables 
recognized for their potential impact on mangrove growth, 
employing statistical methodologies. Despite constituting a 
relatively small fraction of the global mangrove ecosystem, 
Egyptian mangroves play a significant role in mitigating 
atmospheric carbon dioxide levels and bestowing various 
ecological advantages. Therefore, this paper provides novel 
insights into the patterns and processes of mangrove dynam-
ics in this region and contributes to the understanding of the 
role of freshwater availability on mangrove resilience.

Materials and methods

Study area

Geographically, mangroves in Egypt are dominantly pre-
sent in two regions: the Sinai Peninsula and the Red Sea 
coast. This research focuses on the mangroves located 
along the western shore of the Red Sea, which covers most 
of the mangrove ecosystem in Egypt. The length of study 
area covers 650 km of the Red Sea shoreline between lati-
tudes (27°13′5.58″N and 22°41′29.01″N) and longitudes 
(33°52′17.61″E and 36° 1′3.96″E) from Hurghada to 

Halayeb within the Red Sea Governorate as illustrated in 
Fig. 1. The water temperature along the shoreline ranges 
between 18 and 32.5 °C according to the season, while the 
salinity varies between 40 and 42.42% (Abdelmongy et al. 
2015). Mangroves in Egypt are dominant in two species: 
Avicennia Marina (A. Marina) and Rhizophora Mucronate 
(R. Mucronate). The first species is the most common along 
the study location, while the second is mostly found towards 
the south of the shoreline within Wadi El Gemmal Protec-
torate and near the Egyptian-Sudanese border in Halayeb.

Data acquisition

In this investigation, the preliminary identification of man-
grove ecosystems and their spatial extents was accomplished 
through the analysis of multispectral imagery acquired from 
a suite of satellite sensors, specifically Landsat 5 Thematic 
Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus 
(ETM +), Landsat 8 Operational Land Imager (OLI)—
sourced from the Earth Explorer portal (http://​earth​explo​rer.​
usgs.​gov/) facilitated by the United States Geological Survey 
(USGS)—and the Sentinel 2 Multi Spectral Imager (MSI), 
accessed via the Copernicus Open Access Hub (https://​sci-
hub.​coper​nicus.​eu). These datasets, procured for the year 
2022, were selected for their absence of cloud obfuscation 
and were georeferenced to the Universal Transverse Merca-
tor (UTM) projection system, zone 36 N, utilizing the World 
Geodetic System 1984 (WGS84) datum. The utility of multi-
spectral (MS) bands in these images for the accurate deline-
ation of mangrove areas has been corroborated by numerous 
studies (Ghorbanian et al. 2021; Wiatkowska et al. 2021) 
underscoring the efficacy of specific band combinations for 
the visual identification of these ecosystems.

To augment the resolution and accuracy of the vegeta-
tion analysis, this study also incorporated high-resolution 
imagery from the Google Earth Images, specifically Quick-
bird satellite images, spanning multiple years (2003, 2004, 
2007, 2009, 2011, 2012, 2014, 2016, 2022) to facilitate a 
comprehensive multi-temporal assessment of mangrove 
coverage. The selection of these years was informed by 
the availability of high-resolution imagery (< 1 m) at the 
specified mangrove locations (Watanabe et al. 2020). This 
integrated methodological framework enabled the genera-
tion of a baseline mangrove map for 2022 and facilitated an 
in-depth temporal analysis of mangrove vegetation dynamics 
since 2003.

Mangrove delineation

In this study, we employed a two-phased approach to 
delineate and analyze temporal mangrove coverage. (I) a 
comparative evaluation was performed among Landsat 5, 
Landsat 7, Landsat 8, and Sentinel-2 imagery to ascertain 
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the satellite offering the highest resolution and the finest 
detail for the preliminary identification of mangrove locales 
within the study perimeter in the year 2022. In this phase 
imagery from Sentinel-2, chosen for their proven effective-
ness in vegetation detection due to their multispectral capa-
bilities, including the crucial NIR band. This phase ensured 
the preliminary identification of mangrove extents with 
an accuracy validated by subsequent field visits. (II) The 
second phase involved the deployment of high-resolution 
Google Earth (Quickbird) imagery for detailed mapping and 
change detection. Despite Google Earth images’ limitation 
in multispectral data, their high-resolution detail (< 1 m) 
significantly improves the mapping accuracy of fragmented 
and small-sized mangroves along the Red Sea shoreline, a 
necessity not met by the coarser resolution of multispectral 
images., This methodological pivot was strategically cho-
sen to complement the initial multispectral analysis, ensur-
ing comprehensive coverage and precise quantification 

of mangrove changes over time. The integration of these 
datasets underpins our robust methodological framework, 
designed to balance the multispectral analysis’s breadth with 
the high-resolution imagery’s detailed inspection. A com-
prehensive flowchart detailing the applied methodology is 
presented in Fig. 2, providing a clear visualization of the 
steps undertaken to fulfill the research objectives.

Initial mangroves detection

In this study, we refined our data acquisition methodology 
to include a comparative resolution analysis of satellite 
imagery from Landsat (Landsat-5, Landsat-7, and Land-
sat-8) and Sentinel-2. This approach was chosen to leverage 
their multi-spectral capabilities and widespread application 
in remote sensing, particularly in land use and land cover 
mapping, and their effectiveness in identifying vegetation 
areas, such as mangroves (Ma et al. 2019; Wiatkowska et al. 

Fig. 1   Study area location and boundary
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2021). During the initial detection phase of mangroves for 
the base year 2022, Landsat-5 (30 m resolution) imagery 
was excluded from the study due to the satellite’s decom-
missioning in 2013, rendering its data outdated for current 
analysis (Zhang and Roy 2016). Similarly, Landsat-7 (30 m 
resolution) data was also omitted due to a well-documented 
sensor anomaly that compromises image quality, specifically 
the Scan Line Corrector (SLC) failure, which results in data 
misinterpretations (Hossain et al. 2015). In contrast, Land-
sat-8, with its capability for panchromatic sharpening that 
combines lower-resolution bands with high-resolution ones 

to create sharpened high-resolution images, offers imagery 
at a 15-m resolution (Rahaman et al. 2017). However, after 
detailed evaluation (Fig. 2), we determined that Sentinel-2’s 
imagery yields more precise results for our research objec-
tives as it covers 13 spectral bands with a superior 10-m 
resolution and require less extensive image processing. Con-
sequently, Sentinel-2 images were primarily utilized in our 
analysis. Figure 3 illustrates the comparative detail captured 
by each satellite’s imagery for a sample mangrove location, 
highlighting the rationale behind our choice of data sources. 
Upon enhancing the satellite to improve clarity and detail. 

Fig. 2   Research methodology flowchart
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Subsequently, the Normalized Difference Vegetation Index 
(NDVI), a robust analytical tool originally developed by 
Rouse et al. (1974), was employed to accurately identify and 
delineate vegetated zones along the shoreline. The NDVI 
is an established method for assessing the spatial distribu-
tion and density of plant life, leveraging spectral reflectance 
measurements to quantify vegetation greenness and vitality. 
The index is derived from the near-infrared (NIR) and red 
light reflected by vegetation, encapsulated in the formula:

where the NDVI values range between − 1 and + 1, with 
positive values indicating greater levels of vegetation bio-
mass (Rouse et al. 1974). This study adheres to the stand-
ard NDVI threshold values to classify the vegetated areas, 
ensuring precise and reliable mapping of the green cover on 
the shoreline.

*Detecting the change of mangroves was not performed 
for the same dates in all locations due to the availability of 
the high-resolution Google Earth Images (Resolution < 1 m). 
All 14 locations are monitored for the years 2007, 2011, 
2016, and 2022, except for location 8 (2009, 2016, and 
2022), location 11 (2004, 2012, and 2022), and location 12 
(2003, 2014 and 2022).

Validation of mangrove locations

To validate the accuracy of our methodology, a compre-
hensive validation process was undertaken, which involved 
comparing our results with ground truth data and independ-
ent datasets. This validation process encompassed field sur-
veys and reference data collection. The field surveys were 
conducted in March 2022, during which a thorough visit was 
made to confirm the precise locations of the mangrove trees. 
Additionally, any green areas containing vegetation types 
other than mangroves were excluded from the analysis. The 
coordinates of the confirmed locations were recorded using a 
handheld GPS device. By comparing our outputs with these 

(1)NDVI =
NIR − Red

NIR + Red
where (0 < NDVI < 1)

reference datasets and incorporating the qualitative data 
gathered during the field survey, we assessed the accuracy 
of our analysis and implemented necessary adjustments to 
enhance the reliability of the results.

Detecting the change in mangrove spatial distribution 
using high‑resolution Google Earth images

While our methodology allows for the precise identifica-
tion of the mangrove locations in the Sentinel-2 imagery, 
the spatial distribution of mangroves was highly uncertain 
due to limitations associated with the resolution of these 
images (see Fig. 3). To rectify this, our methodology needed 
to pivot to allow for the most accurate delineation of the 
mangrove extents for the year 2022 and to map the changes 
over time, in addition to creating a detailed spatiotemporal 
representation. To address this, we augmented the meth-
odology by integrating very high-resolution imagery from 
Google Earth, specifically the QuickBird satellite imagery, 
which has a spatial resolution of less than 1 m, and which 
has been available for the study area from 2003 to 2022. 
This allowed the creation of an accurate baseline map and 
comprehensive spatiotemporal analysis of the changes in 
mangrove areas. We obtained ninety (90) high-resolution 
images from Google Earth corresponding to the identified 
mangrove locations within the study domain for the years 
2003–2022. The selection of 2003 is based on availability of 
high-resolution imagery for the study area. We downloaded 
the images from Google Earth Pro then used an open-source 
Software called El-Shayal Smart GIS to download Google 
Earth images with its geo-referenced information (Elshayal 
2015). The images were then converted from a geographic 
coordinate system (latitude/longitude) to a projected coor-
dinate system (northing/easting) using Universal Transverse 
Mercator (UTM) projection in ArcGIS10. In addition, His-
torical imagery from Google Earth Pro allowed for the track-
ing of mangrove distribution changes from 2003 to 2022 as 
there was no high-quality data available for the study area 
before 2003.

Fig. 3   Comparison of satellite imagery detail for a mangrove sample, illustrating data selection logic. Sentinel-2 outperforms other multispectral 
satellites in accuracy, whereas Google Earth offers unparalleled detail, enhancing mangrove quantification and temporal analysis precision
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Rational behind satellite data selection

In the methodology section of the paper, it’s important to 
note that while Google Earth offers high-resolution imagery, 
it primarily provides images in three spectral bands: red, 
green, and blue (RGB). This RGB configuration significantly 
limits the use of Google Earth imagery for initial vegeta-
tion detection stages, as multispectral data, which include 
a broader range of wavelengths, are critical for accurately 
applying vegetation indices such as the Normalized Dif-
ference Vegetation Index (NDVI). The NDVI and similar 
indices rely on the near-infrared (NIR) band along with the 
red band to effectively differentiate between vegetated and 
non-vegetated areas, a capability that RGB imagery alone 
cannot provide (Hu et al. 2013). Therefore, our methodology 
initially avoided utilizing Google Earth imagery for primary 
vegetation detection due to its lack of multispectral capabili-
ties, particularly the absence of the NIR band. Instead, we 
opted for satellite imagery from platforms like Landsat and 
Sentinel-2, which include both red and NIR bands among 
others, thus enabling the effective application of NDVI and 
other vegetation indices for the accurate identification of 
mangrove areas. Only after identifying potential vegetation 
areas with multispectral satellite imagery did, we employ 
Google Earth’s high-resolution RGB images for subsequent 
analysis, such as detailed mapping and change detection in 
identified mangrove locations. This approach ensures a more 
robust and accurate assessment of vegetation, leveraging the 
strengths of different types of satellite data in a comple-
mentary manner. In doing so, we make the process more 
accessible and understandable, without sacrificing precision, 
thereby facilitating a more inclusive engagement with satel-
lite imagery analysis.

Training and validation data

In this study, we employed machine learning techniques 
to classify satellite images of the study area. Georefer-
enced images were subjected to supervised classification 
using ArcGIS tools. Specifically, we applied the Maximum 
Likelihood algorithm, which is based on the probability 
of a pixel belonging to a certain class. The NDVI was uti-
lized as training samples for the classification process. To 
ensure accurate results, we conducted manual monitoring 
to address potential challenges such as noise, shadows, or 
mixed pixels. Any errors or misclassifications were rectified 
through the adjustment of class labels or reassigning pixels 
or segments to appropriate classes using the Reclassify tool 
in ArcGIS. To validate the accuracy of our methodology, 
a comprehensive validation process was undertaken. We 
cross-referenced our calculated mangrove areas with existing 
peer-reviewed literature that focused on the same geographic 
area and temporal context, which is a common practice for 

researchers in the field of remote sensing and vegetation 
analysis to compare their findings with existing literature to 
validate their results (Watanabe et al. 2020; Mullapudi et al. 
2023). Additionally, we acknowledged the widespread use of 
Google Earth images as ancillary data in numerous publica-
tions for validation and collecting training samples in land 
use/cover classification (Pimple et al. 2018; Achour et al. 
2018; Blanco-Sacristán et al. 2022). Finally, we performed 
a confusion matrix analysis to assess the classification errors 
and the accuracy measures of our methodology. A confu-
sion matrix is a table that compares the actual and predicted 
land cover classes for a sample of pixels and calculates the 
overall accuracy, which is the proportion of pixels that are 
correctly classified.

Calculating the annual rate of change of mangrove

In this study, the yearly rate of change in the mangrove area 
was utilized to examine the variations between the mangrove 
areas at two distinct times in the same location. The com-
pound interest approach was used to generate the following 
formula (FAO 2007), which represents the yearly rate of 
change in mangrove area (q):

where, A1 and A2 are mangrove areas at times t1 and t2, 
respectively.

Rainfall & runoff analysis

Most of the mangrove locations are distinguished by the 
existence of multiple watersheds that release rainfall to the 
Red Sea Shoreline (Fig. 4). Due to the influence of steep 
slopes and infrequent instances of heavy rainfall, the streams 
in these basins are characterized by their short length, how-
ever, they result in intense flow. Therefore, in this study we 
will focus on the rainfall patterns and the stream power as 
two hydrological factors that can affect its growth. Stream 
power, which is simply the sum of stream discharge, stream 
slope, and the weight of water, is a term used to describe 
surface runoff as a driving force behind certain flow pat-
terns. Most scholars use stream power as a measure of fluvial 
geomorphic processes (Gartner 2016).

Rainfall trend analysis

To identify the relationship between rainfall patterns and 
mangrove distribution, rainfall data between 2000 and 
2020 were obtained for the study sites and their catch-
ment areas from Integrated Multi-satellite Retrievals for 
GPM (GPM IMERG)—Final Run product Version 6, using 

(2)q =

(

A2

A1

)
1∕
(

t2 − t1
)

− 1



International Journal of Environmental Science and Technology	

the GIOVANNI web-based resource (https://​giova​nni.​gsfc.​
nasa.​gov/​giova​nni/). It provides monthly average precipi-
tation rate estimates (in mm/month) with a spatial resolu-
tion of 0.1° (approximately 11 km). The final run product, 
that was used, is regarded as being of research-grade qual-
ity (Eslami-Andargoli et al. 2009) and was used in several 
studies in the same location (Elnazer et al. 2017; Ibrahim 
2021). The rainfall trends were calculated using Sen’s 
slope method (Sen 1968) and linear regression, at differ-
ent mangrove locations. The Sen’s slope method is used 
in many studies to detect trends in hydro-meteorological 
data (Jain et al. 2013; Bari et al. 2016). The slopes of all 
data pairs (Ti) are calculated by:

where, xj and xk are rainfall data values at time j and k 
(j > k), respectively. The median of these N values of Ti is 
Sen’s estimator of slope, which is calculated as follows:

An upward trend in the time series is indicated by a posi-
tive value of � , whereas a downward (decreasing) trend is 
shown by a negative value. In addition, the linear regression 

(3)Ti =
xj − xk

j − k
fori = 1, 2, ..N

(4)� =

{ TN+1

2
,Nisodd

1

2

(

TN

2

+ TN+2

2

)

,Niseven

Fig. 4   Some of the watersheds 
along the study area

https://giovanni.gsfc.nasa.gov/giovanni/
https://giovanni.gsfc.nasa.gov/giovanni/
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is used to fit the rainfall time series and use the slope to 
measure the rainfall trend (Wickramagamage 2016; Rustum 
et al. 2017). The rainfall trends are then compared to the rate 
of change in mangrove vegetation at the same location to 
identify any relation.

Runoff analysis—stream power index (SPI)

The majority of studies on the environmental factors influ-
encing vegetation have linked the plant distribution to the 
watershed-scale characteristics of upstream watersheds 
(Song et al. 2014; Gartner 2016). The analysis of the alluvial 
and hydrological consequences of the downstream, such as 
the transit of water pollutants, the quality of the water, the 
estimation of floods, and sedimentation, depends on accu-
rate knowledge of the flood-plain flow. Stream power has a 
direct relation to sediment transport, runoff characteristics, 
and watershed features. It expresses the amount of energy 
contained in flowing water within a streamline per unit 
length. The stream power (Ω) (in units of Wm−1) (Tetford 
et al. 2017) of any stream is defined as:

where, ρ is the water density, g is the gravitational accel-
eration, Q is the discharge and S is the channel gradient 
(dimensionless).

In our methodology, we derived the streamlines from the 
30-m resolution Digital Elevation Model (DEM) provided 
by the United States Geological Survey (USGS) utilizing the 
Raster Calculator option in ArcGIS 10.3 software. This pro-
cess involved delineating the watershed and extracting the 
stream network based on topographical data. Discharge (Q) 
was estimated at various points within the stream network 
using ArcGIS’s hydrological tools, which integrate rainfall-
runoff models and historical flow data (Hassan et al. 2022). 
The channel gradient (S) was computed from the DEM by 
measuring the change in elevation over the distance along 
the stream, facilitated by the slope analysis tools in ArcGIS. 
This methodology aligns with well-established practices 
within the field, as documented in the works of Gartner 
(2016) and Ghunowa et al. (2021).(Gartner 2016; Ghunowa 
et al. 2021).

To investigate the correlation between the SPI and the 
average annual increase of mangroves, multiple statistical 
indicators were utilized to assess the strength and nature of 
the relationship at the same study locations. The employed 
indicators included the scatter plots for visual representation, 
the Coefficient of Determination (R2) to quantify the propor-
tion of variance (higher values indicating stronger relation-
ship), regression analysis with P-values (p < 0.005 consid-
ered statistically significant), the Correlation coefficient (R) 
where values closer to 1 denoted a stronger correlation and 

(5)Ω = �gQS

the coefficient of variation (CV) to quantify data variability 
as a percentage of the mean, offering insights into the degree 
of dispersion (Hassan et al. 2022).

Results and discussion

Mangroves temporal and spatial distribution

The mangroves are found on separate sites; they are scat-
tered parallel to the shoreline. The total mangrove areas are 
summarized in fourteen (14) locations within the study area, 
as shown in Fig. 5, while the coordinates of all locations are 
summarized in Table 1. The Red Sea coast is dominated by 
a chain of high mountains that can reach heights up to 2 km, 
creating a series of flood plains and watersheds along the 
study area; most of the mangrove locations are found down-
stream these fluvial areas either in shallow waters, beach 
ridges or semi-enclosed areas like bays. There are other 
geomorphological forms where mangroves are found like 
offshore islands as the case in locations 1 and 2 or on inter-
tidal flats, which are muddy and shallow areas that appear 
between the tide levels (Miththapala 2013), as for some parts 
in location 14. Figure 6 shows the different geomorphologi-
cal formations along the Red Sea coast. The locations of 
the mangroves in Egypt agree with the geomorphological 
criteria where mangroves are usually suited; several studies 
stated that mangroves usually grow in shallow depths on the 
beaches, as well as locations that are not exposed to heavy 
wave action, such as bays, islands, or reefs (Afefe 2021).

Monitoring the temporal mangrove changing rates has 
been done for the past 15 years, from 2007 to 2022, using 
high-resolution Google Earth Images. However, in the year 
2007 images were available for only 11 mangrove locations. 
The remaining 3 locations that did not have 2007 images, 
had earlier or later dates. Kindly refer to the Fig. 2 descrip-
tion for detailed image availability at each location. Hence, 
to establish a consistent baseline year across all mangrove 
locations, we employed linear interpolation to estimate the 
mangrove area from the earliest available image for loca-
tions 8, 11, and 12, projecting it to the year 2007. Although 
the linear method is simple, it is an effective method for 
estimating missing data in short time gaps, it is also used 
in numerous publications with similar work (Yancho et al. 
2020; Arjasakusuma and Pratama 2021). This enables the 
comparison of the change rate in mangrove spatial distribu-
tion at different locations for the same period. Figure 7 sum-
marizes the temporal change results of all mangrove areas.

To validate our vegetation area results, we conducted a 
literature review to identify other peer-reviewed publications 
that employed comparable methods and datasets to map veg-
etation cover in our study region during a similar period. 
Two relevant studies were found that met these criteria. 
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The first, Saleh (2007), aimed to map mangrove vegetation 
on Abu Minqar Island (location 1) and establish a baseline 
database for future monitoring of mangrove habitat changes. 
That study reported mangrove vegetation coverage of 28.54 
hectares in 2007. Our results for the same year and location 
yielded a mangrove area of 33.02 hectares, indicating con-
sistency with an accuracy of 84.3% relative to Saleh (2007). 
The second study, Blanco-Sacristán et al. (2022), reported 
total mangrove distribution and afforestation potential in 
the Red Sea using satellite imagery and machine learning 
techniques. Their Google Earth Engine-based classification 
achieved an accuracy of approximately 98.2% ± 0.3% when 
validated against ground reference data. For 2022, that study 
estimated the total mangrove area along the Egyptian Red 
Sea coast to be approximately 24.46 km2. Our results for 
the same region and time yielded a mangrove area of 22.25 
km2, corresponding to an accuracy of 91.32% relative to 
Blanco-Sacristán et al. (2022). Therefore, the average accu-
racy of our vegetation area estimations relative to these two 
independent studies is 87.81%.

Fig. 5   Mangrove locations covered within the study area showing study locations by yellow squares

Table 1   Study sites’ locations coordinates

Location Name Northing Easting

1 Abu minqar Island 27°12′47.26″N 33°52′30.26″E
2 Safaga Island 26°45′09.74″N 33°58′28.77″E
3 14 km South Safaga 26°36′56.64″N 34° 0′ 43.50″E
4 40 km South Safaga 26°23′57.64″N 34° 07′ 0.70″ E
5 Mangrove Bay 25°52′02.49″N 34°24′51.94″E
6 2.5 km South Mangrove 

Bay
25°50′46.82″N 34°25′47.37″E

7 Mangrove Cafe 25°50′05.88″N 34°26′24.56″E
8 Wadi El Gemal 24°40′41.01″N 35° 5′ 09.89″E
9 Mastura to Hamata 

Shoreline
24°18′13.86″N 35°22′12.90″E

10 Wadi Lahmi 23°28′46.03″N 35°29′22.23″E
11 Hartiway Bay 24° 7′43.75″N 35°29′21.95″E
12 Wadi Hemiera 23°28′49.41″N 35°29′21.22″E
13 Bir El Hasa 22°56′45.15″N 35°40′02.23″E
14 Shalateen Shoreline 22°43′20.18″N 35°54′15.45″E
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According to the geomorphological conditions shown in 
Fig. 6, all mangrove locations were classified into three dis-
tinct categories. This grouping aimed to facilitate the iden-
tification of shared factors influencing the growth or degra-
dation of mangroves along the Egyptian Red Sea shoreline. 
Group 1 represents mangroves located on offshore islands. 
It includes locations 1 and 2 covering the northern part of 
the study area. Group 2 represents mangrove locations that 
are suited along the shoreline and at the same time is rep-
resented by a mono-species mangrove, Avicenna Marina. 
This group covers the middle section of the study area from 
location 3–11. The third group covers locations 12, 13 & 14 

representing the mangroves located onshore and on inter-
tidal flats within the southern part of the study area, how-
ever, it contains the stands where R. Mucronata coexists 
along with A. Marina (Abubkr and Abdelazim 2017; Afefe 
2021). The results of the combined mangrove monitoring are 
illustrated in Fig. 8. We calculated the mangrove areas each 
year where Google Earth images with a high spatial reso-
lution of approximately 0.5 m were available (Fig. 2). We 
then computed the percentage change in the area between 
each pair of years and averaged them over the total study 
period of 15 years to obtain the average annual change in 
mangrove area.

Fig. 6   Three main geomorphological formations of mangroves in Egypt a Shows mangroves located on fluvial areas in shallow water and beach 
ridges b shows mangroves on offshore islands, c mangroves on inter-tidal flats
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The results show that the mangrove along the Red Sea 
shoreline in Egypt is increasing and becoming denser in 
the northern (Group 1) and middle section (Group 2) of 
the study area. However, the rate of increase for the second 
group is almost 3% per year, which is three times higher 
than the first group with a rate of increase of 1% per year. 
This can be attributed to the locations of both groups, as 
the field investigation and satellite images have shown that 
all locations within Group 2 are suited within beach ridges 
downstream of fluvial plains on the shoreline. This geo-
morphological location is described as a crucial element of 
mangrove ecosystems because it aids in the mixing of fresh-
water runoff with seawater during rainfall events. Moreover, 
it increases the groundwater table during low flow condi-
tions, which maintains a positive water balance even during 
dry seasons (Cohen et al. 2021). Several studies have indi-
cated the importance of freshwater runoff on the growth of 

mangroves, it not only decreases the salinity of the mangrove 
environment but also delivers nutrients through sediments, 
therefore, freshwater is vital for the mangrove ecosystem 
protection and conservation (Santini et al. 2015).

As for the first group, mangroves grow on offshore 
islands, which limits their access to lateral freshwater run-
off. However, studies showed that islands provide a quiet 
environment that protects the mangroves from extreme 
wind patterns and high waves. Most islands contain estua-
rine that allows the mangroves to grow, moreover, the salin-
ity is altered by high evaporation rates on the islands or 
direct downpours (Kumar et al. 2010; Spalding et al. 2014). 
Therefore, group 1 has a lower growth rate due to its lim-
ited access to fresh water, but at the same time, it is in an 
environment that is distant from urbanization disturbances 
that aid its growth. In addition, tourism around mangrove 
islands was reported to be a threat to mangrove growth, for 

Fig. 7   Summary of the temporal 
change of mangrove area from 
2007 to 2022 for each mangrove 
location separately. The chart 
shows the mangrove area in m2 
on the left axis while showing 
the average percentage change 
per year on the right axis
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example, Safaga island (location 2), which has a mangrove 
forest that covers about 30% of its total area, was reported 
to be suffering from accumulation of waste including plastic 
bottles and bags, that started to affect the mangrove vegeta-
tion (Saleh 2007). This can be also another factor that aids in 
decelerating the increase rate on mangrove islands in Egypt.

On the other hand, most of the group 3’s mangroves 
that are suited within the southern section of the study area 
were found to be degraded at a rate of − 2.36% per year, 
the mangroves are becoming fragmented and scattered, 
while some mangroves disappeared. It is noted that one of 
the mangrove sites was degrading due to a nearby urban 
development, which redirected rainwater runoff away from 
the mangrove location, as the case in location 12 (Fig. 9) as 
a result increased the salinity of the water. Several studies 
have reported a negative correlation between the increase 
in urban built-up areas and the variation in the mangrove 
forest (Ai et al. 2020). For example, Maclvor, et al. (1994) 
reported that urban development in Florida Bay has signifi-
cantly reduced the intake of fresh water, which made the 
bay’s water more saline (Mclvor et al. 1994). However, not 
all urban settlement negatively impacts the mangrove eco-
system, the same study found that four sites of mangroves 

out of the total ten they studied mangrove forests have 
expanded in these locations, despite the proximate urban 
growth, which is attributed to the awareness of the local peo-
ple with the importance of the mangrove stands, which they 
left unharmed during the urban expansion process (Khan 
and Kumar 2009).

Rainfall & runoff analysis

For the three mangrove groups, the trend of the average 
annual rainfall was extracted for each location to be com-
pared with the rate of change in mangroves. The character-
istics of the annual rain at each location are summarized in 
Table 2. The results show no significant relation between 
the increase in rainfall and the increase in the mangrove 
trees. Although all three locations have an increasing rain-
fall trend, Group 2, which has the highest rate of increase in 
mangroves has the least annual rainfall increase slope. On 
the contrary, group 3 is another location that had a substan-
tial decrease in most of its mangrove settlements, although 
it has the highest rate of increase in terms of rainfall.

The second factor to be considered is the influence of the 
catchment area on the downstream mangrove ecosystems. 

Fig. 9   A Layout of Marsa Hemira Mangroves, urban settlements diverted watershed streamlines away from the mangrove area. Green rectangles 
show urban areas near the mangroves. B shows the reduction of mangrove extent between the years 2003–2022
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It has been observed that a common characteristic among 
the examined locations is the expansion of mangrove areas. 
The Stream Power Index (SPI) was computed for various 
mangrove sites along the coastline and was subsequently 
compared with the observed changes in mangrove coverage, 
as illustrated in Fig. 10. The analysis revealed a significant 
positive correlation between these variables (R2 = 0.7356, 
R = 0.857, P-value = 0.003 < 0.05, CV = 70.26%), suggest-
ing that the catchment area runoff has a notable impact on 
mangrove distribution. The statistical analysis indicates 
a strong and significant positive relationship between the 
SPI and the increase of mangrove area, with SPI explaining 
approximately 73.5% of the variability in mangrove growth. 
However, the high coefficient of variation (70.26%) suggests 
that while SPI is a significant predictor, other factors also 
play a crucial role in influencing mangrove area changes. 
Despite this variability, as denoted by a CV of 70.26%, the 
marked statistical significance (P-value = 0.003) reinforces 
the role of SPI as a critical element in mangrove develop-
ment. This conclusion is consistent with the research con-
ducted by Saenger (2002) and Prasad and Ramanathan 
(2008), who found that the growth productivity of mangrove 
trees is highly related to the sediments and nutrient dynam-
ics (Saenger 2002; Prasad and Ramanathan 2008).

For example, Fig. 11 shows Location 14, where neigh-
boring mangroves have different development levels, the 
mangroves highlighted in yellow are increasing, while the 
adjacent mangroves highlighted in red are decreasing. As 
illustrated, the increasing mangroves are suited directly over 
the shoreline and are located on an estuarine that transports 
rainwater runoff directly to the mangrove trees, while the 
decreasing mangroves are located on tidal planes and small 
islands away from the shoreline, therefore, these locations 
do not have direct surface freshwater and sediments input 
from the surface. As previously mentioned, freshwater run-
off is vital for the mangrove ecosystem as it transports sedi-
ment that may increase nutrient levels as well as decrease 
the water salinity, which benefits the mangrove ecosystem. 
On the other hand, the decreasing mangroves do not have 
the same decreasing rate. For example, Fig. 12 shows loca-
tion (a) from Fig. 11 has a slight decrease in mangrove area 
as it is surrounded by two streamlines of fresh rainwater, 
although they are not directly affecting the mangrove site 
they may affect the water salinity. On the contrary location 
(b), shown in Fig. 13 has decreased substantially with some 
parts disappearing. This might be linked to the freshwater 
intake as location (b) is away from the shoreline. In addi-
tion, mangrove species type might also be a factor in the 
decrease of mangrove settlements in this area. As mentioned 
previously Egypt has two types A. Marina and R. Mucro-
nate, where A. Marina is the most dominant type while R. 
Mucronate is reported to be in the Halayeb area (location 
14). Studies reported that A. Marina is more tolerant of 
high salinity as well low water availability and high tem-
peratures than R. Mucronate. This aligns with the findings 
of the study where the locations in which mangroves are 
found to be decreasing noticeably are the same locations that 
are reported to have R. Mucronate mangroves along with 

Table 2   Rainfall characteristics of the three mangrove groups in the 
study area

Average annual precipita-
tion at the location of

Mean Median � R2

Group1 20 10.7 0.0004 0.042
Group 2 15.3 11.45 0.0002 0.028
Group 3 22.58 15.98 0.0123 0.037

Fig. 10   Correlation between the 
SPI and Percent of change in 
mangrove area

R² = 0.7356
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a

b

Fig. 11   The streamlines discharging to Safaga shoreline and at the same time some mangrove locations are increasing while others are decreas-
ing

Fig. 12   Mangroves change between 2005 and 2022 in location a at Halayeb shoreline
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A. Marina (Afefe et al. 2019; Abdullah 2020; Afefe 2021). 
Consequently, our analysis reveals complex interactions 
between hydrological factors and mangrove distribution. 
While initial hypotheses suggested direct rainfall impact on 
mangrove growth, our findings diverge, indicating minimal 
direct correlation. Instead, the study highlights the Stream 
Power Index (SPI) as a more significant predictor, suggest-
ing that runoff, rather than direct rainfall, plays a pivotal role 
in mangrove expansion by enhancing sediment and nutrient 
delivery. This distinction underscores the nuanced relation-
ship between different hydrological inputs and mangrove 
ecology, prompting a reevaluation of traditional assumptions 
regarding mangrove growth drivers.

Limitations and classification errors

We acknowledge limitations in our study, including the 
variable spatial resolutions of Google Earth imagery and 
potential classification errors. These factors may introduce 
discrepancies in mangrove delineation and coverage esti-
mation. We have addressed these challenges through meth-
odological rigor and validation processes, yet they highlight 
the inherent complexities of remote sensing analysis. Future 
research should continue to refine classification techniques 
and explore additional environmental parameters influencing 
mangrove distribution. To assess the classification errors, 
we calculated the overall accuracy of the mangrove class 
using a confusion matrix. The confusion matrix compares 

the classified map with a reference map derived from high-
resolution satellite imagery. The overall accuracy is the pro-
portion of pixels that are correctly classified. The results of 
the error assessment are shown in Table 3.

The overall accuracy of the classification was 91%, rep-
resenting a high agreement between the classified map and 
the reference map and indicating that 9% of the reference 
mangrove pixels were omitted or misclassified as other 
land cover types. The main sources of omission and com-
mission errors were the confusion between mangroves and 
other vegetation types, such as salt marshes, agricultural 
crops, sometimes shallow water surfaces, and the presence 
of mixed pixels and shadows in the satellite imagery. These 
errors could be reduced by using higher spatial resolution 
imagery, incorporating ancillary data, and applying more 
sophisticated classification methods.

As for the SPI analysis, it is limited by a notably small 
sample size due to the restricted distribution of mangroves in 
Egypt, compounded by the absence of ground-truth data for 
validation. Furthermore, given that the Coefficient of Vari-
ation (CV) was approximately 70%, indicating considerable 

Fig. 13   Mangroves change between 2004 and 2022 in location b at Halayeb shoreline

Table 3   Accuracy assessment using confusion matrix of mangrove 
delineation

Land cover 
type

Total number 
of classified 
pixels

Correct 
pixels

Incorrect 
pixels

Overall 
accuracy

Mangrove 9,955,470 9,104,858 850,612.00 91%
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variability, it suggests that factors beyond SPI significantly 
influence mangrove dynamics. Thus, future studies should 
explore additional parameters such as tidal range, sediment 
supply, and water quality. These elements, alongside SPI, 
could offer a more comprehensive understanding of the fac-
tors affecting mangrove distribution and health, enabling 
more targeted conservation strategies.

Conclusion

This research provides a comprehensive spatiotemporal anal-
ysis of mangrove distribution along the Egyptian Red Sea 
coast, leveraging satellite imagery and GIS methodologies to 
understand the impact of hydrological factors on mangrove 
dynamics. Our findings indicate a net increase of 4.5 hec-
tares in mangrove areas from 2003 to 2022, highlighting an 
average annual growth rate of 2%. However, the study also 
identified a decrease in mangrove cover in 24% of the study 
area, particularly around Halayeb, reflecting environmental 
and anthropogenic stresses.

Contrary to initial assumptions, increased rainfall did not 
correlate directly with mangrove expansion, indicating that 
other hydrological factors, particularly runoff from catch-
ment areas, play a more significant role in influencing man-
grove growth. This is evidenced by the strong correlation 
between the Stream Power Index (SPI) and mangrove expan-
sion, emphasizing the importance of runoff in providing nec-
essary sediments and nutrients for mangrove ecosystems.

This study fills a critical gap in regional environmental 
research, offering valuable insights into the complex inter-
play between hydrological factors and mangrove distribu-
tion. The results underscore the importance of integrated 
coastal zone management and the need for policies that 
ensure the sustainability of these crucial ecosystems. Future 
research should aim to explore additional environmental fac-
tors and their impacts on mangrove health and distribution to 
aid in the development of more comprehensive conservation 
strategies.
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