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Abstract
Air quality forecasting is of great importance in environmental protection, government decision-making, people's daily health, 
etc. Existing research methods have failed to effectively modeling long-term and complex relationships in time series PM2.5 
data and exhibited low precision in long-term prediction. To address this issue, in this paper a new lightweight deep learn-
ing model using sparse attention-based Transformer networks (STN) consisting of encoder and decoder layers, in which a 
multi-head sparse attention mechanism is adopted to reduce the time complexity, is proposed to learn long-term dependencies 
and complex relationships from time series PM2.5 data for modeling air quality forecasting. Extensive experiments on two 
real-world datasets in China, i.e., Beijing PM2.5 dataset and Taizhou PM2.5 dataset, show that our proposed method not 
only has relatively small time complexity, but also outperforms state-of-the-art methods, demonstrating the effectiveness of 
the proposed STN method on both short-term and long-term air quality prediction tasks. In particular, on singe-step PM2.5 
forecasting tasks our proposed method achieves R2 of 0.937 and reduces RMSE to 19.04 µg/m3 and MAE to 11.13 µg/m3 
on Beijing PM2.5 dataset. Also, our proposed method obtains R2 of 0.924 and reduces RMSE to 5.79 µg/m3 and MAE to 
3.76 µg/m3 on Taizhou PM2.5 dataset. For long-term time step prediction, our proposed method still performs best among 
all used methods on multi-step PM2.5 forecasting results for the next 6, 12, 24, and 48 h on two real-world datasets.
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Introduction

With the acceleration and deepening of industrialization and 
urbanization, air pollution has been a more and more serious 
problem, which heavily threatens to human health with a 
variety of respiratory diseases such as chronic pharyngitis, 
chronic bronchitis, and bronchial asthma (Chang et al. 2020; 
Schwartz 1993; Yan et al. 2020). Besides, heavy air pollu-
tion will lead to a haze, resulting in the low atmosphere vis-
ibility, traffic accidents, flight delays, and so on. Therefore, 

how to realize an accurate air quality forecasting has gradu-
ally drawn extensive attentions in recent years, due to its 
importance in environmental protection (Liao et al. 2015), 
government decision-making (Zheng et al. 2015), people's 
daily health (Ha Chi and Kim Oanh 2021), etc.

So far, a large number of big cities have established air 
quality monitoring stations in urban areas to observe the 
city’s real-time PM2.5 and other air pollutants such as 
PM10, CO,  O3,  NO2,  SO2, etc. (Li and Cheng 2021; Wang 
et al. 2022a, b). In China, the air quality status of different 
cities in the east, north, and northeast of China is sometimes 
more notable in the world, since prior studies have been 
reported the chemical composition and mass concentra-
tion of PM2.5 in these areas of China (Gautam et al. 2019). 
Long-term exposure to PM2.5 easily causes the respiratory 
diseases (Chai et al. 2019; Yang et al. 2020). As a result, air 
pollution caused by PM2.5 has been regarded as a crucial 
problem threatening to people's daily health. Hence, it is 
of great importance to perform early diagnosis of air pol-
lution occurrence and PM2.5 concentration estimation for 
air quality forecasting. At present, tremendous efforts have 
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been made to focus on air quality forecasting (Janarthanan 
et al. 2021; Liu et al. 2021; Mao et al. 2021; Voukantsis et al. 
2011; Yi et al. 2019; Zhu et al. 2018). Existing approaches 
for air quality prediction can be divided into two categories: 
deterministic methods and statistical methods. In particular, 
deterministic methods usually work in a model-driven man-
ner. That is, they utilize the aerodynamic theory to construct 
a numeric model to simulate the pollutant discharge and 
diffusion of atmospheric pollution concentration. The repre-
sentative deterministic methods contain Nested Air Quality 
Prediction Modeling System (NAQPMS) (Wang et al. 2001), 
Chemical Transport Models (CTMs) (Mihailovic et al. 2009; 
Ponomarev et al. 2020), Weather Research and Forecast-
ing (WRF) (Powers et al. 2017), Community Multiscale 
Air Quality (CMAQ) (Zhang et al. 2014), the complicated 
WRF-SMOKE-CMAQ model (de Almeida Albuquerque 
et al. 2018), and so on. However, these deterministic meth-
ods may provide inaccurate prediction results owing to the 
lack of real observations (Kukkonen et al. 2003). In addition, 
since a variety of parameters in these models are required to 
be decided by experience, they easily suffer from the expen-
sive computation cost (Xu et al. 2017).

By contrast, statistical methods usually work in a data-
driven manner. In other words, based on the observed data 
they directly employ a statistical modeling strategy to fore-
cast air pollutant concentrations. The conventional linear 
statistical methods for air quality prediction include Autore-
gressive Moving Average (ARMA) (Graupe et al. 1975), 
Autoregressive Integrated Moving Average (ARIMA) 
(Cekim 2020; Jian et al. 2012), Autoregressive Distributed 
Lag (ARDL) (Abedi et al. 2020). Nevertheless, these linear 
statistical methods are based on the assumption that there 
exist linear relationships between data variables and tar-
get labels. This does not comform to the non-linearity of 
real-world observed data. Therefore, these linear statistical 
methods may not obtain promising performance on air qual-
ity forecasting tasks. To address this issue, an alternative to 
these liner statistial methods is to adopt nonlinear statisti-
cal machine learning methods for air quality forecasting. 
The representative nonlinear statistical machine learning 
methods are Support Vector Regression (SVR) (Chu et al. 
2021; Yang et al. 2018), Artificial Neural Network (ANN) 
(Agarwal et al. 2020; Arhami et al. 2013), Random For-
est (RF) (Gariazzo et al. 2020), eXtreme Gradient Boosting 
(XGBoost) (Chen and Guestrin 2016), and so on. Among 
these nonlinear statistical machine learning methods, 
ANNs have become one of the most popular approaches 
for air quality forecasting. For instance, Ding et al. (2016) 
employed sparse response back-propagation training feed-
forward neural networks to predict air pollutant concentra-
tion. Zhao et al. (2020) integrated forward neural networks 
and recurrent neural networks to predict air quality hourly 
in Northwest of China. Liu and Zhang (2021) developed a 

method of AQI (air quality index) time series prediction by 
means of a hybrid data decomposition and echo state net-
works. In recent years, ensemble learning for different ANNs 
has been an attractive direction. In particular, an ensemble 
method based on 10 distinct ANNs was used to estimate 
air pollution health risks (Araujo et al. 2020). Wang et al. 
(2020) proposed a double decomposition and optimal com-
bination ensemble learning method for interval-valued AQI 
forecasting. However, due to the used single-layer network 
structure, these tranditional nonlinear statistical learning 
methods belong to shallow leaning methods, resuting in their 
limited feature learning ability and prediction performance 
on air quality forecasting tasks.

To allievate the above-mentioned problem, recently 
emerged deep learning techqniques (Hinton and Salakhut-
dinov 2006; LeCun et al. 2015) may present a possible solu-
tion. With the aid of deep multi-layer network structures, 
deep learning techqniques are capable of learning high-level 
feature representations from input data and exhibit excel-
lent performance in the fields of computer vision, natural 
language processing, signal processing, and so on. The 
well-known deep learning techniques contain Deep Belief 
Network (DBN) (Hinton and Salakhutdinov 2006), Convo-
lutional Neural Network (CNN) (Krizhevsky et al. 2012), 
Recurrent Neural Network (RNN) (Elman 1990) and its 
variant of Long Short-term Memory (LSTM) (Hochreiter 
and Schmidhuber 1997), and so on. At present, a variety 
of deep learning techniques have been successfully applied 
for air quality forecasting (Akbal and Ünlü 2022; Dhakal 
et al. 2021; Wong et al. 2021; Yang et al. 2021; Zhang et al. 
2020a, 2022; Zhou et al. 2022). For instance, a deep stacked 
autoencoder (AE) model (Li et al. 2016), as a variant of 
DBN, was used to learn inherent air features for air quality 
prediction. Image-based air quality prediction based on CNN 
(Chakma et al. 2017; Zhang et al. 2016) was proposed, in 
which CNNs were leaverged to recognize natural images 
into different categories on the basis of their PM2.5 concen-
trations. An end-to-end deep learning model comprising of 
CNNs and Gradient Boosting Machine (GBM) (Luo et al. 
2020) was proposed for PM2.5 concentration prediction in 
Shanghai City, China. A Graph-based LSTM (GLSTM) 
model (Gao and Li 2021) was presented to predict PM2.5 
concentration in Gansu Province of Northwest in China.

In recent years, various hybrid deep learning structures 
have drawn extensive attention for air quality forecasting. 
In particular, a hybrid deep learning framework combining 
Variational Mode Decomposition (VMD) and Bi-directional 
LSTM (BiLSTM) (Zhang et al. 2021) was developed to pre-
dict PM2.5 changes in cities in China. A transfer learning-
based BiLSTM (Ma et al. 2019) was utilized to improve 
air quality prediction performance. A spatio-temporal Con-
volutional LSTM Extended (C-LSTME) model (Wen et al. 
2019), in which CNNs and LSTMs were integrated to learn 
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high-level spatio-temporal features, was presented to pre-
dict air quality concentration. Although these deep learn-
ing methods mentioned above have achieved good perfor-
mance on air quality forecasting tasks, they may still have a 
drawback. That is, owing to the existed “gradient vanishing 
and exploding” problems in RNNs and LSTMs, as well as 
the limited spatial learning ability of convolutional filters 
in CNNs, these sequence-aligned methods are restricted in 
modeling long-term and complex relationships in time series 
PM2.5 data.

To mitigate the above-mentioned issue, in recent year 
the developed Transformer (Vaswani et al. 2017) method, 
originally proposed for machine translation tasks in natural 
language processing, provides possible cues for long-term 
air quality prediction. The original Transformer model is 
constructed based on self-attention mechanisms without 
any recurrent structures and convolutions. The motivation 
of the used self-attention mechanisms in the Transformer is 
twofold. First, compared with recurrent structures it can deal 
with more direct information flow across the whole sequence 
data, thereby allowing for more direct gradient flow. Sec-
ond, it can perform faster training than recurrent structures, 
since most operations can be implemented in parallel. So 
far, self-attention-based Transformers have shown superior 

performance to RNNs and LSTMs in the ability of capturing 
long-range dependencies in the fields of machine translation 
(Neishi and Yoshinaga 2019; Vaswani et al. 2017), speech 
recognition (Chen et al. 2021; Zeyer et al. 2019), image 
segmentation and classification (Bazi et al. 2021; Duke 
et al. 2021; Lanchantin et al. 2021), electricity-consuming 
load analysis (Yue et al. 2020; Zhou et al. 2021), and so 
on. Although self-attention-based Transformers may own 
powerful capability of modeling long-range dependencies 
of sequence data, they still need large time and memory that 
increases quadratically with the sequence length. Besides, 
few studies attempt to explore Transformer-based methods 
for long-term air quality forecasting. To address these two 
issues, this paper proposes a new lightweight deep learning 
model for air quality forecasting based on sparse attention-
based Transformer networks (STN) so as to model long-
term and complex relationships from time series PM2.5 
data. In our STN, a multi-head sparse attention mechanism 
is designed to learn long-term dependencies on the long span 
of time series PM2.5 data and meanwhile reduce the time 
complexity. Moreover, the proposed STN method can deal 
with the whole time series PM2.5 data for each time employ 
with the aid of self-attention mechanisms.

Fig. 1  Distribution of China's air quality monitoring stations (the 
color of each station denotes the rank of daily average PM2.5 on 
November 1, 2019, as depicted in the bottom right of the figure. For 

interpretation related to color in this figure legend, the readers see the 
details from the website https:// www. aqist udy. cn/)

https://www.aqistudy.cn/


13538 International Journal of Environmental Science and Technology (2023) 20:13535–13550

1 3

The main contributions of this paper are summarized in 
three aspects: (1) a new lightweight deep learning model 
based on sparse attention-based Transformer networks 
(STN) is designed to learn long-term dependencies and 
complex relationships from time series PM2.5 data for deep 
air quality forecasting. The proposed STN method adopts a 
multi-head sparse attention mechanism in the encoder and 
decoder to learn long-term temporal dynamical information 

from time series PM2.5 data, and reduce time complexity 
simultaneously; (2) to the best of our knowledge, this is the 
first attempt to exploit deep sparse attention-based Trans-
former networks for air quality forecasting. The proposed 
STN method can process the entire time series PM2.5 data 
at the same time owing to the used self-attention mechanism. 
Unlike previous sequence-aligned methods, our method does 
not need to deal with time series PM2.5 data in an ordered 

Fig. 2  Methodology structure 
of modeling air quality PM2.5 
forecasting based on shallow 
learning and deep learning 
methods

Fig. 3  Framework of proposed STN model for air quality (PM2.5 concentration) forecasting
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sequence way; (3) this paper presents a comparative analy-
sis of traditional ARIMA, SVR, RF, XGBoost, and recently 
developed deep learning models like CNN, LSTM, the 
original Transformer as well as our STN method. Extensive 
experiments on two real-world datasets in China, i.e., Bei-
jing PM2.5 dataset and Taizhou PM2.5 dataset, show that 
our method not only has relatively small time complexity, 
but also outperforms state-of-the-arts, demonstrating the 
effectiveness of the proposed STN method on both short-
term and long-term air quality prediction tasks.

Materials and methods

To evaluate the performance of the proposed method on 
air quality forecasting tasks, we employ two real-world air 
quality PM2.5 databases to conduct air quality forecasting 
experiments. One is the Beijing PM2.5 dataset (Liang et al. 
2015) available at https:// www. kaggle. com/ djhav era/ beiji ng- 
pm25- data- data- set. The other is Taizhou PM2.5 dataset, 
which was collected by our teams from Taizhou city.

Study area

In this work, we choose two typical cities, i.e., Beijing and 
Taizhou, for studying air quality prediction, as depicted in 
Fig. 1. Beijing city is the Capital of China and at 116°66ʹ 
east longitude and 40°13ʹ north latitude. Taizhou city is 
located in the southeast of Zhejiang Province and at 121°42ʹ 
east longitude and 28°65ʹ north latitude. Figure 1 shows the 
distribution of China's all air quality monitoring stations and 
the ranking of PM2.5 values corresponding to each station 
on November 1, 2019. Here, the rank of PM2.5 in Fig. 1 is 
determined by the Ambient Air Quality Standard (GB 3095-
2012) in China (Zhang et al. 2020b).

Data description

The used Beijing PM2.5 dataset (Liang et al. 2015) is hourly 
air quality database consisting of PM2.5 data (http:// www. 
mee. gov. cn/) of the US Embassy in Beijing and meteorologi-
cal data (http:// tianqi. 2345. com/) from Beijing Capital Inter-
national Airport. This dataset includes eight feature items, 
i.e., PM2.5 concentration (µg/m3), dew point, temperature, 
pressure, combined wind direction, cumulated wind speed 
(m/s), cumulated hours of snow, cumulated hours of rain. 
The original dataset is recorded with an hourly interval 
ranging from 01/01/2010 to 12/31/2014, yielding a total of 
around 43,800 records. For year-independent experiments, 
the first four-year data are used for training, whereas the 
last year data (01/01/2014–12/31/2014) are selected as the 
testing set. For model validation, we randomly split 10% of 
the whole training set as the validation set. In this case, we 

keep that the training, and testing sets come from differ-
ent years, thereby making such year-independent air quality 
forecasting experiments more practical. Note that such year-
independent experiments are more difficult than the common 
year-dependent experiments in which the training and testing 
sets are derived from the same year.

The used hourly Taizhou PM2.5 dataset is collected from 
the single Hongjia monitoring station, which is located in 
Jiaojiang urban district from Taizhou city in Zhejiang Prov-
ince. This dataset also contains eight feature items, includ-
ing PM2.5 concentration (µg/m3), dew point, temperature, 
pressure, combined wind direction, cumulated wind speed 
(m/s), cumulated hours of rain, cumulated hours of relative 
humidity. It consists of around 26,000 hourly records rang-
ing from 01/01/2017 to 12/31/2019. In our experiments, the 
first two-year data are used as the training set, and the last 
year data (01/01/2019–12/31/2019) are adopted as the test-
ing set. The randomly divided 10% of the whole training set 
is employed as the validation set.

Methods

Figure 2 shows the methodology structure of modeling air 
quality PM2.5 forecasting based on shallow learning and 
deep learning methods. The methodology structure starts 
with data collection and processing. In particular, histori-
cal PM2.5 concentration and meteorological data are col-
lected from monitoring stations and then cleaned by means 
of eliminating outliers and padding missing values with 
a linear interpolation way. Data normalization for all air 
quality time series data is performed before feeding data 
into the used models. In the next stage of temporal mod-
eling, various models, including shallow learning models 
like ARIMA, SVR, RF, XGBoost, as well as deep learning 
models like CNN, LSTM, Transformer, and our designed 
STN, are employed to model temporal dynamics from time 
series PM2.5 data for air quality forecasting. All used mod-
els are trained and evaluated on the collected training and 
testing data sets. Finally, we present the result comparison 
and analysis according to the used typical evaluation metrics 
like root mean square error (RMSE), mean absolute error 
(MAE), and the coefficient of determination (R2).

Similar to the conventional Transformer (Vaswani 
et al. 2017), our designed sparse attention-based Trans-
former networks (STN) consist of encoder and decoder 
layers depending on self-attention mechanisms, as shown 
in Fig. 3. In order to learn long-term dependencies and 
complex relationships from time series PM2.5 data, this 
framework integrates two different self-attention mecha-
nisms, including a multi-head sparse attention mechanism 
used in the encoder and decoder, in which a sparse atten-
tion block is designed to learn important queries for reduc-
ing time complexity, and a standard multi-head attention 

https://www.kaggle.com/djhavera/beijing-pm25-data-data-set
https://www.kaggle.com/djhavera/beijing-pm25-data-data-set
http://www.mee.gov.cn/
http://www.mee.gov.cn/
http://tianqi.2345.com/
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mechanism (Vaswani et al. 2017) in the decoder. In the 
following, we will elaborate the details related to the 
designed STN model.

Problem description

Given input time series data � = {x1,x2,… , xLx} ( xi ∈ ℝ
dx ) 

with a length Lx (historical meteorological data and PM2.5 
concentration data) and input dimension dx , the proposed 
method aims to predict the corresponding time series data 
� = {y1,y2,… , yLy} ( yi ∈ ℝ

dy ) with a length Ly and input 
dimension dy . The encoder maps input time series data 
� = {x1,x2,… , xLx} into a hidden continuous representation 
� = {z1,z2,… , zLz} . Then, the decoder generates an output 
of � = {y1,y2,… , yLy} from the given � = {z1,z2,… , zLz} . 
This inference is realized by using an step-by-step operation 
in which the decoder calculates a new hidden representation 
�k+1 from the previous �k and other outputs in k-th step, and 
then forecasts the (k + 1)-th time series data �k+1.

Position embedding

Since the original Transformer model (Vaswani et al. 2017) 
does not have recurrent structures and convolutions, it has 
no ability of leveraging the temporal information of time 
series data. It is thus needed to extract the relative or abso-
lute position information of the tokens in time series data. To 
this end, position embedding, which is conducted with the 
nonlinear sine and cosine functions (Vaswani et al. 2017), 
is utilized to encode the temporal information of time series 
data. Position embedding is usually added at the bottoms of 
the encoder and decoder of the used Transformer model, as 
described in Fig. 3.

Encoder

Given input time series data � , consisting of normalized his-
torical meteorological data and PM2.5 concentration data, 
position embedding is used to encode the temporal informa-
tion of � and generate the resulting vector with the length 
of Lx as inputs of the encoder. The designed encoder aims 
to compute the interrelationship of PM2.5-related data at 
each time point in the sequence data by means of using a 
sparse self-attention mechanism in an effort to capture the 
relevance and importance of PM2.5-related data at different 
times in the sequence data. For such self-attention encoder, 
the attention weights can be calculated by means of using 
the scaled dot-product attention of the tuple input (query, 
key, value).

Different from the original Transformer model (Vaswani 
et al. 2017) with the single branch, the designed encoder 
contains two-branch parallel pipelines: (1) one sparse 

attention block and (2) two sparse attention blocks cascaded 
with a 1D convolution with a kernel width 3 and a max-
pooling with stride 2. Each sparse attention block consists of 
a multi-head sparse attention layer, a fully connected feed-
forward network, followed by layer normalization. A resid-
ual connection (He et al. 2016) is used around each of two 
sub-layers. Here, the used 1D convolution and max-pooling 
operations are adopted for the self-attention distilling opera-
tion to extract the dominant attention, thereby decreasing 
the network size. In addition, the first branch path with one 
sparse attention block receives halving inputs 1

2
Lx , thereby 

reducing the number of self-attention distilling layers and 
improving robustness. In a concatenated layer, the learned 
feature maps of two-branch parallel pipelines are merged as 
the output � of the encoder.

Decoder

The decoder aims to learn the weighted attention compo-
sition of feature maps, and meanwhile, output predicted 
PM2.5 concentration data in a generative manner. The 
decoder is composed of a masked sparse attention block, a 
multi-head attention layer, a fully connected feed-forward 
network, and each of them is followed by layer normaliza-
tion. Similar to the encoder, a residual connection (He et al. 
2016) is also employed around each of three sub-layers. A 
linear mapping layer is used at the top of the decoder to 
output the PM2.5 prediction results � . The masked sparse 
attention is obtained in the process of sparse attention com-
puting by setting masked dot products to −∞ , avoiding 
auto-regressive. The decoder receives time series input data 
�de = {�token, �0} , where �token represents the started tokens 
and �0 denotes the placeholder for target time series data.

Self‑attention mechanism and sparse analysis

Given an input times series data matrix � ∈ ℝ
L×dx with a 

length L and input dimension d , in terms of the tuple input 
(query, key, value) the standard self-attention mechanism 
(Vaswani et al. 2017) computes the scaled dot-product as

where the query matrix � ∈ ℝ
L×d , key matrix � ∈ ℝ

L×d , 
value matrix � ∈ ℝ

L×d are separately defined as

(1)Att(�,�,�) = softmax

�
��T

√
d

�
,

(2)

� = ��q,

� = ��k,

� = ��v,



13541International Journal of Environmental Science and Technology (2023) 20:13535–13550 

1 3

where �q,�k,�v denote the projection matrices. Equa-
tion (1) can be reformulated as its vector form. In particular, 
given the i-th query qi from � , the attention score on the j
-th key from � can be computed by

Then, the self-attention score of qi over � can be defined as

In this case, the time complexity of the standard self-atten-
tion mechanism (Vaswani et al. 2017) is O(L2) . For the query 
matrix, there is a potential sparsity, that is, a lot of redundant 
calculations are conducted to obtain attention scores for all 
queries. It is needed to choose important queries in which 
the calculated attention scores over all keys are far from the 
uniform distribution. To measure important queries, the Kull-
back–Leibler (K-L) divergence (Hershey and Olsen 2007) 
between the true distribution P of p(kj||qi ) and the uniform 
distribution U is used, as described below.

After dropping the constant lnL , the sparse measurement 
of qi can be expressed as

According to the obtained values of Msparse , larger Msparse 
corresponds to more important queries in the self-attention 

(3)p(kj
��qi ) =

e
qik

T
j

�√
d

∑L

l=1
e
qik

T
l

�√
d

.

(4)Att (qi,�,�) =

L∑

j=1

p(kj
||qi )vj.

(5)KL(P‖U ) = ln

L�

j=1

e

qik
T
j√
d −

1

L

L�

j=1

qik
T
j

√
d

− ln L

(6)Msparse(qi,�) = ln

LK�

j=1

e

qik
T
j√
d −

1

LK

LK�

j=1

qik
T
j

√
d

mechanism. However, computing Eq. (6) is still expensive, 
since traversing all queries is needed to calculate every dot-
product pairs. To further alleviate the computation issue, 
Eq. (6) can be approximated by using sampling ways:

where �̃ denotes the random sampling key matrix and L̃ 
denotes the random sampling number. After figuring out 
M̃sparse for each query, only top u dominant queries are 
employed to calculate self-attention, filling other pairs with 
zero. In this case, the time complexity is O(L lnL) for a given 
sequence length of L.

Performance evaluation criteria

To evaluate the performance of different methods on air 
quality forecasting tasks, three typical evaluation metrics, 
such as root mean square error (RMSE), mean absolute error 
(MAE), and the coefficient of determination (R2), were uti-
lized for experiments. These three evaluation metrics are 
expressed below.

(7)M̃sparse(qi, �̃) = max
j

�
qik

T
j

√
d

�
−

1

L̃

L̃�

j=1

qik
T
j

√
d

(8)RMSE (y, ŷ) =

√√√√1

n

n∑

i=1

(yi − ŷi)
2,

(9)MAE (y, ŷ) =
1

n

n∑

i=1

||yi − ŷi
||,

(10)R2 = 1 −

∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi − ymean

i
)2
,

Table 1  Comparisons of 
different methods on singe-step 
PM2.5 forecasting results for 
the next 1 h

Forward-step prediction size is 1 for the next 1 h (h1). Bold emphasis denotes the best method for smallest 
RSME (µg/m3), MAE (µg/m3), and the largest R2. Execution time is measured in seconds

Models Beijing PM2.5 dataset Execution time Taizhou PM2.5 dataset Execution time

RMSE MAE R2 RMSE MAE R2

SVR-POLY 35.75 28.28 0.821 0.61 9.00 7.03 0.821 0.24
SVR-RBF 40.37 34.24 0.807 0.72 8.98 7.17 0.825 0.28
SVR-LINEAR 24.17 16.83 0.899 0.53 6.83 5.08 0.873 0.21
ARIMA 22.55 14.67 0.902 8.24 6.74 4.81 0.882 4.46
RF 25.71 13.68 0.915 2.06 6.07 3.86 0.914 2.33
XGBoost 25.72 13.76 0.912 2.32 6.25 4.05 0.909 2.45
CNN 28.55 19.07 0.875 0.83 9.56 6.86 0.793 0.81
LSTM 20.63 12.91 0.926 1.33 6.32 4.55 0.893 1.65
Transformer 19.53 11.57 0.931 3.41 6.16 4.07 0.920 4.32
STN 19.04 11.13 0.937 2.18 5.79 3.76 0.924 2.78
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where yi represents the observed PM2.5 value of i-th sample, 
ŷi denotes the predicted PM2.5 value of of i-th sample, ymean

i
 

is the mean value of observed PM2.5 values, and n is the 
total number of samples. The smaller the RMSE and MAE 
are, the better the final prediction performance is. In this 
case, R2 is often relatively larger.

Implementation details

All the experiments are implemented on a PC server config-
ured with a NVIDIA Quadro P6000 graphics card which has 
a 24G memory. We adopt the open source machine learning 
framework, i.e., Pytorch (https:// pytor ch. org) and Sklearn 
(https:// scikit- learn. org/), to build all machine learning 
methods for air quality forecasting. In particular, the open-
source Tensorflow library (https:// github. com/ tenso rflow/) 
is used to configure deep learning and Transformer models. 
For these models, the Adam optimizer is employed, the ini-
tial learning rate is  le−4, the batch size is 32, the maximum 
of epochs is 200, and the mean squared error loss function 
is adopted. All air quality time series data are normalized to 
[0, 1]. The lookup size (window size), representing historical 
observations as input size of all used models, is set to 24 for 
its best performance. We compared our STN method with 
other typical techniques, including the traditional shallow 
learning models such as ARIMA and SVR, RF, XGBoost, 
as well as recently developed CNNs, LSTMs, original Trans-
former methods. They are described below in brief.

ARIMA is a typical linear statistical model for forecasting 
time series data. SVR is a kernel model based on nonlin-
ear statistical machine learning theories which also can be 
used for time series data prediction. SVR was adopted with 
three different kernels (RBF, poly, and linear) with default 
parameter settings, i.e., the penalty coefficient is 1, and the 
polynomial degree is 3. RF is a simple ensemble learning 
techniques based on decision tree predictors, and the number 

of trees in RF is set as 200. XGBoost is a tree-based boosting 
model that combines multiple tree models with low perfor-
mance to build a stronger model, and the number of trees 
in XGBoost is also set as 200. CNNs are a typical deep 
learning model for 2D image data processing. Here, we use 
1D-CNN for air quality prediction since time-series PM2.5 
data are 1D. The used 1D-CNN contains 256 convolution 
kernels with a kernel width of 5 and a stride of 1, followed 
by a batch normalization layer, max-pooling layer, rectified 
linear unit layer, a dropout (0.3) layer, and a fully connected 
layer. LSTMs are a special kind of recurrent architecture 
used for modeling long-range dependencies more accurately 
on time series data in comparison with simple RNNs. We 
adopt BiLSTM for air quality forecasting, in which a for-
ward LSTM and a backward LSTM are included. Since air 
quality data change significantly over time and has a strong 
relationship with the state before and after, BiLSTM may 
be appropriate for predicting PM2.5 data. In this study, we 
used a two-layer BiLSTM for air quality prediction, each 
of which has 256 hidden neurons, followed by a dropout 
(0.05) layer. For the original Transformer model (Vaswani 
et al. 2017) and the proposed STN method, we employ three 
encoders and two decoders for its promising performance. 
In the following section, we provided experimental results 
in two aspects: single-step forecasting for the next 1 h and 
multi-step forecasting for the next multiple hours.

Results and discussion

Single‑step forecasting results

Table 1 shows a comparative analysis of single-step PM2.5 
forecasting quantitative results (RMSE, MAE, R2) for the 
next 1 h (h1) obtained by different used methods, including 
SVR (poly, rbf and linear kernel), ARIMA, RF, XGBoost, 
CNN, LSTM, Transformer, and the proposed STN method, 

Table 2  Comparisons of 
different methods on multi-step 
PM2.5 forecasting results for 
the next 6 h on two real-world 
datasets

Forward-step prediction size is 6 for the next 6 h (h6). Bold emphasis denotes the best method for smallest 
RSME (µg/m3), MAE (µg/m3), and the largest R2

Models Beijing PM2.5 dataset Taizhou PM2.5 dataset

RMSE MAE R2 RMSE MAE R2

SVR-POLY 52.69 42.18 0.654 13.87 10.88 0.584
SVR-RBF 53.64 44.02 0.653 13.97 11.12 0.578
SVR-LINEAR 45.47 33.15 0.707 13.53 9.30 0.615
RF 47.65 28.38 0.737 11.79 8.81 0.699
XGBoost 48.03 28.66 0.731 13.21 9.34 0.612
CNN 42.40 28.01 0.742 13.06 9.24 0.622
LSTM 38.72 24.28 0.744 12.50 8.77 0.711
Transformer 36.95 23.12 0.752 11.54 7.74 0.716
STN 36.41 22.09 0.782 11.04 7.19 0.731

https://pytorch.org
https://scikit-learn.org/
https://github.com/tensorflow/
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Table 3  Comparisons of different methods on multi-step PM2.5 forecasting results for the next 12 h on Beijing and Taizhou PM2.5 datasets

Forward-step prediction size is 12 for the next 12 h (h12). Bold emphasis denotes the best method for smallest RSME (µg/m3), MAE (µg/m3), 
and the largest R2

Datasets Models RMSE MAE R2

1 h-3 h 4 h-6 h 7 h-12 h 1 h-3 h 4 h-6 h 7 h-12 h 1 h-3 h 4 h-6 h 7 h-12 h

Beijing SVR-POLY 44.06 60.09 70.72 35.13 49.21 57.58 0.747 0.562 0.348
SVR-RBF 47.51 59.13 70.90 39.57 48.44 57.96 0.737 0.571 0.344
SVR-LINEAR 34.04 54.56 69.77 23.90 42.41 56.47 0.812 0.591 0.351
RF 36.50 56.15 71.83 20.84 35.95 48.10 0.820 0.614 0.411
XGBoost 36.85 56.35 71.96 21.12 36.19 48.59 0.817 0.597 0.390
CNN 33.18 48.89 60.31 23.15 32.92 42.96 0.807 0.623 0.485
LSTM 31.17 46.14 59.40 19.68 30.50 41.39 0.829 0.658 0.487
Transformer 29.70 43.98 56.02 19.26 29.67 39.27 0.831 0.662 0.492
STN 28.31 42.40 55.49 18.27 29.01 38.80 0.844 0.686 0.509

Taizhou SVR-POLY 11.58 15.83 17.72 9.04 12.71 14.26 0.710 0.458 0.323
SVR-RBF 11.77 15.86 17.74 9.37 12.86 14.35 0.700 0.456 0.319
SVR-LINEAR 11.45 14.69 17.23 8.25 11.35 13.53 0.713 0.461 0.326
RF 11.32 14.57 16.56 7.94 10.43 11.99 0.743 0.534 0.404
XGBoost 11.41 14.65 17.27 7.25 11.29 13.58 0.718 0.537 0.356
CNN 11.21 14.43 16.33 8.09 10.38 11.86 0.729 0.543 0.419
LSTM 11.01 13.72 15.94 7.75 9.37 11.58 0.783 0.617 0.448
Transformer 10.06 13.28 15.83 7.51 9.35 11.29 0.785 0.616 0.464
STN 9.82 13.01 15.52 6.76 9.30 11.08 0.792 0.632 0.482

Table 4  Comparisons of different methods on multi-step PM2.5 forecasting results for the next 24 h on Beijing and Taizhou PM2.5 datasets

Forward-step prediction size is 24 for the next 24 h (h1-h24). Bold emphasis denotes the best method for smallest RSME (µg/m3), MAE (µg/m3), 
and the largest R2

Datasets Models RMSE MAE R2

1–3 h 4–6 h 7–12 h 13–24 h 1–3 h 4–6 h 7–12 h 13–24 h 1–3 h 4–6 h 7–12 h 13–24 h

Beijing SVR-POLY 44.03 60.06 70.68 79.43 35.09 49.16 57.53 64.86 0.747 0.562 0.359 0.262
SVR-RBF 47.49 59.13 70.87 79.99 39.54 48.42 57.91 65.47 0.737 0.571 0.360 0.269
SVR-LINEAR 40.06 54.58 69.75 77.85 28.91 42.40 56.44 62.81 0.772 0.591 0.366 0.289
RF 36.53 56.29 71.59 85.09 26.86 36.00 48.16 59.97 0.779 0.608 0.415 0.298
XGBoost 36.92 56.34 71.88 85.11 26.13 36.24 48.70 60.73 0.784 0.613 0.411 0.294
CNN 36.91 49.85 63.74 72.71 26.73 36.77 42.08 55.70 0.782 0.619 0.484 0.341
LSTM 35.82 48.34 60.41 70.52 24.11 33.25 41.75 50.72 0.796 0.626 0.487 0.379
Transformer 32.93 45.69 57.44 70.00 21.68 30.12 39.96 48.46 0.803 0.651 0.490 0.384
STN 32.35 44.87 56.47 69.12 20.95 29.53 38.48 47.71 0.814 0.666 0.495 0.390

Taizhou SVR-POLY 12.58 15.83 17.72 19.01 9.04 12.71 14.26 15.29 0.710 0.459 0.324 0.248
SVR-RBF 12.77 15.87 17.74 19.08 9.36 12.86 14.34 15.34 0.702 0.450 0.319 0.240
SVR-LINEAR 11.90 14.68 17.22 18.82 9.24 11.34 13.51 14.91 0.788 0.537 0.357 0.264
RF 11.58 14.32 16.13 17.88 8.15 10.02 11.49 13.68 0.723 0.588 0.453 0.312
XGBoost 11.64 14.48 16.23 18.03 8.20 10.23 11.88 13.72 0.717 0.556 0.423 0.304
CNN 11.79 14.59 16.31 17.98 8.23 10.38 11.93 13.69 0.708 0.544 0.421 0.310
LSTM 11.43 14.04 16.10 17.76 8.10 9.93 11.36 13.16 0.725 0.595 0.458 0.331
Transformer 11.07 13.98 15.58 17.31 6.96 9.78 11.32 12.70 0.760 0.600 0.461 0.357
STN 9.89 13.41 14.37 16.98 6.69 9.53 11.23 12.22 0.780 0.615 0.474 0.363
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for the next 1 h on two real-world datasets, i.e., Beijing and 
Taizhou PM2.5 datasets. To evaluate the time computation 
efficiency of all models, Table 1 also presents the compari-
sons of the execution time for all used models, which is 
measured with the model’s run-time implemented on the 
testing data.

From Table 1, we can make the following three observa-
tions, as described below.

1. Among all used methods, our STN method obtains the 
smallest RSME, MAE, and the highest R2 on two real-
world datasets. In particular, our method achieves the 
largest R2 of 0.937 and reduces RMSE to 19.04 µg/m3 
and MAE to 11.13 µg/m3 on Beijing PM2.5 dataset. 
Also, our STN method gives the largest R2 of 0.924 and 
reduces RMSE to 5.79 µg/m3 and MAE to 3.76 µg/m3 on 
Taizhou PM2.5 dataset. This shows that compared with 
other methods such as SVR, ARIMA, RF, XGBoost, 
CNN, LSTM, Transformer, our STN method has more 
powerful ability of learn long-term dependencies and 
complex relationships from time series PM2.5 data for 
air quality forecasting. Additionally, our STN method 
outperforms the original Transformer method, demon-
strating the advantages of our STN method on air quality 
forecasting tasks. The reason is that the used multi-head 

sparse attention mechanism in our STN has stronger 
ability of modeling long-term temporal dynamics from 
time series PM2.5 data on air quality forecasting tasks.

2. Most deep learning methods, such as LSTM, Trans-
former and our STN method, are superior to traditional 
shallow learning methods like SVR, ARIMA, RF, 
XGBoost on air quality prediction tasks. This indicates 
the advantages of deep learning methods over tradi-
tional shallow learning methods on air quality predic-
tion tasks. Nevertheless, CNN does perform better than 
SVR, ARIMA, RF, and XGBoost on single-step PM2.5 
prediction tasks. This shows that 2D image-based CNN 
is not very effective to process 1D time series PM2.5 
data.

3. Among all used shallow learning methods, tree-based 
methods such as RF and XGBoost outperform SVR and 
ARIMA, demonstrating the superiority of tree-based 
methods to SVR and ARIMA. In addition, RF slightly 
performs better than XGBoost in terms of RSME, MAE, 
and R2

.
4. As for the computation efficiency, the ranking order of 

execution time for all used models is ARIMA, Trans-
former, STN, XGBoost, RF, LSTM, CNN, SVR-RBF, 
SVR-POLY, and SVR-LINEAR. Note that our STN 
method, as an improved version of the original Trans-

Table 5  Comparisons of different methods on multi-step PM2.5 forecasting results for the next 48 h on Beijing and Taizhou PM2.5 datasets

Forward-step prediction size is 48 for the next 48 h (h1-h48). Bold emphasis denotes the best method for smallest RSME (µg/m3), MAE (µg/m3), 
and the largest R2

Datasets Models RMSE MAE R2

1–6 h 7–12 h 13–24 h 25–48 h 1–6 h 7–12 h 13–24 h 25–48 h 1–6 h 7–12 h 13–24 h 25–48 h

Beijing SVR-POLY 52.54 70.62 79.40 84.00 42.01 57.45 64.78 68.19 0.656 0.349 0.282 0.157
SVR-RBF 53.57 70.81 79.93 84.09 43.92 57.85 65.37 68.31 0.655 0.345 0.281 0.152
SVR-LINEAR 49.46 69.74 77.81 83.68 33.12 56.41 62.72 67.82 0.707 0.361 0.296 0.162
RF 47.75 67.48 75.08 80.11 29.42 48.12 59.70 67.07 0.723 0.438 0.285 0.190
XGBoost 48.07 67.87 75.15 80.06 29.72 48.63 59.97 67.12 0.717 0.431 0.284 0.173
CNN 44.54 61.19 71.74 78.97 29.44 42.91 50.01 58.42 0.721 0.474 0.364 0.253
LSTM 47.24 63.26 72.28 80.90 34.55 44.97 52.63 58.70 0.696 0.426 0.348 0.239
Transformer 42.22 58.63 70.11 78.25 28.66 42.20 48.97 57.92 0.728 0.481 0.375 0.267
STN 40.53 57.46 69.94 77.80 27.52 40.03 48.23 57.27 0.736 0.498 0.397 0.295

Taizhou SVR-POLY 14.86 17.72 19.00 20.06 10.87 14.26 15.28 16.20 0.584 0.324 0.219 0.132
SVR-RBF 14.96 17.75 19.00 20.08 11.11 14.35 15.34 16.28 0.579 0.319 0.212 0.123
SVR-LINEAR 14.51 17.22 18.81 19.91 10.28 13.52 14.90 15.97 0.593 0.357 0.235 0.146
RF 14.32 17.83 18.64 20.59 9.19 12.90 14.43 15.16 0.611 0.414 0.268 0.158
XGBoost 14.43 17.91 18.92 20.77 9.32 13.01 14.57 15.78 0.607 0.394 0.251 0.151
CNN 13.32 16.41 17.95 19.14 9.45 12.53 13.15 14.64 0.601 0.416 0.307 0.191
LSTM 13.83 16.99 18.21 19.55 9.79 12.85 13.41 14.96 0.598 0.413 0.302 0.186
Transformer 13.15 15.57 17.68 18.93 9.33 12.06 12.70 14.33 0.605 0.419 0.310 0.223
STN 12.72 15.06 17.40 18.13 9.09 11.29 12.51 13.90 0.628 0.424 0.320 0.249
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former, takes less execution time compared with the 
original Transformer. In particular, STN separately saves 
1.23 and 1.54 s on Beijing and Taizhou datasets than 
Transformer. This is because, in comparison with Trans-
former, the used multi-head sparse attention mechanism 
in our STN method can reduce the time complexity from 
O(L2) to O(L lnL) , thereby yielding less execution time. 
This demonstrates the effectiveness of our STN method 
over Transformer on the time computation complexity.

Multi‑step forecasting results

Table 2 presents the multi-step quantitative results of differ-
ent methods on forecasting PM2.5 tasks for the next 6 h on 
two real-world datasets. In Table 2, the testing error of dif-
ferent models is the mean prediction error values in the next 
forward 6 h (h1–h6), thereby giving a comparative analysis 
of RMSE, MAE, and R2 of SVR (poly, rbf, and linear ker-
nel), RF, XGBoost, CNN, LSTM, Transformer, and our STN 
method.

As shown in Table 2, among all used models our STN 
method still obtains the smallest RSME, MAE, and the 
highest R2 on the Beijing and Taizhou datasets, followed 

by Transformer, LSTM, CNN, RF, XGBoost, SVR-LIN-
EAR, SVR-POLY, and SVR-RBF. In particular, our STN 
method individually yields the highest R2 of 0.782 on Bei-
jing PM2.5 dataset and the highest R2 of 0.731 on Taizhou 
PM2.5 dataset. Additionally, our STN method reduces 
MAE to 22.09 µg/m3 on Beijing PM2.5 dataset and MAE 
to 7.19 µg/m3 on Taizhou PM2.5 dataset, respectively. It 
is worth pointing out that CNN yields better performance 
than traditional SVR-LINEAR and XGBoost on multi-step 
PM2.5 forecasting tasks for the next 6 h (h1–h6). On the 
contrary, CNN performs worse than SVR-LINEAR and 
XGBoost on single-step PM2.5 forecasting tasks for the 
next 1 h (h1). This indicates that CNN improves the pre-
diction performance when the forward-step prediction size 
increases from the next 1–6 h.

For long-term time step prediction, Tables 3, 4 and 5 
separately present performance comparisons of different 
methods on multi-step PM2.5 forecasting results for the next 
12, 24, and 48 h on two real-world datasets. Note that for 
more than 6 h prediction, we split them into several inter-
vals and trained independent models for each interval. Then, 
we reported the average prediction results for each inter-
val. For instance, for the next 12 h (h1–h12) prediction, we 

(a)CNN for the next 48th hour (h48) prediction (b) LSTM for the next 48th hour (h48) prediction

(c)Transformer for the next 48th hour (h48) prediction (d) Our method for the next 48th hour (h48) prediction

Fig. 4  Comparisons of multi-step ground truth and predicted PM2.5 
values (µg/m3) for the next 48  h (h48) obtained by CNN, LSTM, 
Transformer, and our STN method during one month (10/01/2014–

10/31/2014) on Beijing PM2.5 dataset. (Each observation point in the 
horizontal axis represents the timescale (hour) corresponding to the 
obtained PM2.5 value, as depicted in the vertical axis in this figure)
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divided it into three groups: 1–3, 4–6, and 7–12 h, as shown 
in Tables 3 and 4. For the next 24 h (h1–h24) prediction, four 
groups such as 1–3, 4–6, 7–12 and 13–24 h are adopted. For 
the next 48 h (h1–h48) prediction, four groups such as 1–6, 
7–12, 13–24, 25–48 h are used.

From the results in Tables 3, 4 and 5, we can see that 
when the prediction time step increases, the multi-step 
PM2.5 forecasting performances of all used models gradu-
ally decrease. Nevertheless, it can be observed that com-
pared with other methods, our STN method also achieves 
the lowest prediction error (RMSE, MAE), and the highest 
R2 versus different forward prediction sizes. In addition, for 
the next 48 h (h1–h48), CNN performs better than LSTM, 
RF, XGBoost, SVR-LINEAR, demonstrating the further 
performance improvement in CNN on long-term air quality 
prediction.

To further exhibit the advantages of our STN method, 
we present the visualization of multi-step PM2.5 fore-
casting results of four deep models for the next 48 h (h1-
h48) on two real-world datasets. Specially, Fig. 4 shows 
a comparison of multi-step ground truth and predicted 
PM2.5 values for the next 48 h (h48) obtained by CNN, 

LSTM, Transformer, and our STN method during one 
month (10/01/2014–10/31/2014) on Beijing PM2.5 data-
set. Figure 5 presents a comparison of multi-step ground 
truth and predicted PM2.5 values for the next 48 h (h48) 
obtained by CNN, LSTM, Transformer, and our STN 
method during one month (03/01/2019–03/31/2019) on 
Taizhou PM2.5 dataset. The results in Figs. 4 and 5 indi-
cate that our STN method performs better than other used 
methods when predicting PM2.5 values, especially in the 
time period of wave valley and peak of air quality PM2.5 
testing data. Here, an illustration of the differences of dif-
ferent used methods is labeled with a red circle in Figs. 4 
and 5.

In summary, the results in Tables 1, 2, 3, 4 and 5 and 
Figs.  4 and 5 on Beijing PM2.5 dataset and Taizhou 
PM2.5 dataset indicate that our STN method not only 
has relatively small time complexity, but also outper-
forms other used methods. This shows the advantages of 
our STN method on both short-term and long-term air 
quality prediction tasks over other used methods. More 
specially, on singe-step PM2.5 forecasting tasks our STN 
method achieves R2 of 0.937, RMSE of 19.04, and MAE 

(a)CNN for the next 48th hour (h48) prediction (b) LSTM for the next 48th hour (h48) prediction

(c)Transformer for the next 48th hour (h48) prediction (d) Our method for the next 48th hour (h48) prediction

Fig. 5  Comparisons of multi-step ground truth and predicted 
hourly PM2.5 values (µg/m3) for the next 48  h (h48) obtained by 
CNN, LSTM, Transformer, and our STN method during one month 
(03/01/2019–03/31/2019) on Taizhou PM2.5 dataset (each observa-

tion point in the horizontal axis represents the timescale (hour) cor-
responding to the obtained PM2.5 value, as depicted in the vertical 
axis in this figure)
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of 11.13 on Beijing PM2.5 dataset. On Taizhou PM2.5 
dataset, our STN method obtains R2 of 0.924, RMSE of 
5.79, and MAE of 3.76. For long-term PM2.5 forecasting, 
our STN method still gives better performance than other 
used methods on multi-step PM2.5 forecasting results for 
the next 6, 12, 24, and 48 h on two real-world datasets. 
In addition, it is found that the performance of all used 
method decreases with the increasing forward prediction 
size. In particular, the prediction results for the next 48 h 
are the worst, followed by the next 24, 12, 6, and 1 h. 
Besides, deep learning methods usually outperform shal-
low learning methods, especially for on multi-step PM2.5 
forecasting tasks.

Conclusion

In this paper, we present a new lightweight method of mod-
eling deep air quality forecasting based on sparse attention-
based Transformer networks (STN) for single-step forward 
and multi-step forward air quality PM2.5 prediction. Our 
STN method, which adopts a multi-head sparse attention 
mechanism in the encoder and decoder to reduce the time 
complexity, is designed to learn long-term dependencies 
and complex relationships from time series PM2.5 data 
for air quality forecasting. Our STN method is capable of 
processing the entire time series PM2.5 data at the same 
time owing to the used self-attention mechanisms. We pre-
sent a comparative analysis of traditional ARIMA, SVR, 
RF, XGBoost, as well as recently developed CNN, LSTM, 
Transformer, and our STN method. Experiment results on 
Beijing PM2.5 dataset and Taizhou PM2.5 dataset demon-
strate that our STN method not only has relatively small 
time complexity, but also achieves better performance than 
other used methods, i.e., the recently emerged deep models 
like the original Transformer, LSTM, CNN, and traditional 
ARIMA, RF, XGBoost, SVR-LINEAR, SVR-POLY, and 
SVR-RBF on both short-term and long-term air quality 
prediction tasks.

In future, it is interesting and challenging to take into 
account the abrupt variation in air pollution time series 
data for air quality forecasting. This is because such 
successful forecasting in advance for the sudden varia-
tion in air pollution is very beneficial to environmental 
protection, government decision-making, people's daily 
health, etc. In addition, it is also meaningful to explore 
more advanced deep learning models on long-term air 
quality prediction under different forecasting conditions. 
Besides, this work evaluates the performance of the pro-
posed method based on measurement samples at two air 
monitoring sites in China. Therefore, it is also interesting 

to exploit the generalizability of the proposed STN method 
in larger geographical regions. Moreover, our STN method 
shows less time complexity than the original Transformer, 
but the time complexity of our STN method is still larger 
than traditional shallow learning methods. Therefore, how 
to further reduce the time complexity of our STN method 
is an important direction in future.
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