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Abstract
In present work, the hydrodynamic studies and determination of oxygen mass transfer coefficients (KLa) were conducted in a 
multistage flexible fibre biofilm reactor developed for treating milk processing wastewater. In this regard, the residence time 
distributions in the MS-FFBR under various operating conditions as water flow rates, airflow rates, and hydraulic retention 
times were analysed using tracer experiments. The results revealed that the reactor’s hydraulic regime is similar to a continu-
ous stirred tank reactor. Furthermore, the multistage flexible fibre biofilm reactor exhibited a lower oxygen mass transfer 
coefficient (KLa of 11.955 1/h at AFR/WFR of 47) than that reported for continuous stirred tank reactor in the literature at 
similar WFRs and AFRs (KLa of 15 1/h at AFR/WFR of 40). From the results, dissolved oxygen transfer was hindered to 
some extent owing to the presence of the fibre packing.
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Introduction

The management and treatment of industrial wastewaters 
containing high organic contents is a major environmental 
challenge. For example, milk processing wastewater (MPW) 
contains high amounts of organic matter, nutrients, solids, 
and detergents originated from sanitization and cleaning pro-
cesses (Liu and Haynes 2010; Andrade et al. 2014; Rahimi 
et al. 2016). The release of such wastewaters without proper 

treatment into the receiving water sources causes deteriora-
tive effects like eutrophication phenomenon, oxygen deple-
tion, and ammonia toxicity (Buabeng-Baidoo et al. 2017). 
Therefore, the treatment of MPW is of great significance 
to reduce its adverse effects on human life and the environ-
ment. Various biological treatment technologies that were 
recently employed for the treatment of such a high strength 
wastewater (Rezaee et al. 2015; Asadi et al. 2016; Rahimi 
et al. 2016; Abdulgader et al. 2019, 2020a; b). Some of the 
high rate biological treatment technologies applied to treat 
the high strength wastewaters include up-flow anaerobic, 
anoxic and oxic (A2O) bioreactor; up-flow aerobic–anoxic 
flocculated sludge bioreactor (UAASB); up-flow aerobic/
anoxic sludge bed (UAASB) bioreactor; and hybrid airlift 
bioreactor (HALBR) (Asadi et al. 2012; Amini et al. 2013; 
Abyar et al. 2018; Mirghorayshi et al. 2021).

Overall, aerobic biological treatment technology could be 
made more cost-effective by reducing the energy consumption 
in aeration processes (Longo et al. 2016). In this aspect, the 
oxygen mass transfer from the gas phase into the liquid phase 
as well as the flow hydrodynamics plays significant roles in the 
efficient performance of aerobic biological wastewater treat-
ment systems (Chen et al. 2009). Due to the importance of 
these factors, much effort has been dedicated to the study of 
hydrodynamic and the determination of oxygen mass transfer 
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coefficients in various biological systems (Chen et al. 2009; 
Luo et al. 2011; Lei and Ni 2014; Dias et al. 2018).

Biofilm reactors or attached growth systems are known 
as cost-effective systems and hence are increasingly used in 
industrial wastewater treatment processes. For instance, sub-
merged aerated filters, moving bed biofilm reactors, integrated 
fixed-film activated sludge and flexible fibre biofilm reactors 
are some of the biofilm reactors utilized in wastewater treat-
ment (Rusten et al. 1992; Malovanyy et al. 2015; Abdulgader 
et al. 2020a). Biofilm reactors support and allow microorgan-
isms to grow on carrier media, thereby, promote high biomass 
retention, prevent washout, and enhance the development of 
slow-growing bacteria. Furthermore, attached growth systems 
maximize the loading capacity and treatment efficiency when 
compared to the activated sludge process (ASP) at decreased 
footprints (McQuarrie and Boltz 2011).

Compared to other biofilm reactors, flexible fibre biofilm 
reactor (FFBR) has further advantages such as lower capital 
costs, higher resistance towards organic loading shocks and 
biofilm clogging, and easier control of effluent quality (Chen 
et al. 2009). Therefore, the FFBR has been employed exten-
sively to treat high strength food processing wastewaters (Yu 
et al. 2003; Abdulgader et al. 2009, 2020a, b). Recently, we 
investigated the functionality of the FFBR in various con-
figurations as single-stage flexible fibre biofilm reactor (SS-
FFBR), sequencing batch flexible fibre biofilm reactor (SB-
FFBR), multistage flexible fibre biofilm reactor (MS-FFBR) 
for treating the milk processing wastewater under different 
operating and process conditions (Abdulgader et al. 2019, 
2020a, 2021; b).

The evaluation of hydrodynamics and determination of oxy-
gen mass transfer coefficient in a single-stage FFBR has been 
carried out (Chen et al. 2009). In this research, hydrodynamic 
behaviour was studied to determine oxygen mass transfer 
coefficient in a multistage flexible fibre biofilm reactor (MS-
FFBR). The effects of three operating parameters, hydraulic 
retention time (HRT), airflow rate (AFR, QG) and water flow 
rate (WFR, QL) were studied to investigate the hydrodynamics 
and oxygen transfer efficiency. Tracer experiments were also 
carried out to determine mean residence time distribution in 
the MS-FFBR. This study was conducted in January 2010 at 
Griffith University, Australia.

Materials and methods

Bioreactor description

In this research, a laboratory-scale multistage flexible fibre 
biofilm reactor was made of acrylic (Perspex) with thickness 
and dimensions of 6 mm and 500 * 125 * 650 mm, respectively, 
for the treatment of the actual milk processing wastewater. The 
characteristics of the wastewater used are given in our previ-
ously published paper (Abdulgader et al. 2020a). The reac-
tor was divided into four compartments (stages) with equal 
sizes by means of baffles. The total and working volumes of 
the reactor were 40.6 and 32 L, respectively. The oxygen was 
introduced into the reactor using two identical air diffusers 
for the supply of required dissolved oxygen (DO) levels and 
adequate mixing. The airflow rate (AFR) was monitored in situ 
with airflow meters. The reactor was followed by a cylindrical-
shaped settling tank in order to settle suspended solids (SS) 
washed out from the reactor and get a clear effluent. The total 
volume of the settling tank was 12.5 L. A schematic diagram 
of the experimental apparatus is delineated in Fig. 1. A seven-
flexible fibre bundle was placed in all four compartments of 
the reactor. Details regarding the characteristics of the flexible 
fibre used in this research can be found elsewhere (Abdulgader 
et al. 2019).

Residence time distribution

The residence time distribution was determined using tracer 
tests. The tracer test is commonly conducted to investigate the 
hydraulic performance of bioreactors. This test is usually done 
by pulse input or C-curve and F-curve inputs.

In the C-curve test, to evaluate and understand the hydrau-
lic characteristics of multiple reactors in series, a tracer was 
instantaneously introduced in the first stage of the reactor. The 
experiment was conducted at hydraulic retention times (HRTs) 
of 2, 4 and 8 h, corresponding to water flow rates (WFRs, QL) 
of 271, 135, and 68 mL/min, respectively. In addition, the air-
flow rate (AFR, QG) was controlled at 564, 270, and 135 mL/
min at HRTs of 2, 4, and 8 h, respectively. Based on predeter-
mined values of AFRs and HRTs, the ratio of the airflow rate 
to water flow rate (AFR/WFR) was kept 2 in all experiments. 
A solution of food dyes was pulsed into the influent stream as 
a tracer. For a completely mixed reactor in series, the theoreti-
cal mean residence time was calculated using the following 
equation (Levenspiel 1999; Metcalf 2003):

Fig. 1   a Construction details of MS-FFBR; b schematic diagram of 
MS-FFBR experimental setup; and c schematic diagram (left) and 
experimental setup (right) of settling tank designed in this study

◂
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where E(t) is the residence time distribution in one reactor, 
�i =  t

Nti
 is mean residence time in the N reactor, �  is theoreti-

cal hydraulic residence time, and N is the number of 
reactors.

In the F-curve test, a dye solution as tracer with initial 
concentration of C0 was continuously injected to the reac-
tor. This test was conducted at constant AFR of 807 mL/
min and HRTs of 4 and 8 h corresponding to the AFR/WFR 
ratios of 6 and 11.8, respectively. The tracer response curve 
is determined as C/C0. It should be noted that the theoretical 
mean residence time can be obtained from the F-curve by 
integrating Eq. 1.

The reactor was free of any suspended materials such as 
microorganisms during tracer experiments. The dye con-
centration of effluent samples was measured by using an 
absorbance of UV–Vis spectrophotometer at a wavelength 
of 629 µm (Shimadzu Corporation, UV 1601).

Determination of oxygen mass transfer coefficient

To estimate the capability of dissolved oxygen mass transfer 
into the bulk water phase in the MS-FFBR, the oxygen mass 
transfer coefficient (KLa) was measured by using clean tap 
water. The oxygen transfer rate was determined by direct 
measurement of the rate of the increase in the dissolved oxy-
gen (DO) concentration in the reactor. Then, the DO con-
centration was decreased by passing pure nitrogen gas into a 
mixer equipped wastewater tank to nearly zero. The reactor 
was aerated through the air sparger mounted at the bottom 
of the reactor. Simultaneously, water was introduced into 
the reactor by a peristaltic pump at water flow rate (WFR, 
QL) of 1.0178 L/h and HRT of 8 h. The experiments were 
conducted at airflow rates (AFRs, QG) of 15, 48.2, 94.5, 
142.4, 190, and 239.8 L/h, which corresponded to the AFR/
WFR ratios of 15, 47, 93, 140, 187, and 235, respectively. 
The dissolved oxygen (DO) concentration in the reactor was 
recorded with a DO meter at intervals of every 20 s. The 
oxygen mass transfer coefficient was quantified by the equa-
tion below (Amaral et al. 2008).

where KLa is the overall mass transfer coefficient (1/h), Cs 
is dissolved oxygen saturation concentration at the test tem-
perature (20 °C) and pressure (1.01325 × 105 Pa) (mg/L), C 
is DO concentration at time t (mg/L), t0 is initial time (h), t 
is time (h), and QL and V are the water flow rate (m3/h) and 
the volume of the reactor (m3), respectively.

(1)E(t) =
tn−1

(n − 1)�n
i⋅

e−�i

(2)In
C
s
− C

0

C
s
− C

=

(

Q
L

V
+ K

L
a

)

(

t − t
0

)

This experiment was conducted at a water flow rate 
(WFR, QL) of 1.0178 L/h and a reactor volume of 8 L. 
Hence, the value of QL/V was 0.127, which was much less 
than KLa. Therefore, Eq. 2 can be simplified to the follow-
ing equation:

Plot of t−t0 versus ln (Cs−C0)/(Cs−C) was drawn for the 
FFBR to obtain an overall oxygen mass transfer coefficient, 
KLa, at different ratios of AFR/WFR. To determine the rela-
tionship between AFR/WFR ratio and the value of KLa, a 
correction coefficient was considered.

Results and discussion

Distribution of hydraulic retention time 
in the MS‑FFBR

In the C-curve method, a tracer was instantaneously added 
into the first stage of the reactor and the tracer concentra-
tion in the effluent was measured as a function of time. All 
the experimental results and theoretical data obtained from 
C-curve test are shown in Tables S1-3 (Supporting informa-
tion). Figure 2 illustrates the experimental and theoretical 
results for the MS-FFBR (the whole bioreactor) as a func-
tion of time at HRT of 2, 4, and 8 h, respectively. The data 
showed almost complete tracer recovery at all conditions 
studied. The experimental data obtained at various HRTs 
are in close agreement with those achieved for completely 
mixed flow reactors. In addition, the data of the distribu-
tion of hydraulic retention time in the MS-FFBR were simi-
lar at various HRTs. Hence, HRT was not affected by the 
flexible fibre packing in the MS-FFBR, and in practice, the 
concerned reactor can be considered as a continuous stirred 
tank reactor (CSTR). The results of this work are in agree-
ment with those reported by Yu et al. (2003), while Dias 
et al. (2018) in their study concluded the presence of packing 
media indicated a positive impact on the reactor effective 
volume.

The experimental data or calculated theoretical data 
achieved from F-curve are listed in Tables S4-6 (Support-
ing information). Moreover, Fig. 3 displays F-curve experi-
mental and computed data at HRTs of 2, 4 and 8 h for the 
whole reactor. As can be seen from Fig. 3, the actual and 
theoretical data reported at HRT of 2 h are in close agree-
ment. In contrast, the results at HRTs of 4 and 8 h exhibited 
some deviations. This was attributed to the insufficient spar-
ging energy resulting from the airflow rate applied, so that 
the portions of the reactor contents may be unmixed with 
the incoming water with dead zones being developed inside 

(3)In
C
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− C

0

C
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= K
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the reactor (Levenspiel 1999; Metcalf 2003). Therefore, the 
HRT slightly affected the residence time distribution of the 
bioreactor. However, the flexible fibre packing media located 
in the centre of the individual reactor stages had no impact 
on the regime and the reactor can be consider to act as a 
completely mixed reactor. The results of this study are in 
agreement with literature data (Plascencia-Jatomea et al. 
2015). The calibration curve for the tracer experiments is 
shown in Figure S1 (Supporting information).

Oxygen mass transfer coefficient

The oxygen mass transfer coefficient (KLa) is one of the 
most important parameters in aerobic bioreactors. It depends 
on various factors such as geometrical and operational 

characteristics of the reactor, media composition, and micro-
organisms present (Amaral et al. 2008). The data obtained 
from this experiment and the calculated data for the esti-
mated mass transfer coefficients are given in Tables S6-11 
(Supporting information). Figure 4 shows the regression 
plots used to determine dissolved oxygen mass transfer 
coefficients.

The KLa values of MS-FFBR at various AFR/WFR ratios 
are given and graphically presented in Table 1 and Fig. 5, 
respectively. The results clearly show that the KLa notably 
increased with increasing the AFR/WFR ratio. The correla-
tion equation acquired for the MS-FFBR is as follows:

K
L
a = K

L
a = 0.1533 AFR/WFR + 3.77
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Fig. 2   Residence time distribution of C-curve for four compartments in series at various HRTs of a 2 h; b 4 h; and c 8 h
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The values of oxygen mass transfer coefficients obtained 
from the MS-FFBR (KLa of 11.955 1/h at AFR/WFR of 47) 
were lower than those reported by Chen et al. (KLa of 15 1/h 
at AFR/WFR of 40) (Chen et al. 2009). On the other hand, 
these values were higher than those achieved by Rodgers 
et al. in a vertically moving biofilm system used for indus-
trial wastewater treatment (Rodgers et al. 2004). In a study 
conducted by Wutz et al. (2016), KLa of around 4.3 1/h was 
reported at AFR of 20 L/h in stirred tank reactors (Wutz 
et al. 2016). In another research, the KLa value was obtained 

to be 20 1/h at 70 rpm in a spin filter bioreactor (Niño-
López and Gelves-Zambrano 2015). Salehpour et al. (2019) 
achieved the maximum KLa of 0.031 1/s in an airlift reactor 
(ALR) with a net draft tube (NDT).

In the MS-FFBR, the oxygen mass transfer coefficient 
seemed to be less sensitive to variations in the AFR/WFR 
ratio. Hence, the existence of flexible fibre packing may slow 
down the oxygen mass transfer rate. This may be attributed to 
the interference caused by the flexible fibre on the distribu-
tion of the air bubbles within the individual compartments 
of the reactor. It can be said that the capacities of the oxygen 
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Fig. 3   Residence time distribution of F-curve for four compartments in series at various HRTs of a 2 h; b 4 h; and c 8 h



12423International Journal of Environmental Science and Technology (2023) 20:12417–12426	

1 3

(a) (b)

(c) (d)

(e) (f)

y = 4.6217x
R2 = 0.9951

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.02 0.04 0.06 0.08 0.1
t-to (h)

ln
 C

s-C
o)

/(C
s-C

)

y = 11.955x
R2 = 0.995

0

0.2

0.4

0.6

0.8

1

1.2

0 0.02 0.04 0.06 0.08 0.1

t-to (h)

ln
(C

s-C
o)

/(C
s -C

)
y = 19.451x
R2 = 0.9975

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.02 0.04 0.06 0.08 0.1

t-to(h)

ln
 (C

s-C
o )

/(C
s-C

)

y = 26.686x
R2 = 0.9921

0

0.5

1

1.5

2

2.5

0 0.02 0.04 0.06 0.08 0.1
t-to (h)

ln
(C

s-C
o)/

(C
s-C

)

y = 31.448x
R2 = 0.9907

0

0.5

1

1.5

2

2.5

3

0 0.02 0.04 0.06 0.08 0.1
t-to (h)

ln
(C

s -
C

o)
/(C

s-C
)

y = 40.608x
R2 = 0.9746

0

0.5

1

1.5

2

2.5

3

3.5

0 0.02 0.04 0.06 0.08 0.1
to-to(h)

ln
(C

s-C
o)

/(C
s-

C
)

Fig. 4   Regression plots used for determination of oxygen mass transfer coefficient at various AFR/WFR of a 14.4; b; 47.5 c 93; d 140; e 187; 
and f 235



12424	 International Journal of Environmental Science and Technology (2023) 20:12417–12426

1 3

mass transfer in the MS-FFBR are similar to those previously 
reported for a single-stage FFBR (Chen et al. 2009). Other 
studies showed a positive effect of media on oxygen mass 
transfer (Dias et al. 2018). However, KLa values reported by 
Salehpour et al. and Yazdian et al. are much higher than those 
of values reported in this study, which may be due to differ-
ences in the configuration of reactors (Yazdian et al. 2010; 
Salehpour et al. 2019).

Conclusion

The residence time distribution of MS-FFBR developed to 
treat milk processing wastewater (MPW) has been evaluated 
at various HRTs using tracer experiments. The results of 
experiments revealed that the residence time distributions 
in the MS-FFBR were very close to the theoretical values of 

the C-curve and also F-curve especially at 2 h HRT. There-
fore, it can be concluded that the flow regime is not affected 
by the flexible fibre as packing media, and the reactor can be 
described as a CSTR. In this study, KLa values were lower 
(KLa of 11.955 at AFR/WFR of 47) in comparison with 
those obtained from the literature (KLa of 15 at AFR/WFR 
of 40). As a conclusion, the presence of packing media may 
reduce the oxygen mass transfer coefficient due to their inter-
ference on the distribution of the air bubbles.
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