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Abstract
The commercialization of microbial fuel cell technology is limited by high operating costs and low electricity production due 
to poor electron transfer to the anode. Operational costs can be lowered by utilizing waste materials, and cell performance 
can be improved by anode modification. This study investigated how anode modification with iron compounds changed the 
efficiency of energy generation and the microbiome of microbial fuel cells fueled with waste volatile fatty acids from a full-
scale anaerobic digestion. Anode modification with 2.5 g  Fe2O3/m2 increased the power density, current density, and voltage 
by 3.6-fold, 1.8-fold, and 1.4-fold, respectively. In the microbial fuel cell influent, propionic, enanthic, and iso-caproic acids 
predominated (60, 15, and 13% of all volatile fatty acids, respectively); in the outflow, propionic (71%) and valeric acids 
(17%) predominated. In anodic biofilms, Acidovorax sp. were most abundant; they have a great capacity for volatile fatty acids 
decomposition, and their abundance doubled in the microbial fuel cell with an iron-modified anode. The presence of iron 
significantly increased the abundance of the genera Pseudomonas and Geothrix, which were mainly responsible for electricity 
production. These results indicate that anode modification with iron changes the anode microbiome, favoring efficient volatile 
fatty acids metabolism and a greater abundance of electrogens in the biofilm, which ensures better electricity generation.
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Introduction

In response to increased energy demand and out of concern 
for the natural environment, microbial fuel cells (MFCs) are 
of great interest to researchers. These cells, in addition to 
their main function of generating electricity, can also con-
tribute to wastewater treatment (Liang et al. 2018). To gener-
ate electricity, microorganisms capable of biocatalysis can 
transform the organic compounds contained in wastewater 
(Ghasemi et al. 2011).

Carbon electrodes are commonly used electron acceptors 
in MFC. They can take various forms, such as brushes, rods, 
felts, and structures such as canvases. The most important 
characteristic of these electrodes is that they should have 

the largest possible number of microchannels to allow 
the penetration and flow of substances into the electrode 
(Greenman et al. 2021). Additionally, low resistance, high 
electrical conductivity, and a large specific surface area 
are also desirable (Zhou et al. 2011). It has been shown 
that increases in the efficiency of energy production by a 
microbial cell are closely related to increases in coverage 
of the anode with microorganisms. Electron transport at the 
anode is improved by the growth of a biofilm (Cornejo et al. 
2015). The coverage of the electrode with microorganisms 
can be improved by increasing the specific surface area and 
reducing the charge transfer resistance by the applications 
of different anode materials and modifying the electrodes, 
e.g., with metal oxides (Nosek et al. 2020). These oxides 
significantly improve the efficiency of electron transport in 
an MFC by serving as electrical conductors inside biologi-
cal membranes or by accumulating on the surface of bacte-
rial cells (Karn et al. 2009). The presence of iron oxides in 
the environment increases the expression of genes encod-
ing type-c cytochromes (Kato et al. 2013), which intensi-
fies electron transfer processes in the anode regions. Iron 
(III) oxide in a nano-colloidal form created a network of 
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connections between organisms, increasing their mutual 
adhesion, which raised the power generated in the cell by 
up to 50-fold (Savla et al. 2020). Zheng et al. (2022) inves-
tigated the effect of iron added to the medium to improve 
the efficiency of MFC. The experiment was conducted in 
a single-chamber MFC with a carbon brush as an anode. 
The cell achieved the highest power of 391.11 ± 9.4 mW/m2 
at the lowest dose of magnetite  Fe3O4 of 4.5 g/L. Yu et al. 
(2019) modified the graphite felt with  Fe3O4 by bonding it 
to the surface with a polytetrafluoroethylene emulsion. This 
modification improved the power density in soil MFC by 1.7 
times compared to the control. Tripathi et al. (2022) used 
dots coated with different doses (0.25, 0.5, 0.75, and 1 mg/
cm2) of iron (II, III) oxide  (Fe3O4) as an anode. The anodes 
were synthesized using a hydrothermal-assisted probe soni-
cation method. The maximum power density (440.01 mW/
m2) was observed in the MFC at the highest  Fe3O4 dose of 
1 mg/cm2––it was about 1.5 times higher than that of the 
MFC with an anode made of pure graphite sheet. Up to now, 
mainly pure substrates have been used in MFCs, such as 
glycerol (Tremouli et al. 2016), glucose (Christwardana et al. 
2018), or acetate (Ullah and Zeshan 2020), which ensured 
successful electricity production. Recently, waste substances 
have started to be used, including municipal wastewater, 
landfill leachate, and volatile fatty acids (VFAs) from pri-
mary sludge treatment; this approach offers the benefit of 
energy recovery from waste products.

From an engineering point of view, combining 
technologies like anaerobic digestion (AD) and MFC to 
generate energy from waste is beneficial. When organic 
compounds are decomposed in AD, VFAs are formed, which 
can serve as a carbon source for MFC microorganisms to 
simultaneously generate electricity. For example, Hou et al. 
(2020) used a digestion tank as the anodic chamber for an 
MFC process (AD-MFC) to treat food waste. They found 
that a combined AD-MFC system supported with algae 
in the cathode chamber produced biogas with a methane 
content twice as high as that produced by AD alone and 34% 
higher than that produced by AD-MFC. Additionally, the 
algae-supported MFC maintained a high voltage of 490 mV 
for 20 days. Combining AD and an MFC in one system 
can help with the early detection of VFA concentrations 
that are too high for the AD process. Schievano et  al. 
(2018) reported that when the concentration of VFAs in 
the chamber increased to 4000 mg acetate/L, the voltage 
dropped, which was associated with the inhibition of the 
activity of microorganisms. Another study used a continuous 
process with hydrogen/VFA generation in the first stage 
and electricity generation in an MFC in the second. The 
combined system was able to reduce COD by 90%, and 
the maximum power density achieved with the system was 
22.26 mW/m2 (Pant et al. 2013). Choi et al. (2011) used 
VFA from the fermentation of food waste in a two-chamber 

and a single-chamber MFC. They observed that acetic acid 
and propionic acid were consumed most rapidly and that the 
voltage and power density reached 533 mV and 240 mW/
m2, respectively. When only butyrate and valerate were 
present in the cell, the voltage dropped to 390 mV, indicating 
that electron deposition with these VFAs was lower in 
comparison with the deposition with VFAs with shorter 
chain lengths. Acetate alone was removed more rapidly 
than acetate in a mixture with other VFAs, suggesting that 
the other VFAs may have inhibited acetate degradation. 
In another study by Freguia et al. (2010), a synthetic VFA 
mixture based on the composition of digested sludge 
from domestic wastewater treatment was used. For power 
generation from the VFAs, mainly acetate and propionate 
were utilized, while butyrates, valerates, and caproic acids 
were utilized to a lesser extent. To the best of the authors’ 
knowledge, no studies were conducted with real VFA in 
MFCs with Fe-modified anodes.

Energy generation in an MFC is closely related to the 
species composition of the anode biofilm. Typically, mixed 
cultures make good synergistic consortiums because each 
species plays a specific role in the degradation of complex 
organic compounds. Some bacteria are responsible for 
breaking down complex compounds into simple ones 
and others for protecting the biofilm from environmental 
stress (Costerton 2007). Xin et al. (2019) tested the use of 
food waste hydrolysate as an electron donor in an MFC. 
They found that the main genera were Rummeliibacillus, 
Burkholderia, Enterococcus, and Clostridium and that 
the electrogenesis efficiency (0.977  kWh/kg COD) 
was higher than that of a single carbon source MFC. 
Syntrophic interactions between fermentation species 
and exoelectrogens played a key role in the generation 
of electricity by the anode biofilm. He et al. (2021) used 
sludge fermentation liquid (SFL) and fruit waste extracts 
(FWE) in MFC. The mixture of SFL and FWE promoted 
the presence of the genera Clostridium, Alicycliphilus, 
Thermomonas, Geobacter, Paludibaculum, Pseudomonas, 
Taibaiella, and Comamonas, which collaborated to degrade 
COD and generate electricity. Analysis of the VFAs 
in the wastewater of the MFC fed FWE indicated that 
synergistic interactions of microorganisms led to substrate 
bioconversion and bioelectricity production. In studies 
using the PCR-DGGE technique, in which real or synthetic 
VFAs were used in MFCs, microorganisms of the genera 
Geobacter, Comammonas, Pseudomonas, Xanthomonas, 
Sphingobacterium, and Pelobacter were present in the 
biofilm that developed on unmodified electrodes (Freguia 
et  al. 2010, Choi et  al. 2011). However, their percent 
abundance in the biomass could not be determined, due to 
the limitations of the method. To ensure an in-depth analysis 
of the microbial community, the most advanced molecular 
techniques, such as next-generation sequencing, should be 
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used that allow determining the percentages of all bacteria in 
the community even those that are present in low numbers, 
but can be of great importance for the process efficiency 
(Dubey et al. 2022). These advanced methods have not 
been used to investigate how modifying the anode with 
iron affects the relationships between organic degraders 
and electrogens in the anodic biofilm of MFCs fed with real 
VFAs.

Even though energy can be efficiently produced in 
MFC by using pure, quickly metabolized substrates such 
as glucose or acetate, the economic aspects of the process 
should be improved. Using complex waste substrates does 
not involve the costs associated with pure substrates and is 
in line with the assumptions of a circular economy. However, 
these substrates tend to reduce the efficiency and energy 
generation potential of the process. A potential means of 
offsetting these reductions is the use of modified anodes. 
It is also important to determine which microorganisms 
guarantee effective energy production under these 
conditions. So far no studies were presented on the use of 
VFA in MFC with MFC coated with iron oxide, none were 
the metabolism of VFA and microbial structure of anodic 
consortium analyzed to focus on how the substrates from 
waste VFAs are used in MFC and indicate the main players 
involved in the metabolism of real mixed organic compounds 
and energy generation. Therefore, the objectives of this 
study were to assess the possibility of using VFAs from the 
full-scale AD of primary sludge for electricity generation in 
an MFC with an iron-modified anode and to investigate the 
influence of iron on the microbial composition of the anodic 
biofilm and VFA removal.

This study was carried out in northeastern Poland from 
September 2021 to March 2022.

Materials and methods

MFC configuration

The tests were performed in two separate reactors made of 
transparent acrylic glass (Fig. 1). Each of them contained 
anode and cathode chambers (active volume 1 L), which 
were connected by a transverse, cylindrical conductor in 
which a Nafion N-117 proton exchange membrane (Alfa 
Aesar) was placed. The membrane area was 8.5  cm2. Before 
use, the membrane was rinsed for half an hour in acetone 
and then rinsed with distilled water, soaked in 1 M HCl 
for 30 min, and rinsed with distilled water. Due to mem-
brane clogging, once a week, the membrane was cleaned 
in 1 M HCl and rinsed with distilled water (for details, see 
Nosek and Cydzik-Kwiatkowska 2020). The electrodes were 
made of 10 × 10 cm carbon felt (CGT Carbon GmbH). The 
external electrical circuit was made of stainless steel wire 
and connected to a 4.7 kΩ resistor. The cathode chamber 
was filled with a catholyte containing 1.5 mg of NaCl and 
38 mL of phosphate buffer in 1 L of distilled water. The 
cathode chamber was continuously aerated with an airflow 
rate (20 mL/min).

Anode modification

The control reactor  (MFCcontrol) was operated with an 
unmodified anode (pure carbon felt). In the second reac-
tor  (MFCFe), an anode made of carbon felt was modified 
by the deposition of 0.05 g of iron (III) oxide (Chempur, 
Poland). For modification, a suspension containing 0.05 g 
of metal oxide and 100 mL of distilled water was prepared. 
The suspension was placed in an ultrasonic bath for 15 min, 
the carbon felt was immersed in the slurry and autoclaved 
(Prestige Medical, 1.1 bar, and 121 °C). After autoclaving 

Fig. 1  Scheme of the MFC 
rector
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for 1 h, the anode was dried at 80 °C. If it was determined 
that the iron deposition on the electrode was less than 95%, 
the procedure was repeated.

The degree of Fe deposition on the anode ( n ) was 
determined by measuring the Fe concentration using the 
Hach Lange LCK 320 cuvette test, and then subtracting the 
final concentration of Fe in the liquid (after deposition) from 
the initial concentration, according to the following formula 
(Eq. 1):

where Fe0 is the initial concentration of Fe, and Fe1 is 
the concentration of iron remaining in the liquid after 
deposition.

MFC operation

The anode chambers in both MFCs were inoculated with 
50 mL of anaerobic sludge from the digestion chambers 
of the “Łyna” wastewater treatment plant in Olsztyn 
(20°29’E 53°47’N). As a substrate, a mixture of volatile 
fatty acids (VFAs) from the digestion of primary sludge in 
the wastewater treatment plant was used. The VFA mixture 
was poured through a 2 mm sieve to remove large suspen-
sions and stored at 4 °C. The VFA mixture was character-
ized by 2298 mg COD/L; 788 mg  CH3COOH/L; 35.5 mg 
N-NH4/L. The VFA mixture was diluted to 400 mg COD/L 
and adjusted to pH 7 with 1 M HCl (anolyte). The anolyte 
was replaced daily and the volumetric exchange rate was 
50%. After a two-week acclimatization period of MFCs, 
the experiment was carried out for 18 cycles.

Physico‑chemical analyses

In samples taken from the anode chamber, the following 
values were determined: COD (dichromate method), VFA 
(direct distillation), N-NH4 (direct Nesslerization) according 
to APHA (1992), and pH and alkalinity (TitroLine, 
Donserv). The voltage produced in the MFC was measured 
with a multimeter (True-RMS). The 6600 Counts PC-LINK 
program was used to save the data; changes in the generated 
voltage were recorded every minute. The current intensity 
was calculated using Ohm’s law on the basis of the external 
resistance. The power curves were determined by changing 
the external resistance in the range of 0–27 000 Ω. The 
VFA composition was determined using a Varian CP-3800 
chromatograph (Bułkowska et  al. 2021). Spectroscopic 
characterization of the surface of pure carbon felt after 
sonication in the ultrasound batch and carbon felts modified 
with a dose of  Fe2O3 was performed using a Quanta FEG 

(1)n =
Fe0 − Fe1

Fe0
⋅ 100%

250 Scanning Electron Microscope (SEM/EDX, Quanta 
FEG 250, FEI).

Abiotic test of iron release

To monitor iron release from the carbon felt, a biomass-
free test was performed. For this purpose, an anode modi-
fied as described above was placed in a measuring vessel 
with a volume of 1 L. As a substrate, synthetic wastewater 
(Coelho et al. 2000) without iron was used; the pH was 
adjusted to match the pH of the VFA mixture. The meas-
uring vessel was sealed to maintain anaerobic conditions. 
The experiment was carried out for 18 cycles, in parallel to 
the operation of both MFCs used in the study. After each 
cycle, 0.5 L of wastewater was removed and replaced with 
fresh substrate. The iron content in the collected superna-
tant was determined using the Hach Lange LCK320 cuvette 
test using a Hach Lange DR 3900 spectrophotometer (Hach 
Lange, Germany).

Microbial analyses

FastDNA SPIN Kit for Soil (MP Biomedicals) was used to 
isolate DNA from inoculum and100 µg of biofilm scratched 
from the anodes at the end of the experiment. Isolations were 
performed in duplicate and DNAs from each repetition were 
mixed. The quality and quantity of the DNA were assessed 
using NanoDrop spectrometer (Thermo Scientific). For 
amplification of the DNA, a primer set 515F/806R (5’- GTG 
CCA GCMGCC GCG GTAA-3’/5’—GGA CTA CHVGGG 
TWT CTAAT-3’) targeting the hypervariable region (V4) of 
bacterial and archaeal 16S rDNA genes was used (Caporaso 
et al. 2011). The amplicons were sequenced at Research 
and Testing Laboratory (USA) using the MiSeq platform. 
The sequences were analyzed as described in Świątczak 
and Cydzik-Kwiatkowska (2018). The raw sequences were 
deposited in the NCBI Sequence Read Archive (SRA) as 
BioProject PRJNA834909.

Statistical analyses

For statistical analysis, Statistica (13.3, StatSoft) was used. 
For the analysis of COD and  NH4-N, results from the whole 
experimental period were taken. The voltages were analyzed 
for the seven cycles obtained during the experiment. For 
analysis of variance, one-way ANOVA was used followed 
by Tukey’s test (HSD). Molecular data were analyzed using 
MicrobiomeAnalyst (Dharival et  al. 2017, Chong et  al. 
2020). The number of reads was not normalized, because 
in the complex microbial communities, bacteria with a low 
abundance may be of great importance (McMurdie and 
Holmes 2014).
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The Shannon index of diversity is calculated according 
to the formula (Eq. 2):

where p—the proportion of the entire community made 
up of species. ln(p)—natural logarithm from p (Shannon 
1948).

(2)H = −
∑

(p ⋅ ln(p))

Results and discussion

Abiotic test of iron release

The amount of iron deposited on the anode was 50 mg 
 Fe2O3, which corresponds to 34.9 mg of iron. The iron 
release test carried out without the presence of biofilm on 
the anode showed that only divalent iron was present in 
the effluent, which indicates the reducing conditions in the 
measuring vessel. The total amount of iron released from 
the electrode and removed with wastewater after 18 cycles 
was 2.46 mg Fe. It means that after the experiment, 7.05% 
of all iron that was used for the anode modification was 
removed. However, it should be noted that the calculated 
amount of iron removed is only an estimate, as the amount 
of iron released from the abiotic anode may differ from that 
released from the inhabited anode.

Electricity generation

The deposition of iron (III) oxide on the carbon felt was 
verified with an electron microscope. Both SEM (Fig. 1 SM) 
images and EDS analyses (Fig. 2SM) showed that iron oxide 
was successfully and regularly deposited on the electrode. 
The degree of iron deposition on the electrode was 99.1%.

In both MFCs, the voltage surges were observed at 
the beginning of each new cycle (Fig.  2) to on aver-
age 150 ± 68 mV and 226 ± 32 mV in the  MFCcontrol and 
 MFCFe, respectively. In the  MFCcontrol, the voltage gradually 
decreased to about 57 ± 39 mV after 5 h. In this reactor, a 
less stable generation of electricity was observed, as evi-
denced by the standard deviations. The average value of the 

Fig. 2  The averaged voltages that were recorded during the cycle in 
a  MFCcontrol and b  MFCFe (average from the last seven cycles of the 
experiment). Vertical whiskers represent the standard deviation of the 
mean (n = 7)

Fig. 3  Power curves for a 
 MFCcontrol and b  MFCFe and 
polarization curves for c 
 MFCcontol and d  MFCFe
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output voltage from the cell for all cycles was 52 ± 20 mV. In 
 MFCFe, the voltage decreased gradually for about 10 h and 
then stabilized at about 40–50 mV. The average value of the 
voltage in the  MFCFe was 75 ± 41 mV. The voltages recorded 
in the  MFCFe were significantly higher (ANOVA–Tukey’s 
HSD post hoc test, p = 0.0006) than in the  MFCcontrol 
(Fig. 3SM). The presence of iron on the anode not only 
improved electricity generation but also resulted in a more 
stable reactor operation in comparison with  MFCcontrol as 
can be concluded from the standard deviations. The pre-
vious study has shown that in the presence of Fe ions on 
the surface of the anode,  Fe3C is formed, which promotes 
the adsorption of flavin (Sun et al. 2022). Flavins mediate 
electron transfer between the substrate and cells. The direct 
contact of flavin with cell membrane proteins results in a 
strong direct electron transfer that stimulates mediation and 
direct electrochemical processes. This positive effect of iron 
is also observed for complex chemical compounds contain-
ing iron. The use of  MgFe2O4 as a modifier of stainless steel 
anode in MFC designed to remove Congo red allowed to 
obtain 20% higher voltages than in the control reactor with 
the unmodified anode (Khan et al. 2021).

The power and polarization curves were determined 
in the stable period of operation of the MFCs (the fourth 
cycle of voltage measurements). Polarization curves were 
determined by changing the external resistance in the MFC 
and registering the voltage generated by the cell. Based on 
Ohm’s law, the maximum power of the cell was obtained. In 
 MFCcontrol, the maximum power was nearly four times lower 
(Fig. 3a) than the power obtained in the  MFCFe (Fig. 3b). 
The positive effect of modification of anode with iron 
was also observed in the studies by Sayed et al. (2020) in 
which wastewater containing 700 mg COD/L was used as a 
substrate. In the case of a cell with an unmodified anode, a 
power density of 40 mW/m2 and a current density of 71 mA/
m2 were obtained. After the anode was modified with iron, 
the power density and the current density doubled.

In our study, the low power densities can be related to 
the high internal resistances of the MFCs. The internal 
resistance of the  MFCFe was 7088.4 Ω (Fig. 3d) and was 
1.25 times higher than in  MFCcontrol (Fig.  3c). Internal 
resistance consists of ohmic losses, activation losses, 
bacterial metabolic losses, and concentration losses (Logan 
et al. 2006). A previous study on the effect of iron on the 
ohmic resistance of MFC has shown that the addition of 
4.5 and 9.0 g  Fe3O4/L of the substrate fed to MFC reduced 
the ohmic resistance 1.50 and 1.08 times, compared to the 
control. On the other hand, at the dose of 18.0 g/L, the 
resistance was increased because the excess iron negatively 
affected the adhesion of electrogens (Zheng et al. 2022). 

Nevertheless, in our research, the  MFCFe obtained higher 
power despite the higher internal resistance.

In general, the use of VFAs produced during fermentation 
increases the conductivity of the anolyte, which resulted in a 
reduction in the resistance of ion flow through the membrane 
and the flow of electrons through the anolyte (Raychaudhuri 
and Behera 2021). However, an important operating 
parameter of the MFC is also the concentration of the 
organics in the reactor. Our previous study has shown that 
high organic loadings favor membrane clogging and thus 
obstruct MFC operation (Nosek and Cydzik-Kwiatkowska 
2020). Therefore, in our study, the concentration of COD in 
the MFC at the beginning of the cycle was low and averaged 
0.26 ± 0.017  g COD/L. This allowed stable electricity 
generation without the necessity of often membrane 
cleaning. This low concentration caused, however, that 
the electricity obtained in MFCs was lower than in other 
studies. Chatzikonstantinou et al. (2018) tested the use of 
food residue biomass in the dual-chamber MFC by applying 
concentrations of organics as high as 14.0 g COD/L. The 
highest power density of 29.6 mW/m2 and the corresponding 
current density of 88 mA/m2 were observed for 6 g COD/L.

COD, VFA, and ammonium removal

COD concentrations in the MFC effluents fluctuated in the 
initial period of operation, reaching about 170 and 230 mg/L 
in  MFCcontrol and  MFCFe, respectively. During the period of 
stable operation of the MFCs, the concentration of COD in 
the outflow ranged from 100 to 140 mg/L and the average 
COD removal efficiency was 54.3 ± 9.8% and 48.8 ± 9.5% 
for  MFCcontrol and  MFCFe, respectively. No significant 
differences were observed in COD removal efficiency 
between the reactors (Fig. 4SM). The mean concentrations 
of ammonium in the outflow were 5.4 ± 0.8% and 4.4 ± 0.8% 
for  MFCcontrol and  MFCFe, respectively. The ammonium 
concentrations in the  MFCFe outflow were significantly 
lower (ANOVA–Tukey’s HSD post hoc test, p = 0.0025) 
than in the  MFCcontrol showing a positive effect of iron 
presence on the ammonium metabolism (Fig. 5SM). In 
anaerobic environments, in the  presence of Fe(III),  NH4

+ 
is an electron donor and is oxidized to  NO2

− by reduction in 
Fe(III) to Fe(II) according to the formula (Huang and Jaffé, 
2015) (Eq. 3).

(3)
3Fe2O3 ⋅ 0.5H2O + 10H+ + NH+

4

→ 6Fe2+ + 8.5H2O + NO−
2
(

ΔGr ≤ 145.08 kJ∕mol
)
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Zhu et  al. (2022) tested the effect of five Fe (III) 
compounds  (Fe2O3,  Fe3O4, Fe(OH)3, Fe-citrate, and 
pyrite) on the anaerobic ammonium oxidation. The highest 
improvement in ammonium removal efficiency was observed 
after the addition of 20 mM  Fe2O3—the effluent ammonium 
concentration dropped drastically from 104.79 mg/L to 
52.3 mg/L.

The VFA removal efficiency in both reactors was 
similar and remained at the level of 60.4 ± 16.9% and 
50.2 ± 26.3%, in  MFCcontrol and  MFCFe, respectively. Anal-
ysis of the VFA profile in the inflow and outflow of the 
MFCs revealed that propionic acid was the major compo-
nent (Fig. 4). Its share in anolyte and  MFCFe outflow was 
60–65%, while in the outflow from  MFCcontrol, its share 
reached 80%. In the raw wastewater, a high proportion of 
iso-caproic and enanthic acids (15 and 14%, respectively) 
was observed, but in the MFC outflows, the proportion 

of these acids decreased to below 5%. The outflow from 
 MFCFe showed a higher share of valeric acid (26%) com-
pared to the outflow from  MFCcontrol. In earlier studies 
regarding the fermentation of waste activated sludge, 
along with the increase in the dose of nano-zero valent 
iron in the feed in fermentation reactors, the share of indi-
vidual acids in the production of VFA increased, while in 
the control reactor, acetic acid predominated (98%) (Luo 

Fig. 4  VFA profile of anolyte 
added to MFCs and in the MFC 
effluents. Vertical whiskers 
represent the standard deviation 
of the mean (n = 2)
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Fig. 5  Relative abundance of 
particular bacterial orders in the 
inoculum and anodic biofilm 
obtained from the MFCs

Table 1  Alpha diversity indicators in all tested MFC reactors; OUT–
Operational Taxonomic Unit, Shannon–biodiversity index

OTU Shannon Number of reads

Inoculum 106 2.21 20,963
MFCcontrol 183 3.18 21,371
MFCFe 117 2.42 20,336
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et al. 2014). Our study confirms the positive effect of Fe on 
the synthesis of medium-chain length VFAs also in MFC 
reactors. The effluent from MFC reactors with Fe-modified 
anodes can be a valuable source of carbon for crucial pro-
cesses in biological wastewater treatment. For example, 
Janczukowicz et al. (2013) reported that propionic acid 
and valeric acid can be effectively used for denitrifications 
of high concentrations of nitrates from wastewater (over 
90% efficiency with an initial concentration of 15.2 mg/L). 
On the other hand, the efficiency of phosphorus removal 
was lower when propionic and valeric acids were used 
than when acetic acid was used. Propionic and valeric 
acids present in MFC effluent can be converted during 
fermentation to produce polyhydroxyvalerate (PHV) poly-
mer (Carvalheira and Duque 2021).

Biofilm analyses

The anode biofilm from MFCs was subjected to molecular 
analysis. The total number of readings per both MFC 
samples and inoculum was over 20 000 (Tab. 1). The 
numbers of OTU and Shannon index indicate that anode 
modification with Fe lowered the diversity of anodic 
biofilm by over 20% in comparison with  MFCcontrol. 
Similar results were obtained in studies, in which Fe 
(II) was directly added to the feed introduced to MFC 
reactors. The presence of 100  µM and 200  µM Fe in 
the anolyte decreased the Shannon index to 3.72, 4.71 
in comparison with 5.21 observed in the control MFC 
(Liu et al. 2017). The lower microbial diversity in the 
 MFCFe biofilm may result from the fact that the presence 
of iron particles could be toxic to some microorganisms. 
The toxicity of metal oxides was recently described in 
a review by Niño-Martínez et al. (2019). The authors 
indicated that metals and metal oxides with small particle 
size showed greater antimicrobial activity and that their 
toxicity may result from both the electrostatic attraction 
of negatively charged pathogens and positively charged 
nanoparticles and the release of ions that are toxic to 
bacteria (Niño-Martínez et al. 2019). Apparently, in the 
present study, the interactions between the iron(III) oxide 
particles and microorganisms inhabiting the anode caused 
some of the microorganisms to disappear from the biofilm 
as a result of community adaptation.

In the inoculum, unclassified bacteria had the 
largest share (38%), followed by Methanobacteriales 
(9%) and Burkholderiales (9%). At the genus level, 
Methanobacterium sp. (9%), Hydrogenophaga sp. (9%), 
Candidatus Cloacimonas acidaminovorans (7%), and 

Metanosaeta sp. (3%) were most abundant, but all these 
microorganisms disappeared from the anodic biofilm 
during the experiment. At the anodes in both MFCs, 
at the end of the study, the most abundant group of 
microorganisms at the class level were Betaproteobacteria, 
including Burkholderiales (24% in  MFCcontrol and 
47% in  MFCFe), and Gammaproteobacteria, including 
Pseudomonadales (12% in  MFCcontrol and 27% in  MFCFe) 
(Fig. 5).

The presence of iron on the anode positively affected 
the abundance of Burkholderiales and Pseudomonadales 
in the microbiome, which was about two times higher 
in the  MFCFe than in the  MFCcontrol (Fig. 5). The higher 
abundance of Burkholderiales in  MFCFe could be due to the 
fact that some species of this order are metal persistent and 
participate in the biotransformation of metal oxides (e.g., 
Fe and Mn) and support biocorrosion (Beech and Gaylarde 
1999). On the other hand, the results showed the sensitivity 
of Rhodocyclales and Clostridiales to the presence of Fe, 
because the share of those bacteria in  MFCFe was 10 and 5 
times lower, respectively, than in the control.

The most numerous genus in anodic biofilms was Aci-
dovorax followed by Pseudomonas and Acinetobacter 

Fig. 6  Heatmap showing 26 of the most numerous genera in the inoc-
ulum and anodic biofilms from the investigated MFCs
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(Fig. 6). Acinetobacter sp. presence was not affected by 
the presence of Fe on the anode and remains at about 8%, 
but the abundance of the other two genera was higher on 
Fe-modified anodes. Acidovorax sp. could utilize differ-
ent carbon sources such as ethanol, methanol, glucose, or 
sodium acetate (Nalcaci et al. 2011), and it was observed 
on biocathodes in MFCs (Sun et al. 2012). Members of 
the genus Acidovorax are facultative microorganisms, 
that reduce nitrate and oxidize iron most likely indirectly 
through the reactive nitrogen species produced during 
the denitrification process (Klueglein et al. 2015). The 
study on native rock samples indicated that there was a 
strong correlation between the abundance of Acidovorax 
sp. and Fe-containing pyrite. Acidovorax sp. colonies 
were attached to the rock samples and single cells were 
surrounded by exopolysaccharides containing ferric iron 
which may have enhanced the bio-oxidation of metallic 
sulfides (Escudero et al. 2020). Members of Pseudomonas 
sp. are also able to reduce Fe(III) and were proven to 
effectively utilize various hexose and pentose sugars 
through anode respiration (Ali et al. 2017). Both the abil-
ity to utilize various organics and preference toward Fe 
in the environment decided that in the present study, Aci-
dovorax sp. and Pseudomonas sp. abundances increased 
twice in MCF with the Fe-modified anode. In the case of 
Acidovorax sp., it caused that they constituted nearly half 
of all bacteria in the biofilm on the Fe-modified anode. 
Members of Pseudomonas sp. hydrolyze sugars and gen-
erate VFAs. Previous studies in digesters indicate that the 
growth of Pseudomonas sp. in biomass was stimulated by 
the presence of peroxydisulfate and Fe(II) or zero valent 
iron (Luo et al. 2020).

The presence of iron on the anode significantly 
increased the number of microorganisms belonging to the 
genera Brevundimonas, Geothrix, and Leucobacter zeae. 
The increased presence of Geothrix sp. is advantageous 
for electricity generation because members of Geothrix 
sp. can secrete redox-active electron shuttles with separate 
redox potentials of − 0.2 V and 0.3 V. The compound with 
the lower midpoint potential was identified as riboflavin 
and it was responsible for 20 to 30% of electron transfer 
activity in MFC (Mehta-Kolte and Bond 2012). Better 
conditions for growth for Geothrix sp. on iron-modified 
anode can be also explained by the fact that they use iron 
in their metabolism. Coates et al. (1999) indicated that 
Geothrix fermentans was able to grow with VFA such 
as acetate, lactate, propionate, or fumarate as alternative 
electron donors using Fe(III) as the acceptor of electron 
and oxidized long-chain FA using Fe(III) as the sole 
electron acceptor. Brevundimonas sp. is a facultative 

anaerobic bacterium whose presence has been reported 
on the biocathode in the presence of Cr(VI) (Romo et al. 
2019), but its role in MFC has not yet been elucidated. 
However, a positive effect of iron on selected metabolic 
changes in Brevundimonas sp. was observed. In some 
Brevundimonas strains, the efficiency of  H2 production 
from sugars increased in the reactor to which Fe(II) was 
dosed (Bao et al. 2013).

The abundance of Zoogloea sp. (Rhodocyclales order) 
decreased significantly in MFC with the iron-modified 
anode to below 0.3% in comparison with 9.14% in the 
control MFC. Earlier studies indicate that in aerobic 
conditions, Zoogloea sp. may be abundant in biomass 
despite high iron concentrations in the environment. For 
example, in the aerobic granules from the reactor operated 
at the Fe concentration in the wastewater at the level of 
6 mg Fe(III)/L, Zoogloea sp. accounted for nearly 70% of 
all bacteria (Zou et al. 2021). In our research, the decrease 
in the share of Zoogloea sp. w MFC with modified 
anode indicates that this genus lost in competition with 
facultative, Fe-oxidizing bacteria that predominated in 
the biofilm.

Conclusion

In this study, waste VFA from the fermentation of primary 
sludge was used in MFC with an iron-modified anode 
for electricity generation and the structure of the anode 
microbiome was determined. The study showed that the 
power obtained from  MFCFe was 3.6 times higher than 
in  MFCcontrol, and the efficiency of COD removal was 
50%. The main VFA components in the MFC outflows 
were propionic acid; a high proportion of valeric acid 
was observed in the outflow from  MFCFe. The presence 
of iron on the anode promoted the presence of electrogens 
such as Pseudomonas sp. and Geothrix sp. and VFA 
degrades such as Acidovorax sp. Moreover, the proportion 
of Brevundimonas sp. and Leucobacter sp. in  MFCFe 
was significantly higher than in  MFCcontrol. However, in 
 MFCFe, Zoogloea sp. was replaced by other iron-reducing 
microorganisms. Research indicates that waste VFA 
can be effectively used to produce electricity, and the 
confluence of MFC with AD may give good results in 
bioenergy in the future.
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