
Vol.:(0123456789)1 3

International Journal of Environmental Science and Technology (2023) 20:2487–2502 
https://doi.org/10.1007/s13762-023-04756-5

ORIGINAL PAPER

Water quality assessment of the Nam River, Korea, using multivariate 
statistical analysis and WQI

H. G. Kwon1  · C. D. Jo1

Received: 27 January 2022 / Revised: 17 July 2022 / Accepted: 2 January 2023 / Published online: 7 January 2023 
© The Author(s) 2023

Abstract
Water quality assessment using water quality index (WQI) is performed based on major variables reflecting the river charac‑
teristics. We evaluated the water quality of tributaries of the Nam River in South Korea. We analyzed the tributaries spatial 
characteristics using cluster analyses and selected the main water quality variables (Cluster 1: chemical oxygen demand 
[COD], total organic carbon [TOC], total nitrogen, and total phosphorus; Cluster 2: water temperature [WT], dissolved oxy‑
gen [DO], COD, and TOC; Cluster 3: WT, DO, electrical conductance, COD, and TOC) of the clustered rivers. The WQI 
for each tributary was calculated using variables selected post statistical analysis. We verified that the WQI calculated in 
this study was similar to the annual change in water quality of the target river. Finally, it was analyzed that performing river 
water quality evaluation using the major variables selected using statistical analysis reflects the current water quality status 
of the river in more detail. (WQI grade was S1 Good (63.0), S2 Poor (53.3), S3 Excellent (98.4), S4 Poor (48.4), S5 (Excel‑
lent (100.0), S6 Good (77.6), S7 Good (76.2), S8 Good (76.5), S9 Good (69.9), S10 Excellent (81.5), S11 Good (71.2), S12 
Good (63.1), and S13 Good (63.5).) Our method effectively reduced the number of variables required for index calculation 
compared with WQI methods of the MOE. Further, the reduced number of variables simplified the analysis process, reduced 
analysis time, and enabled water quality assessment that reflected the water quality characteristics of the river to be evaluated.

Keywords Cluster analysis · Major variable · Principal component analysis · River tributaries · Spatial classification · 
Water quality management

Abbreviations
WQI  Water quality index
WT  Water temperature

Introduction

Rivers are a major source of drinking water and are also 
used for irrigation and industrial purposes; therefore, the 
prevention and management of river water pollution is cru‑
cial. Globally, climate change has led to a reduction in water 
resources, which is compounded by the increasing demand 
for water because of rising urbanization (Haque et al. 2014; 

Karakuş 2019). The increase in demand for water resources 
and the imbalance in availability can pose a threat to human 
sustainable development. For this reason, each country is 
evaluating the water footprint for water resource manage‑
ment; this is a concept that includes all water required from 
product consumption to disposal, considering the entire 
process of material production and service provision (Park 
et al. 2020). In Korea, the life cycle assessment (LCA) 
method was used to calculate the water footprint and evalu‑
ation data of the rainwater exclusion system in considera‑
tion of the environment. (Ahn et al. 2019). LCA is a tool to 
implement an environmental management system, and it is 
a technique to evaluate potential environmental impacts that 
may occur in the manufacturing process of a product (Chen 
et al. 2020). To achieve common performance for the circu‑
lar economy from the management point of view of scarce 
water resources, a strategy to increase economic advantage 
and reduce environmental water loss by performing LCA is 
needed (Silvestri et al. 2021).

Reliable water quality data are required to prevent and 
manage water pollution in rivers, and continuous water 
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quality assessment must be conducted to monitor pollut‑
ants and water resource management based on spatial‑scale 
water quality analyses (Wu et al. 2018). To assess water 
quality, several researchers have used methods, such as clas‑
sification, correlation analysis, and time‑series numerical 
analysis of measured data (Singh et al. 2008; Sharma et al. 
2012). These methods have the advantage of not requiring 
expert knowledge about water quality or the environment. 
However, water quality assessment by time‑series numerical 
analysis on long‑term measured data requires a cumbersome 
and time‑consuming data arrangement process.

Principle component analysis (PCA), used in regional 
assessment to analyze major water quality variables, enables 
an in‑depth analysis of river characteristics through complex 
data matrix analysis (Tripathi et al. 2019). This method pro‑
vides a quick solution for the proper management of water 
resources (Singh et al. 2004; Liu et al. 2011). Barakat et al. 
(2016) evaluated water quality variability of the Oum Er 
Rbia and El Abid rivers in Morocco according to spatial 
(cluster) classification by using PCA and cluster analysis 
(CA). These techniques are valuable for water resource man‑
agement as they can identify and help investigate the origin 
of critical factors affecting rivers (Barakat et al. 2016; Varol 
2020). Multivariate statistical analysis techniques, such as 
PCA and CA, reflect temporal and spatial changes in water 
quality and are used widely when evaluating water quality 
for river management by assisting in the selection of com‑
ponents that affect river water quality (Gamble and Babbar‑
sebens 2012; Bora and Goswami 2016).

The combined impact of many different factors that 
characterize the water quality is complex; and so are the 
challenges of classifying the significant parameters used to 
measure the status of water resources quantitatively. There‑
fore, the water quality index (WQI) is considered a math‑
ematical tool that significantly simplifies these data sets and 
provides a single classifying value that describes the water 
quality status of water bodies or degree of pollution (Naseem 
et al. 2021). WQI is a performance measurement that com‑
bines information from significant physical, chemical, and 
biological parameters into a functional form, reducing large 
amounts of data to a single number (Gradilla‑Hernández 
et al. 2019).

Using WQI, water quality is converted into a single score 
for comprehensive assessment, helping the public and policy 
makers to understand water quality (Terrado et al. 2010; 
Upadhyay et al. 2011; Gupta et al. 2017). In WQI, a water 
body is allocated a number between 0 and 100, which indi‑
cates its drinking water quality (Gradilla‑Hernández et al. 
2019). The WQI is the most effective way to express the 
suitability of a water body, such as a river, as a water source 
for human use (Ewaid et al. 2017; Khangembam et al. 2019). 
Further, WQI is used as a policy‑making tool for water qual‑
ity assessment by environmental monitoring organizations 

(Bharti and Katyal 2011), as the public can easily obtain 
and understand the relevant in‑depth information (Naseem 
et al. 2021).

When performing water quality evaluation of the sur‑
vey site using WQI, the same water quality variables were 
applied to each stream in the previous studies (Shin et al. 
2018; Cho et al. 2021), whereas in this study, the water qual‑
ity evaluation method that more quickly reflected the char‑
acteristics of rivers using major water quality variables for 
each stream was used. The applicability and feasibility of 
the results of this study were evaluated by selecting major 
variables reflecting the quality of rivers using statistical tech‑
niques. We also compared the WQI calculated in this study 
with the WQI currently presented by the domestic Ministry 
of Environment. These results may serve as basis for simpli‑
fying the number of variables for water quality evaluation of 
rivers in the future and for efficiently derive pollutants that 
need to be preferentially managed. In addition, this study 
may be used by policy makers for water quality improvement 
by region or by river.

Materials and methods

Study progress flow

Figure 1 shows  the series of analysis procedures performed 
in this study. It was divided into three stages. First, clus‑
ter analysis by survey sites, and major water quality vari‑
ables were selected through multivariate statistical analysis. 

Fig. 1  Flowchart to illustrate how this study
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Second, the WQI (according to the difference in the appli‑
cation of water quality variables) was calculated and com‑
pared with RT‑WQI. Third, water quality evaluation was 
performed using the WQI calculation method proposed in 
this study.

Survey point and item

The Nam River is located in the southwest of South Korea. 
It has a total flow length of 144.59 km and a basin area of 3 
467.5  km2. From the upper stream to the lower stream, the 
major tributaries of the Nam River include the Namgang, 
Ram, Obong, and Im streams, the Dongcheon River, Sinde‑
ung, Yang, and Migok streams, Youngcheon River, and the 
Euiryung and Haman streams. The survey points and vari‑
ables of this study are shown in Table 1 and Fig. 2. The sur‑
vey points include the 13 water quality measurement points 
at the main tributaries of the Nam River operated by the 
Ministry of Environment. Water quality data (2012–2020) 
obtained from the Water Environment Information Sys‑
tem (http:// water. nier. go. kr) were used. From the acquired 
data, nine variables used in the RT‑WQI were selected. In 
2012, an artificial structure called a weir was installed in the 
Nakdong River, changing the water environment (Jo et al. 
2022). Therefore, in this study, the monitoring results col‑
lected from 2012 to 2020, after the artificial structures were 
installed, were applied to the water quality evaluation.

Statistical analysis

CA and PCA were applied for the spatial classification 
of the measured data and selection of major water qual‑
ity variables. Therefore, various rivers can be classified 
according to their characteristics, and the main water qual‑
ity variables representing the water quality characteristics 

of the river could be determined (Pekey et al. 2004). CA 
and PCA were standardized to z‑scores to prevent errors 
between data owing to different units of measurement. An 
statistical software (IBM SPSS 24.0 Inc.) was used for 
data analysis.

Cluster analysis

In this study, CA was performed for the spatial classi‑
fication of nine water quality variables (water tempera‑
ture [WT], dissolved oxygen [DO], electrical conductiv‑
ity [EC], pH, biochemical oxygen demand [BOD], total 
organic carbon [TOC], chemical oxygen demand [COD], 
suspended Solid [SS], total nitrogen [TN], and total 
phosphorus [TP]) of the 13 tributaries of the Nam River 
(Fig. 2). For that, we used monthly survey results from 
2012 to 2020.

CA collects and classifies variables with similar char‑
acteristics among multiple variables; it is a statistical 
analysis method that can identify the structure of data by 
grouping them according to the homogeneous properties 
of the variables. It classifies the data into clusters by using 
the distance or the similarity between the variables of the 
population, and it can be classified as a hierarchical or a 
non‑hierarchical method, according to the method used 
to analyze the clusters. To classify the clusters as tempo‑
rally and spatially homogeneous based on the correlation 
of the data (Vega et al. 1998), hierarchical CA, in which 
sequential clustering occurs, is used and is represented by 
a dendrogram (McKenna 2003). The hierarchical cluster‑
ing method is used for classification; the Euclidean dis‑
tance (Otto et al. 1998) is used for measuring the distance 
between clustered variables; and Ward’s method (Fan et al. 

Table 1  Survey point status and survey items

Point # Measurement point name Area  (km2) Survey count and items

S1 Namgang stream 160.0 Amount of data used to calculate the WQI: 108 per variable at each site
S2 Ram stream 264.0 Survey interval: one per month

Survey items: nine items
WT (Water temperature), EC (Electrical conductivity), DO (Dissolved 

oxygen), pH, BOD (Biochemical oxygen demand), COD (Chemical 
oxygen demand), TOC (Total organic carbon), TN (Total nitrogen), 
TP (Total phosphorus)

S3 Obong stream 218.2
S4 Im stream
S5 Dongcheon river 354.5
S6 Sindeung stream 172.1
S7 Yang stream upstream 252.5
S8 Migok stream
S9 Yang stream downstream
S10 Youngcheon river upstream 205.5
S11 Youngcheon river downstream
S12 Euiryung stream 114.4
S13 Haman stream 155.2

http://water.nier.go.kr
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2010), which can minimize information loss between clus‑
ters, is used for merging.

Principal component analysis

PCA is used to find the direction of scattered data, re‑express 
the data to facilitate understanding of the information in the 
data, and reduce the variability of variables. In other words, 
it is a statistical analysis method to find a new variable 
(principal component), expressed as a linear combination 
of variables by using the correlation between multiple vari‑
ables (Sârbu and Pop 2005; Barakat et al. 2016). In PCA, the 
eigenvalue represents the magnitude of the variance that can 
be explained by the principal component. If the eigenvalue 
is greater than 1.0, it means that one principal component 
can explain more than one variable. Therefore, the principal 
component is extracted based on principal components with 
an eigenvalue of 1.0 or greater (Varol et al. 2012; Park et al. 
2019).

In this study, PCA was performed to select the main water 
quality variables (WT, EC, DO, pH, BOD, COD, TOC, TN, 
and TP) by CA that could represent the characteristics of 
each stream and PCA was used to extract the components 
that could have the most significant influence on the water 

quality characteristics of the basin surveyed. Based on the 
CA results, PCA was performed on the water quality com‑
ponents of each cluster. The eigenvalue represents the mag‑
nitude of the variance that can be explained by the principal 
component, and as mentioned, an eigenvalue greater than 
1.0 means that one principal component (PC) could explain 
more than one variable. We used the only PC with an eigen‑
value of 1 in our analyses. With regard to the components 
of the ten water quality variables, the eigenvalue obviously 
represents the eigenvalue, and variability (%) is the ratio 
that explains the variability of the PC with respect to the 
original variable. Cumulative (%) is the cumulative ratio 
used to explain the PC.

Water quality index

WQI converts important water quality variables into a sin‑
gle index, which can be used as an easy‑to‑understand scale 
when evaluating the water quality of a target stream. Many 
researchers have used multivariate statistical techniques, 
such as PCA and CA, for selecting key variables for calcu‑
lating WQI (Sutadian et al. 2016, 2018; Tripathi and Singal 
2019; Gradilla‑Hernández et al. 2019). With regard to the 
assessment criteria for the calculated WQI, we used five 

Fig. 2  Nam River watershed with 13 water quality measurement points. The first letter of all the words in the name of the measurement locations 
has been capitalized in this study
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grades suggested by the Ministry of Environment (Table 2). 
The five grades were Excellent (80 to 100), Good (60 to 
79), Poor (40 to 59), Very Poor (20 to 39), and Unsuitable 
for Drinking Use and Fish Culture (0 to 19). With regard to 
the water quality variables for calculating WQI, the water 
quality data (WT, EC, DO, pH, BOD, COD, TOC, TN, and 
TP) measured at 13 measurement points from the Water 
Environment Information System (http:// water. nier. go. kr), 
were used.

For quality assessment of the water of the Namgang 
inflow tributaries, we calculated the annual WQI from 2012 
to 2020. The WQI was calculated as in Eq. 1 (Seo et al. 
2021a, b) for seven factors, including WT, pH, DO, EC, 
TOC, TN, and TP, and by varying the main water quality 
variable for each group. The main water quality variables 
applied in the calculation of WQI for each cluster were 
selected by PCA.

where F1 is the fraction of the number of water quality vari‑
ables that violate the criteria, F2 is the fraction of the total 
number of times the criterion is violated in all water qual‑
ity variable, and F3 is calculated by the sum of the values 
obtained by fractionating the degree of violation of the crite‑
ria for the water quality variable. Details are available from 
the Real‑time Water Quality Information System (http:// 
www. korea wqi. go. kr). The assessment for each survey point 
was conducted by varying the WQI calculation factors.

The water quality index calculated using the RT‑WQI 
provided by the Ministry of Environment was compared 
with the index calculated based on the method proposed 
in this study using the PCs for each Cluster (Table 3 and 
Fig. 3). Seven water quality variables were applied to the 
RT‑WQI analysis provided by the Ministry of Environment, 
including WT, pH, DO, EC, TOC, TN, and TP. However, the 
water quality variables used in our method of calculating the 
WQI (i.e., using the principal variables of each Cluster) were 

(1)WQI = 100 −
√��
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2

1
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2

2
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2
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four in Cluster 1 (COD, TOC, TN, and TP), four in Cluster 2 
(WT, DO, COD, and TOC), and five in Cluster 3 (WT, DO, 
EC, COD, and TOC).

Results and discussion

Results of water quality analysis according to spatial 
classification

CA was performed based on the area according to the land‑
use type in the river basin for the classification of the water 
quality concentration and spatial characteristics of the 13 
survey points (Fig. 2). The CA results were classified into 
three clusters, and the survey points for each cluster were 
Cluster 1 (S1 to S5), Cluster 2 (S6 to S11), and Cluster 3 
(S12 and S13). The analyses result of the characteristics of 
the basin for each survey point indicated that the clusters 
were formed by the influence of urbanization and human 
activities (Fig. 4). In terms of the land‑use ratio, the aver‑
age urbanization/drying ratio was 2.2% for Cluster 1, 3.6% 
for Cluster 2, and 5.7% for Cluster 3. The average ratio of 
agricultural land was 11.7% for Cluster 1, 17.9% for Cluster 
2 17.9%, and 18.4% for Cluster 3, demonstrating a trend 
similar to the urbanization/drying ratio. As the ratio of the 
forests in the basin (Cluster 1: 78.8%, Cluster 2: 68.3%, and 
Cluster 3: 63.8%) that represented the natural characteristics 
of the basin showed an opposite trend from the previous 
results, apparently urbanization and human activities were 
the crucial factors defining the characteristics of the water 
basin. Seo et al. (2021a) identified water quality variables 
that affect the spatial difference and concentration of water 
quality by river through a study on the effect of spatial vari‑
ability by river basin on the water quality of the Nakdong 
River in Korea.

The water quality characteristics were explained by divid‑
ing the water quality variables into clusters and expressing 
the average and range of concentrations for each variable 

Table 2  WQI assessment criteria provided by the Korean Ministry of Environment

*WQI water quality index

*WQI

Assessment details WQI Index grade

Clean water with almost no pollutants, suitable for recreational water activities at all times 80 to 100 Excellent
Relatively good water quality maintained, suitable for recreational water activities 60 to 79 Good
Generally, good water quality maintained, but pollutants are introduced from time to time that could affect 

recreational water activities
40 to 59 Poor

Contaminated water owing to frequent inflow of pollutants, raising a caution for recreational water activities 20 to 39 Very Poor
Severely contaminated water, not suitable for recreational water activities 0 to 19 Unsuitable for 

drinking or fish 
culture

http://water.nier.go.kr
http://www.koreawqi.go.kr
http://www.koreawqi.go.kr


2492 International Journal of Environmental Science and Technology (2023) 20:2487–2502

1 3

Ta
bl

e 
3 

 W
Q

I s
co

re
s o

f t
he

 st
at

io
ns

 in
 th

e 
N

am
 R

iv
er

 w
at

er
sh

ed
 d

ur
in

g 
th

e 
stu

dy
 p

er
io

d

Th
e 

av
er

ag
e 

w
at

er
 q

ua
lit

y 
in

de
x 

(W
Q

I)
 w

as
 c

al
cu

la
te

d 
fo

r n
in

e 
ye

ar
s u

si
ng

 tw
o 

m
et

ho
ds

 a
nd

 c
on

du
ct

in
g 

a 
t‑t

es
t. 
○

: p
 <

 0.
05

, ●
: p

 >
 0.

05
; M

: m
ea

n;
 S

D
: s

ta
nd

ar
d 

de
vi

at
io

n
*V

ar
ia

bl
es

 u
se

d 
to

 c
al

cu
la

te
 th

e 
RT

‑W
at

er
 Q

ua
lit

y 
In

de
x 

(R
T‑

W
Q

I)
 a

re
 W

T,
 p

H
, D

O
, E

C
, T

O
C

, T
N

, a
nd

 T
P

**
Va

ria
bl

es
 u

se
d 

to
 c

al
cu

la
te

 W
Q

I i
n 

th
is

 st
ud

y 
ar

e 
(a

) C
O

D
, T

O
C

, T
N

, a
nd

 T
P 

(S
1–

S5
), 

(b
) W

T,
 D

O
, C

O
D

, a
nd

 T
O

C
 (S

6–
S1

1)
, a

nd
 (c

) W
T,

 D
O

, E
C

, C
O

D
, a

nd
 T

O
C

 (S
12

, S
13

Ye
ar

M
et

ho
d

S1
S2

S3
S4

S5
S6

S7
S8

S9
S1

0
S1

1
S1

2
S1

3

20
12

RT
‑W

Q
I*

82
.5

1
76

.3
7

10
0.

00
10

0.
00

10
0.

00
87

.5
2

79
.2

2
75

.1
6

94
.0

4
92

.4
6

76
.1

9
68

.9
9

59
.5

2
Th

is
 st

ud
y*

*
71

.0
8

41
.9

9
10

0.
00

71
.0

0
10

0.
00

79
.7

5
77

.9
4

70
.4

2
89

.7
7

90
.2

8
71

.0
0

57
.5

3
53

.6
1

20
13

RT
‑W

Q
I

94
.1

7
88

.3
6

10
0.

00
88

.3
7

10
0.

00
94

.0
5

86
.5

2
87

.9
4

81
.5

2
87

.7
0

79
.7

5
55

.9
8

58
.6

1
Th

is
 st

ud
y

56
.6

3
70

.8
9

10
0.

00
42

.1
1

10
0.

00
80

.0
4

78
.9

6
79

.9
8

69
.9

2
90

.2
8

70
.3

0
64

.8
2

61
.4

7
20

14
RT

‑W
Q

I
93

.9
4

82
.5

6
10

0.
00

88
.3

7
10

0.
00

93
.8

0
83

.8
0

87
.4

1
74

.5
2

75
.8

5
69

.4
0

56
.8

2
57

.8
8

Th
is

 st
ud

y
85

.5
5

42
.1

6
10

0.
00

42
.1

5
10

0.
00

80
.0

9
76

.5
1

80
.1

0
69

.1
9

70
.9

3
70

.4
5

61
.1

6
61

.8
0

20
15

RT
‑W

Q
I

94
.1

9
99

.3
1

10
0.

00
94

.0
6

10
0.

00
93

.8
3

86
.1

1
87

.4
6

73
.5

9
92

.8
9

75
.1

3
56

.9
8

64
.2

5
Th

is
 st

ud
y

10
0.

00
71

.1
0

10
0.

00
41

.7
6

10
0.

00
79

.9
0

77
.6

2
80

.1
0

68
.3

6
90

.1
6

69
.7

2
60

.7
4

69
.2

1
20

16
RT

‑W
Q

I
94

.1
9

94
.1

7
94

.1
9

10
0.

00
10

0.
00

88
.2

6
81

.3
1

81
.8

1
74

.2
3

87
.7

2
81

.7
5

64
.5

3
66

.2
6

Th
is

 st
ud

y
70

.9
9

42
.1

4
10

0.
00

70
.9

2
10

0.
00

70
.5

6
68

.6
3

70
.2

7
68

.3
7

80
.4

4
70

.1
2

68
.8

2
71

.8
7

20
17

RT
‑W

Q
I

88
.1

1
88

.1
3

10
0.

00
94

.0
6

10
0.

00
81

.9
8

77
.1

1
84

.2
4

71
.3

8
80

.0
5

78
.2

3
54

.0
6

49
.9

6
Th

is
 st

ud
y

41
.8

4
41

.5
6

10
0.

00
41

.9
2

10
0.

00
70

.2
3

75
.8

6
79

.6
8

58
.9

3
70

.8
3

70
.2

0
57

.6
2

59
.7

5
20

18
RT

‑W
Q

I
94

.0
6

94
.0

6
94

.1
9

94
.0

3
10

0.
00

87
.4

2
83

.1
8

78
.1

5
73

.5
3

80
.9

8
84

.5
1

57
.4

1
60

.1
4

Th
is

 st
ud

y
56

.5
0

42
.1

1
85

.5
5

41
.6

2
10

0.
00

79
.1

7
76

.8
0

69
.2

7
77

.1
3

70
.6

0
78

.9
6

63
.5

1
68

.9
2

20
19

RT
‑W

Q
I

94
.0

6
88

.3
7

10
0.

00
94

.1
9

10
0.

00
87

.3
3

83
.0

4
83

.3
4

78
.2

1
92

.3
3

73
.9

1
60

.7
7

52
.3

4
Th

is
 st

ud
y

42
.1

2
42

.1
6

10
0.

00
41

.9
3

10
0.

00
78

.8
1

76
.5

5
78

.9
0

67
.5

5
89

.9
9

69
.7

1
66

.3
1

61
.2

1
20

20
RT

‑W
Q

I
88

.2
3

94
.1

9
10

0.
00

94
.1

9
10

0.
00

93
.5

2
79

.9
0

86
.0

5
75

.4
9

82
.0

2
81

.8
2

67
.8

5
54

.5
8

Th
is

 st
ud

y
41

.9
2

85
.4

9
10

0.
00

41
.9

3
10

0.
00

79
.6

5
76

.9
9

79
.4

6
60

.0
4

80
.1

6
70

.7
2

67
.7

8
63

.3
9

M
 ±

 S
D

RT
‑W

Q
I

91
.5

 ±
 4.

2
89

.5
 ±

 6.
9

98
.7

 ±
 2.

6
94

.1
 ±

 4.
1

10
0 ±

 0
89

.7
 ±

 4.
3

82
.2

 ±
 3.

1
83

.5
 ±

 4.
5

77
.4

 ±
 6.

9
85

.8
 ±

 6.
3

77
.9

 ±
 4.

7
60

.4
 ±

 5.
5

58
.2

 ±
 5.

3
Th

is
 st

ud
y

63
 ±

 20
.7

53
.3

 ±
 17

.4
98

.4
 ±

 4.
8

48
.4

 ±
 12

.8
10

0 ±
 0

77
.6

 ±
 4.

1
76

.2
 ±

 3
76

.5
 ±

 4.
9

69
.9

 ±
 9.

2
81

.5
 ±

 9
71

.2
 ±

 2.
9

63
.1

 ±
 4.

2
63

.5
 ±

 5.
7

t‑t
es

t
p‑

va
lu

e
0.

00
3 

(○
)

0.
00

0 
(○

)
0.

86
5 

(●
)

0.
00

0 
(○

)
– 

(●
)

0.
00

0 
(○

)
0.

00
1 

(○
)

0.
00

6 
(●

)
0.

06
9 

(●
)

0.
26

1 
(●

)
0.

00
2 

(○
)

0.
24

5 
(●

)
0.

05
 7

(●
)



2493International Journal of Environmental Science and Technology (2023) 20:2487–2502 

1 3

Fig. 3  Comparison of the 
assessment results for each 
method used to calculate the 
water quality index. Point S5 is 
not shown because the assess‑
ment results are the same
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(Table 4 and Fig. 5). Interquartile range (IQR) was calcu‑
lated by subtracting the third quartile by the first quartile, 
and the text (A, B, and C) on the box plot was used to char‑
acterize the homogeneity of the Scheffe test (analysis of 
variance, ANOVA; p < 0.05).

In the results shown in the box plots for each group, 
ANOVA results according to the Scheffe method also 
appeared to confirm the homogeneity between the groups. 
The WT was analyzed as 16.4 °C and 16.9 °C on average 
for Clusters 1 and 3, and 14.4 °C on average for Cluster 2. 
Among the investigated water quality variables, the mean 
concentration, and the range of change in concentration of 
electrical conductivity (EC), BOD, COD, TOC, TN and TP 
were the highest in Cluster 3 with a wide range, followed by 
Clusters 2 and 1 (Fig. 6). With regard to DO, Clusters 1 and 
2 had similar mean values (11.0, 11.1 mg/L, respectively) 
and ranges (6.7 to 17.0 mg/L, 5.7 to 17.5 mg/L, respec‑
tively), whereas Cluster 3 had a lower mean concentration 
(10.1 mg/L). With regard to pH, similar concentrations and 
trends were observed for all clusters. With regard to the clas‑
sification of the basin area by land use as shown in Fig. 4, 
the results show that the water quality characteristics of each 

watershed to which a stream belongs can be distinguished by 
the influence of human activities, such as urbanization and 
agriculture, similar to the results of CA. Compared with the 
other clusters, the water quality concentration of the basins 
in Cluster 1 was superior because of its strong natural char‑
acteristics, whereas the water quality concentration of the 
basins in Cluster 3 was inferior because of more urbanized 
and agricultural lands. Other studies have suggested that 
human activities affecting agricultural and urbanization of 
land have a significant positive correlation with water quality 
variables of rivers (Giri and Qiu 2016; Lintern et al. 2018). 
The results of analyzing clusters and water quality charac‑
teristics appeared to suggest the need for the differentiation 
of the method and target item for water quality assessment 
according to the land‑use characteristics of the basin.

Results of principal component analysis

The results of the PCA indicated the cumulative explanatory 
power of Clusters 1 and 2 as 70% and 65%, respectively, 
with only three principal components, and the cumulative 
explanatory power of Cluster 3 as 82%, which could be 

Fig. 4  Ratio of the land‑use area in the basin to which the river 
belongs. The upper right table shows the ratio of area according to 
land use in the watershed at the survey sites, with the results being 

expressed using the cluster analysis. The land‑use types include 
urbanization/drying land, agricultural land, forest, grassland, wetland, 
bare land, and fresh water
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Fig. 5  Boxplot of the water quality measurement data from 2012 to 2020 for each group, confirming homogeneity according to spatial classification
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reduced to two principal components. As the number of vari‑
ables decreases, the efficiency of PCA increases, indicating 
the value of the method proposed in this study, i.e., reducing 
a total of ten components to 3 and 4 PCs per Cluster (Table 5 
and Fig. 6).

With regard to PCA, the factor‑loading value for each 
component was considered “strong” when it exceeded 0.7, 
“moderate” when it was between 0.7 and 0.5, and “weak” 
when it was < 0.5. The results of PCA for each cluster and 
component are shown in Table 6. To select the principal 
component, the component corresponding to “strong” was 
selected among the factor‑loading values of PC1 and PC2, 
which had the highest explanatory power.

Among the PC1 variables of Cluster 1, COD (0.864), 
TOC (0.794), and TP (0.718) were selected as the factor‑
loading values corresponding to “strong”, that is, which 

have the strongest influence in evaluating the water qual‑
ity characteristics of the Cluster. In the case of PC2, TN 
(0.852) was selected. For PC1 of Cluster 2, WT (0.794), 
DO (0.756), COD (0.854), and TOC (0.732) were selected, 
and there was no variable corresponding to “strong” in 
PC2. For PC1 of Cluster 3, EC (0.889), COD (0.895), and 
TOC (0.882) were selected; for PC2, WT (0.790) and DO 
(0.849) were selected as principal variables. Cho et al. 
(2021) selected four out of ten major water quality vari‑
ables using PCA to identify major variables contributing 
to the water quality fluctuation characteristics of the South 
Han River in Korea. Kim et al. (2007) reported that in 
determining the number of major water quality variables, 
the determined variable was sufficient to explain the whole 
when the cumulative % was 60% to 80% or more.

Fig. 6  Comparison of key water quality variables according to the 
cluster analysis. The larger the factor‑loading value of the component, 
the closer it is to the circle, thereby indicating a stronger influence 

that could explain all variables (WT, pH, EC, DO, BOD, COD, TOC, 
SS, TN, and TP)

Table 5  Results of analyses to determine variability and eigenvalue of principal components (PC) by cluster

Bold values indicate eigenvalues > 1.0
Eigenvalue: eigenvalue of the principal component; Variability: total variance, which is the ratio that describes the variability of the original 
variable; Cumulative: cumulative value of the total variance to describe the principal component

Division PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

Cluster 1 Eigenvalue 3.430 2.376 1.243 0.769 0.687 0.486 0.380 0.319 0.239 0.071
Variability (%) 34.297 23.763 12.433 7.686 6.874 4.863 3.796 3.186 2.394 0.709
Cumulative (%) 34.297 58.060 70.492 78.179 85.052 89.915 93.711 96.897 99.291 100.000

Cluster 2 Eigenvalue 3.573 1.634 1.333 0.967 0.794 0.595 0.498 0.313 0.159 0.134
Variability (%) 35.725 16.336 13.328 9.675 7.939 5.954 4.978 3.128 1.593 1.344
Cumulative (%) 35.725 52.061 65.389 75.064 83.003 88.957 93.936 97.064 98.656 100.000

Cluster 3 Eigenvalue 3.101 2.170 1.658 1.241 0.631 0.440 0.323 0.197 0.160 0.079
Variability (%) 31.012 21.696 16.579 12.412 6.310 4.396 3.235 1.967 1.600 0.793
Cumulative (%) 31.012 52.707 69.287 81.699 88.009 92.405 95.640 97.607 99.207 100.000
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The selected principal components representing the 
water quality variables at the survey points selected after 
performing PCA included COD, TOC, TN, and TP for 
Cluster 1; WT, DO, COD, and TOC for Cluster 2; and WT, 
DO, EC, COD, and TOC for Cluster 3.

Results of water quality index assessment

After comparing the calculated WQIs (Table 3, Fig. 3), we 
obtained similar results for most sites despite the differences 
in the assessment factors. However, the results for S1, S2, 
and S4 differed. The river water quality using the existing 
RT‑WQI for S1 was evaluated as “Excellent” every year 
from 2013 to 2016. However, the WQI calculation results 
applying the principal variables were evaluated differently 
by year (Very Poor, in 2013; Good, in 2014 and 2015; and 
Poor, in 2016).

The concentration of each water quality variable in the 
same year as the WQI assessment is shown in Fig. 7. From 
2013 to 2016, which showed a large difference in the WQI 
assessment, the differences in concentration by year were 
identified clearly, and the same differences as in the previ‑
ous results were observed from 2018 to 2019. As the index 
is calculated based on factors applicable to all the basins 
in South Korea for RT‑WQI, it will be difficult to reflect 
the detailed characteristics of a specific basin. For S2 and 
S4, the WQI calculation results were analyzed differently 
depending on whether principal variables were applied. As 
a result of comparing the water quality concentration change 
by year and the calculation result (Fig. 7), it was determined 
that calculating the WQI by selecting the main variables 
for each river would reflect the characteristics of the tar‑
get river in more detail. When the change in water qual‑
ity by year and the WQI calculation result were compared, 
the concentration of water quality variables showed (BOD 

Table 6  Principal component analysis by cluster

Bold and italic values represent strong and moderate loading, respec‑
tively

Cluster Variable Component

PC 1 PC 2 PC 3 PC 4

Cluster 1 WT 0.638  − 0.588  − 0.417
pH 0.045 0.446  − 0.521
DO  − 0.603 0.640 0.382
EC 0.130 0.690  − 0.420
BOD 0.603 0.327 0.164
COD 0.864 0.167  − 0.019
TOC 0.794 0.255  − 0.132
SS 0.601  − 0.121 0.544
TN 0.148 0.852 0.063
TP 0.718 0.075 0.362
Eigenvalue 3.430 2.376 1.243
Variability (%) 34.297 23.763 12.433
Cumulative (%) 34.297 58.060 70.492

Cluster 2 WT 0.794  − 0.146  − 0.412
pH  − 0.108 0.484 0.012
DO  − 0.756 0.299 0.406
EC  − 0.312 0.580 0.310
BOD 0.479 0.517 0.238
COD 0.854 0.263 0.173
TOC 0.732 0.467  − 0.008
SS 0.527  − 0.165 0.533
TN  − 0.172  − 0.499 0.584
TP 0.679  − 0.350 0.437
Eigenvalue 3.573 1.634 1.333
Variability (%) 35.725 16.336 13.328
Cumulative (%) 35.725 52.061 65.389

Cluster 3 WT  − 0.389 0.790 0.114  − 0.280
pH  − 0.379  − 0.303 0.661  − 0.332
DO 0.031  − 0.849 0.398  − 0.040
EC 0.889  − 0.002  − 0.204  − 0.106
BOD 0.425  − 0.065 0.771  − 0.101
COD 0.895 0.233 0.117  − 0.221
TOC 0.882 0.197 0.023  − 0.299
SS 0.028 0.387 0.39 0.590
TN 0.473  − 0.488  − 0.172 0.561
TP 0.175 0.496 0.466 0.477
Eigenvalue 3.101 2.170 1.658 1.241
Variability (%) 31.012 21.696 16.579 12.412
Cumulative (%) 31.012 52.707 69.287 81.699

Fig. 7  Comparison of the water quality index assessment results and 
the annual average water quality at point S1. The difference between 
the existing method used for calculating the water quality index (RT‑
WQI) and the calculation method proposed in this study was analyzed
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0.5–1.5 mg/L, COD 2.4–3.0 mg/L, TN 1.647–2.162 mg/L, 
TP 0.020–0.065 mg/L, and TOC 1.3–2.3 mg/L) a change 
according to the surveyed year. However, the RT‑WQI cal‑
culation result for the same year was analyzed as Good, indi‑
cating no change in water quality by year. Conversely, the 
WQI results of this study showed a similar trend from Excel‑
lent to Good according to the annual concentration change 
of water quality variables. Kang et al., (2019a) analyzed the 
long‑term measurement data of the Nam River in Korea. The 
authors suggested that monthly river water quality variability 
is large. In addition, a study that evaluated the water quality 
grade for Namgang reported that the yearly and seasonal 
evaluation results showed similar trends to water quality 
variability (Kang et al. 2019b). According to Pejman et al. 
(2009), when water quality is evaluated in a watershed, the 
principal water quality variables reportedly appear different 
depending on the types of rivers distributed in the watershed. 
For some rivers (S1–S3), the assessment results were ana‑
lyzed differently depending on the selection conditions of 
the water quality variables; however, when compared with 
the concentration of the water quality variables by year, the 
assessment results by the WQI applied in this study reflect 
the water quality.

The results of the annual water quality assessment from 
2016 to 2020 for each river or stream were incorporated 
and compared with the nine‑year average of water quality 

assessment for the water quality variables proposed in this 
study, as shown in Fig. 8. For survey points classified as 
Cluster 1 (S1, S2, S3, S4, and S5), the average and annual 
assessment results at the S3 and S5 points were Excellent. 
The average assessment result was Good at S1, but the 
annual assessment result was Poor in 2019 and 2020 com‑
pared with that in 2016, indicating that the water quality 
was deteriorating. The assessment result at S4 was the worst 
(Very Poor) of all the survey points. At S2, upstream of S4, 
the assessment result was Poor on average, but the water 
quality improved to Excellent in 2020, indicating that the 
water quality at S4 could have been affected partially by the 
upstream environment, but the extent of this influence was 
not absolute. Based on these results, the pollutants dispersed 
across the basin at S4 must be monitored to enhance the 
water quality. With regard to the survey points classified as 
Cluster 2 (S6, S7, S8, S9, S10, and S11), the water quality 
was assessed as Good or Excellent, except for that of S9. 
At S9, the water quality deteriorated from Good in 2018 to 
Poor in 2020. With regard to the survey points classified as 
Cluster 3 (S12 and S13), the water quality was assessed as 
Good on average; however, the WQI assessment indicated a 
value in the boundary between Poor and Good. This result 
points to the need for continuous water quality management 
in the future.

Fig. 8  Water quality assessment results for each river basin and analyses of the change patterns in the river basin compared to the results of the 
water quality assessment over the last five years. The assessment results over the last five years are grouped into previously analyzed clusters
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Conclusion

In this study, statistical techniques were used to select the 
main water quality variables of streams, and the WQI was 
calculated by applying the same water quality variables to 
streams with the same spatial classification. By comparing 
the results obtained using the RT‑WQI and those obtained 
by the WQI calculation method proposed in this study, 
the main water quality variables (COD, TOC, TN and TP 
for Cluster 1; WT, DO, COD and TOC for Cluster 2; WT, 
DO, EC, COD, and TOC for Cluster 3) for each river were 
selected to assess water quality. The selected major vari‑
ables can be used as representative items to evaluate the 
characteristics of each river. As a result of the assessment, 
WQI grade was assessment as S1 Good (63.0), S2 Poor 
(53.3), S3 Excellent (98.4), S4 Poor (48.4), S5 (Excellent 
(100.0), S6 Good (77.6), S7 Good (76.2), S8 Good (76.5), 
S9 Good (69.9), S10 Excellent (81.5), S11 Good (71.2), 
S12 Good (63.1), and S13 Good (63.5). The water quality 
of a river is highly dependent on the land‑use status of 
the basin, implying that the level of pollution would be 
high in the basin subjected to extensive human activity. 
Accordingly, such variables should preferably be consid‑
ered in the assessment of water quality reflecting the of 
rivers and basins.

The limitation of the current study is that it only 
included the rivers with the water quality measurement 
points operated by the Ministry of Environment. For more 
accurate analyses than those of this study, a higher number 
of rivers should be included, and an additional review of 
ionic substances would be required for the selection of 
water quality parameters. And in the case of the current 
analysis result, the method of this study can be applied 
even to rivers that have undergone the same water qual‑
ity evaluation as the existing RT‑WQI. However, efforts 
to increase applicability through diverse case studies are 
needed for rivers that show differences in some evaluation 
results.

The existing water quality improvement management 
plan uses a single standard for all rivers and basins in South 
Korea, implying several limitations in terms of space, 
time, and expense. River management policies should be 
established in a direction that can improve the water qual‑
ity of rivers distributed throughout the country (bottom‑up 
method) by establishing a management plan reflecting the 
characteristics of the target rivers by watershed and improv‑
ing the water quality. As can be seen from the results of this 
study, it is necessary to simplify the variables statistically 
and scientifically for water quality evaluation and to estab‑
lish water quality evaluation methods according to land‑use 
and river characteristics. Therefore, in the future, calculat‑
ing and assessing WQI based on the characteristics of each 

river will enable priority management of rivers that are more 
vulnerable to pollution by establishing the direction of water 
quality and basin management for rivers.
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