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Abstract
A global framework to assess the energy use and efficiency in wastewater systems is presented, focusing on the development 
of a portfolio of energy use improvement measures specifically tailored to these systems. The framework includes a perfor-
mance assessment system for energy efficiency in wastewater systems and an energy balance scheme. The development and 
analysis of the portfolio of measures included the following steps: (i) an extensive review and compilation of existing energy 
improvement measures on the urban water cycle, (ii) a tailored survey addressed to multidisciplinary teams of wastewater 
utilities, (iii) the consolidation of the portfolio of measures for wastewater systems with the identification of main benefits 
and drawbacks of each measure and (iv) the discussion of the application of the improvement measures. Results from the 
survey for the different assessed dimensions (e.g., priority, importance) of each measure are presented together with a specific 
analysis of wastewater utilities. The final portfolio is instrumental for utilities to select measures, decide on the priority ones 
and prepare an implementation plan.

Keywords  Energy efficiency · Improvement measures · Portfolio · Wastewater systems

Introduction

The management of energy use is essential in urban water 
systems. The efficient use of energy is associated with the 
environmental and economic sustainability of these systems 
(Bylka and Mroz 2019). The International Energy Agency 
reports a use of 4% of the worldwide energy by the water 
sector; 30–40% of the overall global energy cost is spent on 
wastewater and water supply systems (IEA 2019). Adequate 
measures can reduce costs by 15% until 2040 in the sector 
(UN 2014; IEA 2019). Reducing energy use is a priority 
in the management of urban water systems (Gómez et al. 
2018).

Energy efficiency measures are essential to achieve con-
sistent reductions in energy consumption and greenhouse 
gas (GHG) emissions (Moadel et al. 2022). A clear under-
standing of such measures can help gathering and capital-
izing the information needed by utilities, when analysing 
and selecting ways forward, as well as by policymakers in 
developing strategies supporting their effective use (Trianni 
et al. 2014). Measures such as the installation of hydropower 
recovery equipment, the use of renewable energy, the use 
of efficient pumping systems, and the implementation of 
improved operation and maintenance practices are essential 
for enhancing energy efficiency (Nazemi et al. 2015; Ahmad 
et al. 2020).

The installation of energy-efficient pumping equipment 
can have a significant impact in energy consumption since 
pumping equipment uses 80–90% of the energy consumed 
by the water industry (Brandt et  al. 2012). Upgrading 
existing pumping systems can save about 20% of energy 
(Greenberg 2011). It involves matching pump require-
ments, optimizing the distribution networks, eliminating 
unnecessary valves, and controlling pump speed. In water 
supply systems, improving pumping systems is essential 
to reduce energy costs associated with pipe friction and 
leakage and these practices lead to measures with different 
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associated costs (ranging from low-cost to higher-cost 
measures). In drainage systems, energy consumption for 
pumping in different processes depends on the pump time 
scheduling (Castro-Gama et al. 2017), the hydraulic head 
(Behandish et al. 2014), the stormwater volume (Ostojin 
et al. 2011), the use of the appropriate pump type (Sperlich 
et al. 2018) and the use of recovery and renewable energy 
solutions (Charlesworth et al. 2017). A better design of 
water drainage systems and optimization of pipe diameter, 
length and valve location can generate 5–20% energy sav-
ings (EPRI 2009). The installation of variable frequency 
drives to control pump speed also allows for improving 
the system’s energy performance (Vilanova and Balestieri 
2015).

Gravity flows can reduce energy use in drainage sys-
tems in locations with higher slopes. An effective way to 
reduce sewage overflow by taking advantage of optimal 
control saves energy in the water system. The use of renew-
able energy sources, (e.g., solar and wind) significantly 
improves the performance of urban water systems (Trianni 
et al. 2014).

A systematic understanding of the relationship between 
the energy efficiency diagnosis and assessment and the 
identification of energy solutions is lacking, especially 
for the wastewater subsector, where limited data exist. To 
bridge this gap, previous studies (Jorge et al. 2021; 2022) 
were developed to identify the main energy inefficiencies 
in wastewater systems. A novel energy balance was pro-
posed, tailored to transport processes and types of flows 
of wastewater systems and to the lack of data and analysis 
tools in these systems (Jorge et al. 2022). A specific perfor-
mance assessment system (PAS) was proposed, customized 
to assess energy efficiency in wastewater systems, account-
ing for existing methodologies, the long-term objectives for 
energy efficiency, and identified knowledge gaps (Jorge et al. 
2021).

The energy balance and the PAS allow the identifica-
tion of the system's inefficiencies and of specific elements 
requiring improvement, supporting the planning of correc-
tive actions. However, these diagnosis tools do not directly 
impact energy consumption, though these allow to iden-
tify, analyse, and support the selection of energy efficiency 
improvement measures attending to the specificities of each 
system (e.g., single components, energy recovery, system-
wide improvement measures).

This paper proposes a portfolio of measures to improve 
energy use tailored to wastewater systems, considering 
existing methodologies, previous diagnoses of energy inef-
ficiencies, the long-term objectives on energy efficiency and 
the identified knowledge gaps to support decision-making 
in utility management. The main novelties are the devel-
opment of a tailored portfolio of energy use improvement 
measures for wastewater systems and its integration into a 

comprehensive energy efficiency framework, innovatively 
adopting a holistic view of the energy efficiency in waste-
water systems.

Background and proposed framework

The paper focuses on the development of a portfolio of 
measures intended to support the improvement of energy use 
in wastewater systems as part of a global framework for this 
purpose. The framework provides a path for tactical level 
planning and is aligned with similar management processes 
in organisations, e.g., infrastructure asset management 
(IAM) (Alegre and Covas 2010; Almeida and Cardoso 2010) 
and ISO standards (IPQ 2012; ISO 2014a, b, c series). These 
publications provide a standardized procedure for evaluat-
ing actual performance and appraising intervention options 
over an analysis period. It involves full alignment between 
objectives, criteria, metrics, and targets at three planning 
levels: strategic, tactical, and operational. Relevant tactical 
areas include IAM, adaptation to climate change, control of 
water losses and undue inflows, and energy management. 
This type of planning path was initially proposed to provide 
utilities with the know-how and tools needed for efficient 
decision-making in IAM of urban water services (Alegre 
and Covas 2010; Almeida and Cardoso 2010).

Typically, water utilities should carry out the steps pre-
sented in Fig. 1a in any planning process. At each level, a 
diagnosis based on a pre-defined PAS is the foundation for 
evaluation and priority setting that, together with a set of 
courses of action, leads to further developments. The pro-
cess should be periodically reviewed to ensure continuous 
improvement (Almeida et al. 2021).

A global framework for assessing energy use and effi-
ciency in wastewater systems is proposed (Fig. 1b) and 
aligned with the planning process (Fig. 1a). It allows the 
application of a proper diagnosis and a performance evalu-
ation of energy efficiency in wastewater systems based on 
a tailored energy balance and on a PAS. These two tools 
support the selection of measures to improve energy use, 
attending to the specificities of each system, for instance, the 
control of undue inflows, overflows, limitations of inventory 
data, flow data, or modelling tools. The framework focuses 
on the system and not on single components, being objec-
tive-oriented and allowing water utilities to carry out a struc-
tured assessment for long-term time horizons. The novel 
contributions of this paper are highlighted in bold in Fig. 1b.

The energy balance (see Online Resource 1, Table 
O.R.1.1) is proposed and described by Jorge et al. (2022). It 
provides a systemic approach, looking globally at the waste-
water system, considering the system layout, the energy 
losses in pipes and manholes, the energy associated with 
undue or excessive inflows, and wastewater outflowing the 
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system because of capacity exceedance, among others. Dif-
ferent assessment levels can be applied depending on data 
and mathematical model availability. Three assessment lev-
els are proposed (macro, meso and micro-level). In short, if 
a utility only has global data, it can apply the macro-level 
(external energy calculation); if the utility has detailed 
data on the pumping systems, the meso-level assessment 
applies, allowing the estimation of different components 
of the external energy; the micro-level assessment can be 
applied when pumping systems and gravity networks are 
well known and detailed data and mathematical modelling 
are available. The energy balance highlights systems’ inef-
ficiencies and specific elements that need to be improved, 
supporting the planning of corrective actions, but, by itself, 
an energy balance will not affect energy consumption. The 
energy balance, together with a PAS, supports the energy 
efficiency diagnosis and the development of energy effi-
ciency improvement measures. Jorge et al. (2021) developed 
a PAS for energy efficiency tailored for wastewater systems, 
incorporating criteria related to energy consumption, opera-
tion and maintenance costs, and environmental impacts, such 
as untreated discharges and GHG emissions. The PAS com-
prises a complete objective, criteria, and metrics structure, 
system independent. The PAS has four objectives, 10 criteria 
and 35 metrics (Jorge et al. 2021). The objectives, criteria 
and complete metrics are presented in Online Resource 1 
(Figure O.R.1.1 and Table O.R.1.2, respectively).

Based on the results of the diagnosis carried out using 
the described tools, the portfolio of measures resulting from 
this paper supports the identification of corrective actions to 

address the weak areas in terms of energy use in the system 
under analysis. The results allow utilities to plan the imple-
mentation of selected measures and to estimate the impact on 
the performance. This process should be periodically reviewed 
to ensure continuous improvement.

Materials and methods

General approach

A method for developing and characterizing a portfolio of 
energy use improvement measures is presented. An energy 
use improvement measure (EIM) is understood as any action 
or set of actions, that has a direct impact on improving effi-
ciency in the use of energy in wastewater systems.

The development and the analysis of the portfolio of 
measures are based on four main steps: (i) an extensive 
review and compilation of existing energy use improvement 
measures on the urban water cycle, (ii) a tailored survey 
addressed to teams and experts of wastewater utilities, (iii) 
the consolidation of the portfolio of measures for wastewa-
ter systems with the identification of the main benefits and 
drawbacks of each measure and (iv) the discussion of the 
application of the measures.

Review of existing energy use improvement 
measures for urban water systems

As a first step, this research used a systematic review of the 
literature to explore published energy efficiency measures 

Fig. 1   Global framework to 
assess energy use and efficiency 
in wastewater systems: a plan-
ning steps and b use of methods 
and tools developed in the 
proposed framework
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in urban water systems. Online databases Web of Science, 
Google Scholar and ScienceDirect were used to search sci-
entific literature to find relevant research papers and other 
scientific publications on the topic as books, book chapters, 
conference abstracts, mini-reviews, short communications, 
case studies, and reports. The database search of publica-
tions in English was carried out using the following key-
words: water; energy; nexus; water-energy nexus (water 
supply systems, water distribution systems, water drainage 
systems, urban water system); energy-water nexus; water 
and energy efficiency; energy efficiency; energy efficiency 
measures; energy efficiency solutions (water supply systems, 
water distribution systems, water drainage systems, urban 
water system). About 100 references were found. Analysis 
of these references was carried out to compile relevant data 
and produce an initial portfolio.

Energy use improvement measures survey

In a second step. a survey was designed and sent to waste-
water utilities to validate the initial portfolio. This allowed 
a broader understanding of problems and verification of the 
feasibility and completeness of the portfolio.

For each measure, the survey included the following 
dimensions: priority, importance, applicability, level of 
implementation, possible quantification of benefits, data 
allowing the quantification of benefits and the possibility 
of providing information as case studies. An open field was 
included for comments, further information on measures 
implemented, and suggestions on other measures. The pri-
ority relates to the reality of the utility. Importance refers to 
the measure in global terms and not specifically in the util-
ity. The applicability is understood as the implementation 
feasibility in absolute terms, regardless of being considered 
a good or bad option for the respondents. The implementa-
tion applies when the measure was found applicable by the 
wastewater utilities (WU); the same applies to quantifica-
tion of benefits and data availability and provision. For each 
dimension, the following options were available:

•	 Priority: 1 – high priority; 2 – medium priority; 3 – non-
priority; 4 – don't know/no information available.

•	 Importance: 1 – not important; 2 – little important; 3 – 
important; 4 – very important; 5 – extremely important; 
6 – don't know/no information available.

•	 Applicability: 1 – not applicable; 2 – partially applicable; 
3 – applicable; 4 – don't know/no information available.

•	 Implementation: 1 – foreseen; 2 – unforeseen; 3 – already 
implemented.

•	 Possible quantification of benefits: 1 – yes; 2 – no; 3 – 
don't know/no information available.

•	 Data allowing benefits quantification: 1 – yes; 2 – no; 
3 – don't know/no information available.

•	 Possible to provide information as a use case: 1 – yes; 
2 – no; 3 – don't know/no information available.

Twenty-six WU, representative of the Portuguese waste-
water sector, were invited to participate in the survey. In the 
Portuguese wastewater sector, utilities can handle wastewa-
ter bulk transport and treatment (type A utilities); collec-
tion and transport, sometimes including treatment (type B 
utilities); or both. Fifteen complete responses were received. 
Some information about the responders is shown in Online 
Resource 1 (Table O.R.1.3).

Portfolio consolidation

The initial portfolio of improvement measurements was 
further completed and consolidated. The main benefits and 
drawbacks of energy use improvement measures application 
are analysed based on a literature review and wastewater 
utilities practice and testimonies.

Discussion of the application of selected measures

Selected use cases allow discussion and quantitative analysis 
of some energy use improvement measures provided by utili-
ties and described in the literature.

Results and discussion

Consolidated portfolio

The consolidated portfolio includes 17 measures (Table 1). 
The measures are divided into six categories: equipment; 
systems optimization; reduction of inflows to pumping 
systems; operation and maintenance; energy recovery; and 
reduction in GHG emissions. The contributions of each 
measure to the energy balance components and the PAS 
criteria are included in Table 1.

Energy use improvement measures survey

Survey results for 15 WU are presented in Fig. 2 for the clas-
sification of measures by priority and importance. Three out 
of 17 measures are considered a priority (i.e., high priority): 
EIM3.1. (87%); EIM3.2. (80%); EIM4.3. (67%). Conversely, 
three measures were considered not a priority by most utili-
ties: EIM2.3. (73%); EIM2.2. (67%); and EIM6.2. (60%).

Measures found as most important are EIM3.1. (47% 
considered extremely important); EIM3.2. (33% considered 
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extremely important); EIM1.2. (53% found it very impor-
tant); EIM4.3. (33% considered very important); EIM4.1. 
(67% considered important). The least important measures 
for most utilities are: EIM2.3. (30%); and EIM6.2. (30%).

The results for applicability and implementation are in 
Fig. 3. For applicability, the measures considered more fea-
sible to apply by wastewater utilities are EIM4.3. (93%); 
EIM3.1. (87%); EIM1.2. (80%); EIM3.2. (80%). Measures 
found not applicable are: EIM2.3. (53%); and EIM5.2. (47%).

Energy use measures more widely implemented in waste-
water systems are EIM1.2. (73%); EIM1.1. (60%). Measures 
planned to be implemented in the short to medium term by 
wastewater utilities are EIM4.3. (40%); EIM3.2. (40%); and 
EIM2.4. (40%). Measures not planned to be implemented in 
the medium term are EIM6.2. (73%); and EIM2.3. (67%).

To summarize, the wastewater utilities that have taken part 
in the survey are aware of the problem of undue inflows, an 
issue often neglected. This is important since undue inflows 
have a direct influence on the system performance, affecting 
system processes’ efficiency, the total energy consumption, 
and the energy-associated costs (among other variables). Utili-
ties implement more often measures focusing on individual 
components (e.g., pumps, treatment equipment) rather than 
system-wide measures, despite acknowledging their impor-
tance. Investment in renewable energies and energy recovery 
is not yet a priority for these utilities.

Regarding data availability, utilities recognise not having 
data for measures EIM2.2., EIM5.2., EIM6.2. and EIM6.3. 
Most utilities have data regarding equipment-related measures 
(EIM1.1. and EIM1.2.), reduction of undue inflows (EIM3.1) 
and pumping stations maintenance improvement procedures 
(EIM4.3).

Benefits and drawbacks of the measure's portfolio

The major benefits and drawbacks of implementing each 
energy use improvement measure were identified and ana-
lysed, to better characterize the portfolio of the energy use 
measures. The primary dimensions considered are energy effi-
ciency improvement, performance, economic, environmental, 
and societal concerns.

Globally, most measures lead to the reduction of energy 
consumption and associated costs; many have environmen-
tal benefits (e.g., reduction of untreated discharges and GHG 
emissions). Major drawbacks correspond to high financial 
efforts in terms of capital costs, functional problems, or appli-
cation difficulties. This analysis has been developed based on 
the literature review and on the fruitful discussions with the 
wastewater utilities and their comments on the survey. The 
major benefits and drawbacks are summarised in Table 2.
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Application of selected energy use improvement 
measures

Introduction

Four use cases were selected based on existing publica-
tions and on available and reliable data provided by WU 
to illustrate the implementation of measures. These cases 
show the application of two measures of the equipment 
category (EIM1.1 and EIM1.2), one of the reduction of 
GHG emissions category (EIM6.1) and the fourth on 
energy recovery category (EIM5.1). The latter is a reli-
ability study of an energy recovery solution installed at 
downstream of a WWTP in a Portuguese utility (Capelo 
2022).

Complete replacement of electromechanical equipment 
(EIM1.1)

The WU2 provided relevant data regarding the results of 
implementing the energy improvement measure EIM1.1. 
One of the two pumps of the pumping station PS1 was 
replaced in April 2019. The WU provided data on the total 
energy consumption, the total energy costs, the energy 
consumption for pumping, the pumped volume in this 
pump and the pumping energy costs for 2018 (before pump 
replacement) and for the period 2019–2021 (Table 3). 
Monthly data were provided and analysed to better under-
stand the impact of the pump replacement (data for 2019, 
Table  3). The pump replacement date (April 2019) is 
indicated.

Fig. 2   Survey results: priority and importance
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Two PAS metrics are calculated to quantify energy effi-
ciency improvements, namely: M1.1.2. Specific energy per 
total pumped volume and M4.1.3. Percentage of the cost 
of total energy consumption used for pumping (see Online 
Resource 1, Table O.R.1.2). These metrics and respective 
reference values are presented in Table 3. Performance is 
classified using a three colour-grid in good (green), fair (yel-
low) and poor (red).

Results from metrics M1.1.2 and M4.1.3 have improved 
after pump replacement. Other factors influencing energy 
consumption in PS1 are seasonality and undue inflows (e.g., 
rainfall) that should be analysed. The replacement of groups 
for reasons other than the high energy consumption often has 
a positive impact on energy efficiency. Regarding data qual-
ity and reliability, it is important that energy measurements 
per pump are carried out to better understand each pump 

efficiency and the effect of the implementation of energy use 
improvement measures.

The application of measure EIM1.1 will influence the 
energy balance calculation, namely the external energy (EE) 
and the respective sub-components.

Replacement and repair of electromechanical equipment 
components (EIM1.2)

The WU2 provided the following data regarding measure M1.2: 
total energy consumption, energy costs, energy consumption 
for pumping, total pumped volume, and pumping energy costs 
from January 2016 to May 2022 (Table 4). During this period, 
several pump components were replaced and repaired in PS2, 
namely: pump impellers, bearings, rectified shafts, bushings, 
rubbers, sealing rings, brakes, and rewinds. Data were not 

Fig. 3   Survey results: applicability and implementation
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Table 2   Main identified benefits and drawbacks of EIM in wastewater systems

EIM Benefits Drawbacks

1. Equipment
EIM.1.1 Rehabilitation or replacement of elec-

tromechanical equipment replacement: 
complete replacement

Reduction of energy consumption
Improvement of the equipment energy 

efficiency
Reduction of equipment degradation
Reduction of operational costs
Reduction of maintenance costs
Reduction of GHG emissions

Relevant capital costs
Eventual service interruption (it can be done 

during equipment failures or maintenance)
Inaccurate benefits quantification due to 

insufficient/unavailable water/energy 
meters

EIM1.2 Rehabilitation or replacement of compo-
nents of electromechanical equipment

2. Systems’ optimization
EIM.2.1 Resizing or reconfiguration of the systems Reduction of energy consumption

Reduction of equipment degradation
Reduction of operational costs
Reduction of maintenance costs

Very high capital costs
Service interruption
Limited by elevation constraints
Easier application in new systems

EIM2.2 Continuous or local head losses reduction 
in pumping systems

Reduction of energy losses
Reduction of material deterioration
Reduction of equipment degradation

Relevant capital costs
Service interruption
Easier application in new systems

EIM2.3 Increase of the storage volume of pumping 
wells

Reduction of pumping equipment degrada-
tion

Reduction of the number of pump start/
stops

Very high capital costs
Service interruption
Longer wastewater retention times (which 

can deteriorate the characteristics of the 
effluent and release gases)

EIM2.4 Improvement of the solids’ removal 
procedure

Reduction of energy losses
Reduction of material deterioration (reduc-

tion of abrasive action)
Prevention of clogging and obstructions 

(e.g., in retention valves)
Improvement of the dehydration of sludge 

process (solids increase the load to be 
treated in the WWTP)

Reduction of maintenance costs
Reduction of the number of periodic 

cleaning of wells and equipment (avoid-
ing breakdowns and stoppage)

Relevant capital costs
Eventual service interruption (it can be done 

during equipment failures or maintenance)

3. Reduction of inflows to pumping systems
EIM3.1 Reduction of undue inflows: undue con-

nections
Reduction of energy consumption
Reduction of flooding and discharges
Reduction of material deterioration
Reduction of pumping and treatment costs
Reduction of GHG emissions

Very high capital costs
Service interruption

EIM3.2 Reduction of undue inflows: infiltration in 
sewer systems’ components

Very high capital costs

EIM3.3 Reduction of undue inflows: inflows of 
saline and fluvial waters

Reduction of energy consumption
Reduction of flooding and discharges
Reduction of material deterioration
Reduction of pumping and treatment costs
Reduction of GHG emissions
Not affecting the reuse of water

Very high capital costs

4. Operation and maintenance (O&M)
EIM4.1 Programming the operating mode of 

pumping systems
Reduction of the number of pump start/

stops
Improvements of systems’ operation
Reduction of equipment degradation

Overall positive impact

EIM4.2 Optimization of the useful storage volume 
of pumping wells

Reduction of the number of pump start/
stops

Improvements of systems’ operation
Reduction of equipment degradation

Relevant capital costs
Service interruption
Longer wastewater retention times



1739International Journal of Environmental Science and Technology (2024) 21:1729–1744	

1 3

Table 2   (continued)

EIM Benefits Drawbacks

EIM4.3 Improvement of pumping station mainte-
nance procedures

Reduction of the number of breakdowns
Improvements of systems’ operation
Reduction of equipment degradation
Reduction of alarms (thermal trips) related 

to the obstruction of pumps
Prevention of clogging and obstructions

Relevant capital costs
Service interruption

5. Energy recovery
EIM5.1 Installation of energy recovery equipment 

downstream WWTP
Increase of the recovered energy
Reduction of electricity consumption from 

the national grid
Reduction of GHG emissions

Very high capital costs

EIM5.2 Installation of energy recovery equipment 
at locations throughout the system

Very high capital costs
Service interruption
Need to remove solids before implementa-

tion
Possible equipment damage due to the cor-

rosive effluent
Most difficult application in wastewater 

systems due to lower heads
6. Reduction of GHG emissions
EIM6.1 Installation of solar energy systems Increase of energy self-production and 

self-consumption
Reduction of electricity consumption from 

the national grid
Reduction of GHG emissions

Very high capital costs
High probability of equipment robbery
High space requirement

EIM6.2 Installation of wind energy systems Very high capital costs
High probability of equipment robbery
High space requirement
Not applicable in non-windy areas

EIM6.3 Use of other energy sources Very high capital costs
Application limited to largest plants due to 

the higher complexity of the anaerobic 
processes required to generate biogas

Table 3   EIM1.1 application in WU2/PS1: annual and monthly (for 2019)

(*)  Reference values: type A WU [0, 0.5] ; [0.5, 1.7] ; [1.7, + ∞] 

Year/Month Total energy con-
sumption (kWh/
year)

Total energy 
costs (€/year)

Total energy consumption 
for pumping (kWh/year)

Total pumped 
volume (m3/
year)

Total energy costs 
for pumping (€/
year)

M1.1.2 
(kWh/
m3) (*)

M4.1.3 (%)

2018 1,688,386 236,374 164,181 370,498 22,287 0.44 9.4
2019 1,529,396 214,115 117,479 347,306 16,706 0.34 7.8
Jan – – 15,325 29,126 2107 0.53 –
Fev – – 13,103 29,078 1792 0.45 –
Mar – – 11,780 30,629 1618 0.38 –
Apr – – 10,428 35,348 1442 0.30 –
Mai – – 7288 30,240 1043 0.24 –
Jun – – 6476 25,866 951 0.25 –
Jul – – 5669 23,437 881 0.24 –
Aug – – 3995 16,256 637 0.25 –
Sep – – 5467 18,439 825 0.30 –
Oct – – 8019 21,719 1178 0.37 –
Nov – – 12,641 37,362 1807 0.34 –
Dec – – 17,288 49,806 2426 0.35 –
2020 1,630,246 228,234 145,330 443,945 19,939 0.33 8.7
2021 – – 106,383 351,940 13,534 0.30 –
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available per pump (the pumping system was composed of 
three pumps installed in parallel, one group as reserve pump). 
Replacements and repairs were carried out in the three pump 
groups for several months along the 6-years (April 2016, June 
and October 2017, December 2018, February, July and October 
2019, June 2020, April and July 2021 and June 2022). Metrics 
M1.1.2. and M4.1.3. were calculated (Table 4).

The effect of the replacement and repair of pump group 
components is not clear in metric M4.1.3. However, metric 
M1.1.2 has improved from 2020 onwards. Given the works 
being carried out over the years, it is difficult to assess the 
specific impact on energy consumption and efficiency, and 
only accumulated effects can be observed. It is recommended 
to analyse these results together with other factors as previ-
ously mentioned.

Installation of photovoltaic panels (EIM6.1)

Measure EIM6.1 is analysed by looking at two cases: WU2 
installation of photovoltaic panels in two WWTPs (WWTP1 
and WWTP2) in 2016; WU14 installation of photovoltaic 
panels in four WWTPs (WWTP1 to WWTP4), one water 
treatment plant (WTP1), one water supply pumping station 
(PSWS1), and on the roof of a mechanic's workshop (WS1). 
The latter, composed of 224 photovoltaic modules (60 kW) 
was installed in 2019. Data provided by utilities WU2 and 
WU14 are presented in Tables 5 and 6, respectively.

Metric M.3.2.1. Energy self-production (see Online 
Resource 1, Table O.R.1.2) was calculated. Results for 
WU2 highlight a fair performance for WWTP1 (Table 5), 
allowing to conclude that energy self-sustaining is possible 
in the future, with quick recovery of the investment on the 
equipment. Variations in annual data result from gaps in data 
series (e.g., due to equipment breakdowns and cloudy days).

Results of metric M3.2.1 for WU14 sometimes show poor 
performance however, globally, an increasing performance 
trend from 2019 to 2021 is observed (Table 6). This increase 
is mainly due to the installation in 2019 of the solar energy 
recovery equipment at WS1. WWTP2 and WWTP4 values 
show a fair to good performance, indicating possible energy 
self-sufficiency in the future. Annual variations result from 
factors like cloudy days and equipment breakdowns.

This renewable energy source contributes to increase the 
energy recovered component (EIRE), influencing energy inef-
ficiencies diagnosis, and reducing GHG emissions.

Hydro‑energy recovery (EIM5.1)

For measure EIM5.1, Capelo (2022) analysed the installa-
tion of energy recovery equipment downstream of a WWTP 
from a Portuguese WU. The inverted Archimedes screw was 
selected as the best cost-effective technology for energy 
recovery in systems with low available heads and operat-
ing for a wide range of flow rates. This equipment has a 
long service life, low maintenance costs, high efficiencies 
(> 70%) and allows the passage of large solids without com-
promising equipment integrity and efficiency (Capelo 2022). 
The recovery equipment was installed downstream of the 
WWTP, in a bypass channel connecting to a manhole, being 
the available head 1.5 m.

A preliminary assessment of the energy recovery poten-
tial was carried out. The Archimedes screw can work for a 
range of flow rate between 10 and 110% of best efficiency 
flow rate. Installed power ranges from 0.68 kW for the low-
est flow rate (0.060 m3/s) and 1.31 kW for the highest flow 
rate (0.116 m3/s); energy recovery varies between 6.0 and 
8.6 MWh/year. The device operates for the whole year.

Table 4   Annual data from EIM1.2 application in WU2/PS2

(*)  – Reference values: type A WU [0, 0.5] ; [0.5, 1.7] ; [1.7, + ∞] 
Performance is classified using a three colourgridin good (green), fair (yellow) and poor (red)

Year Total energy 
consumption (kWh/
year)

Total energy 
costs (€/year)

Total energy consumption 
for pumping (kWh/year)

Total pumped 
volume (m3/year)

Total energy costs 
for pumping (€/year)

M1.1.2 
(kWh/m3) 
(*)

M4.1.3 (%)

2016 1,811,271 253,578 269,934 2,347,663 28,488 0.11 11.0
2017 1,680,576 235,281 188,580 1,759,239 20,340 0.11 9.0
2018 1,688,386 236,374 214,410 2,032,111 23,759 0.11 10.0
2019 1,529,396 214,115 196,084 1,735,417 22,518 0.11 11.0
2020 1,630,246 228,234 226,527 2,568,794 22,145 0.09 10.0
2021 – – 213,942 2,558,750 19,274 0.08 –
2022 – – 83,633 1,164,815 11,080 0.07 –



1741International Journal of Environmental Science and Technology (2024) 21:1729–1744	

1 3

The economic analysis included economic indicators, 
namely the net present value (NPV), the payback period 
(PBP) and the internal rate of return (IRR). The main 
assumptions were: prices remain constant over the project 
lifetime; discount rate of 5%; project lifetime 10 years; 
energy unit cost 0.10€/kWh; unit capital cost for the 
Archimedes screw turbine 3 000 €/kWh; annual O&M cost 
defined as a percentage of the capital cost (5%/year). The 
results obtained in the economic analysis are presented in 
terms of investment value, annual and O&M costs, annual 
revenues and the three economic indicators (NPV, PBP, 
and IRR) in Online Resource 1, Figure O.R.1.2.

The design flow rate leading to the maximum NPV 
value is 0.088  m3/s, for an installed power of 1.0 kW; 
the respective economic indicators are NPV = 3014 €, 
PBP = 4 years and IRR = 23% (Capelo 2022). The invest-
ment is profitable since the IRR is higher than the discount 
rate. This solution proves to be cost-effective.

This energy source contributes to increase the energy recov-
ered (EIRE) on the energy balance, influencing energy inef-
ficiencies diagnosis.

Conclusion

The paper presents a portfolio of energy use improvement 
measures specifically tailored to wastewater systems, as part 
of a framework to assess energy use and efficiency in these sys-
tems, involving several Portuguese wastewater utilities available 
to participate in the research and willing to improve the energy 

use efficiency in their systems. The application of the methodol-
ogy was well received by the participating wastewater utilities 
and the alignment with the other utilities’ methodologies was 
ensured. More awareness was created within the wastewater 
utilities for tackling the system as a whole and for novel renew-
able energy solutions. A portfolio of energy use improvement 
measures was developed and consolidated with the support of 
a survey to wastewater utilities.

The measures that were most importantly recognized by 
utilities were mainly related to the control of undue inflows, 
equipment and operation and maintenance practices. On the 
other hand, measures related to energy recovery and with the 
use of renewable energies have shown not to be a short-term 
priority for utilities. The main benefits and drawbacks of the 
measures were identified and discussed. As main benefits, it 
was possible to highlight energy consumption and costs reduc-
tion, equipment degradation reduction, increase of energy self-
production, energy recovery and global environmental benefits 
(e.g., reduction of untreated water discharges and GHG emis-
sions). As main drawbacks the following were identified: high 
capital costs, functional problems, application difficulties and 
service interruption.

Impacts on energy efficiency and consumption need to 
account for factors influencing energy efficiency and consump-
tion. Deficits on data availability and reliability can hinder the 
benefits of measures and restrain utilities to proceed with what 
they have. The framework is instrumental to facilitate analysis 
and action by providing a path to use available information to 
proceed with diagnosis of energy efficiency in their systems 
context and limitations.

Table 5   Results of the 
application of energy measure 
EIM6.1 (WU2)

(*)  Reference values: [20, 100] ; [10, 20] ; [0, 10] 
(**)  monthly data gaps mainly due to equipment breakdowns
Performance is classified using a three colourgridin good (green), fair (yellow) and poor (red)

Year Solar energy production 
(kWh/year)

Energy consump-
tion (kWh/year)

Metric M.3.2.1 (%) (*)

WWTP1
2016 3123 24,074 13.0 
2017 4567 24,423 19.0 
2018 (**) 2414 27,618 9.0 
2019 (**) 2887 25,993 11.0 
2020 (**) 3325 18,876 18.0 
2021 4322 24,775 17.0 
WWTP2
2016 (**) 3818 44,599 9.0 
2017 (**) 3437 33,896 10.0 
2018 3551 39,839 9.0 
2019 (**) 3118 40,885 8.0 
2020 (**) 4056 41,213 10.0 
2021 (**) 3055 43,460 7.0 
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Ideally, the framework should be applied on an integrated 
manner, allowing wastewater utilities to establish a baseline 
diagnosis of the main energy inefficiencies in their systems, by 
calculating the energy balance components. This analysis can 
be complemented with the calculation of performance metrics 
proposed in the proposed PAS, to identify priorities based on 
the current and future performance. Finally, based on the two 
previous tools (energy balance and PAS), improvement solu-
tions should be identified, evaluated, and compared with the 
baseline diagnosis (using the metrics or the sub-set of selected 
metrics and recalculating the energy balance components) to 
decide which are the priority ones and to prepare an imple-
mentation plan.
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tary material available at https://​doi.​org/​10.​1007/​s13762-​023-​05082-6.
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Table 6   Results of the 
application of energy measure 
EIM6.1 (WU14)

(*)  Reference values: [20, 100] ; [10, 20] ; [0, 10] 
Performance is classified using a three colourgridin good (green), fair (yellow) and poor (red)

Facility Solar energy production 
(kWh/year)

Energy consumption 
(kWh/year)

Metric M.3.2.1 (%) (*)

2019
WWTP1 6282 290,391 2.2 
WWTP2 4646 25,549 18.2 
WWTP3 3629 208,387 2.9 
WWTP4 2762 19,246 18.9 
PSWS1 6242 – –
WTP1 6078 – –
WS1 37,819 – –
WU total 67,458 3,041,443 2.2 
2020
WWTP1 6023 3,025,661 2.6 
WWTP2 3951 229,836 17.6 
WWTP3 6228 22,466 3.3 
WWTP4 1369 188,650 7.2 
PSWS1 6272 – –
WTP1 6202 – –
WS1 79,472 – –
WU total 109,517 3,025,661 3.6 
2021
WWTP1 6077 275,088 2.2 
WWTP2 4175 23,314 17.9 
WWTP3 6791 380,437 1.8 
WWTP4 2865 17,307 33.9 
PSWS1 5954 – –
WTP1 5864 – –
WS1 89,424 – –
WU total 121,150 3,150,292 3.8 
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