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Abstract
Microplastics (MPs) and SARS-CoV-2 interact due to their widespread presence in our environment and affect the virus' 
behaviour indoors and outdoors. Therefore, it is necessary to study the interaction between MPs and SARS-CoV-2. The 
environmental damage caused by MPs is increasing globally. Emerging pollutants may adversely affect organisms, especially 
sewage, posing a threat to human health, animal health, and the ecological system. A significant concern with MPs in the 
air is that they are a vital component of MPs in the other environmental compartments, such as water and soil, which may 
affect human health through ingesting or inhaling. This work introduces the fundamental knowledge of various methods 
in advanced water treatment, including membrane bioreactors, advanced oxidation processes, adsorption, etc., are highly 
effective in removing MPs; they can still serve as an entrance route due to their constantly being discharged into aquatic 
environments. Following that, an analysis of each process for MPs' removal and mitigation or prevention of SARS-CoV-2 
contamination is discussed. Next, an airborne microplastic has been reported in urban areas, raising health concerns since 
aerosols are considered a possible route of SARS-CoV-2 disease transmission and bind to airborne MP surfaces. The MPs 
can be removed from wastewater through conventional treatment processes with physical processes such as screening, grit 
chambers, and pre-sedimentation.
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Introduction

Ecosystems can be affected by microplastics (MPs) par-
ticles ranging in size between 0.1 µm and 5 mm (Fig. 1) 
(Kutralam-Muniasamy et  al. 2020). It is possible to 
manufacture MPs directly (in small sizes), called pri-
mary microplastics, such as virgin resin pellets, micro-
beads in personal care products, industrial scrubbers in 
abrasive cleaning agents, and plastic powders used for 
moulids (Khalid et  al.2020). However, it is becoming 
increasingly clear that MPs pose a threat to aquatic life 
and humans (Van Cauwenberghe et al. 2014) as well as to 

the environment (Viveknand et al.2021). The secondary 
microplastic particles are produced when larger plastic 
particles fragment (Naik et al.2020). The fragmentation of 
large plastics occurs due to textiles, paint, tyres, or plastics 
being released into the environment.

The MPs can absorb persistent organic pollutants (such 
as polychlorinated biphenyls) (Wang et al.2021a, b, c) as 
well as heavy metals (Mao et al.2020). A million times 
more persistent organic pollutants can adhere to plastics 
than to ambient air, which can further be desorbed by 
organisms, causing them to accumulate at higher trophic 
levels (Bakir et al.2014) (Fig. 2). Various additives are 
added to the plastics during manufacturing, including 

Fig. 1  Size and structure of 
MPs in the sewage

Fig. 2  Mismanagement of plastic waste globally in 2021. Source: Our World in Data based on BP Statistical Review of World Energy & Ember 
(2021)
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flame retardants and plasticisers. A recent study revealed 
that aquatic species might acquire small MPs through 
the circulatory system from their guts (Fackelmann 
et al.2019). The additives used to enhance plastic proper-
ties could also be toxic to living organisms. Plastics are 
commonly enhanced with phthalates and polybrominated 
diphenyl ethers to make them more flexible and fire-resist-
ant (Campanale et al. 2020). The addition of MPs with 
their micropollutants to food webs digested by biota may 
negatively impact ecosystems and public health.

Despite the many barriers and entrance points, the 
MPs were eventually gained wastewater treatment 
plants (WWTPs) via sewage pipe networks (Ziajahromi 
et al.2017) (Fig. 3). The MPs do not pose acute adverse 
effects on living organisms, and they may cause chronic 
toxicity, a critical concern regarding long-term exposure 
(Beiras et al.2018). Through some mechanisms, MPs pro-
duce toxic effects. First, the polymer materials used to 
manufacture plastic products could directly contribute 
to toxicity. It has been found that polystyrene (PS), com-
monly used in container packaging, bottles, and lids, can 
translocate into the blood circulation and disrupt marine 
filter feeder reproductive processes (Dong et al.2021). 
The second disadvantage of MPs is that their small sizes 
and sharp ends can damage organisms and cause inflam-
mation. Some organisms appear to be malnourished and 

unable to reproduce after tiny MPs are ingested (Pirsaheb 
et al.2020).

MPs analysis can be categorised into physical and chemi-
cal characterisations (Godoy et al.2019). As part of the 
physical characterisation, MPs are characterised by their 
size distribution as well as other physical characteristics 
such as shape and colour (Murrell et al.2018). The chemical 
characterisation was performed primarily to determine the 
composition of MPs (Godoy et al.2019). Stereomicroscopes 
are the most widely used tools for characterising physical 
properties (Pervez et al.2020). The MPs can be counted, 
characterised, and measured in size, shape, and morphology 
(Fu et al.2020). Due to the characteristics of the stereomicro-
scope, visual identification of MPs is prone to bias, and the 
operator primarily affects the results (Sun et al.2019). The 
MPs are size-limited by the low magnification factor of the 
stereomicroscope. Approximately 70% of the samples are 
estimated to be false positives, and the error rates increase 
with decreasing particle sizes (Hidalgo-Ruz et al. 2012). The 
textile fibres made of cotton, for instance, cannot always be 
distinguished from synthetic or natural fibres (Magnusson 
et al. 2014).

It is possible to increase the accuracy of MP identification 
through chemical characterisation and explore their compo-
sition in more detail (Browne et al. 2011). Gas chromatog-
raphy coupled with mass spectrometry (GC–MS) is used to 
analyse chemicals (Fries et al. 2013). It includes destructive 

Fig. 3  Network visualisation of terms associated with MPs
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techniques (pyrolysis-GC–MS, thermal extraction-GC–MS, 
and liquid chromatography (LC)) (Elert et al. 2017), as 
well as non-destructive spectroscopic techniques (Nuelle 
et al. 2014), such as Fourier, transform infrared spectros-
copy (FTIR) (Löder et al. 2015) and Raman spectroscopy 
(Dümichen et al.2017). The most popular technique was a 
spectroscopic (FTIR and Raman) analysis of MPs in envi-
ronmental samples (Hidalgo-Ruz et al. 2012). With these 
techniques, a spectroscopic is identifying MPs (ca. < 1 mm) 
as tiny as μm is challenging. Here is an analysis of these 
methods, including advantages and limitations (Table 1) 
(Rocha-Santos et al. 2015).

Plastics (Table 2), such as polyethylene, polypropylene, 
and polystyrene, are integral to the production of face masks 
and gloves. Their waste is a known source of environmental 
pollution has led to widespread concern that SARS-CoV-2 
may be transmitted via personal protective (Zahmatkesh 
et al. 2022b) equipment (PPE) (Abbasi et al. 2020). Manag-
ing the wastewater systems efficiently at a local and regional 
level will help prevent the spread of SARS-CoV-2 at all 
levels by preventing sewage pollution from plastic waste 
containing SARS-CoV-2 (Kitajima et al.2020). Infectious 
disease transmission and prevalence of COVID-19 pandem-
ics (Zahmatkesh et al. 2022a). Due to various environmen-
tal factors (climate change, water transfer, air, and food) 
(Zahmatkesh and Sillanpää 2022) and disinfection of sur-
faces and hands (Eslami et al. 2020). The amount of MPs 
produced depends on the physical properties of the plastic 
material, including its stiffness, thickness, anisotropy, den-
sity, etc. (Ivleva 2021). On the other hand, MPs smaller than 
10 μm can be suspended and transported through the air 
(Sobhani et al. 2020).

Several studies have shown that SARS-CoV-2 can sur-
vive in aerosol droplets for 3 h (Zahmatkesh et al. 2022c) 
and on plastic surfaces for 72 h at a room temperature of 
20 °C and relative humidity of 40% (Aboubakr et al. 2021). 
In addition, several studies have shown that viral levels in 
environmental matrices are declining. However, the SARS-
CoV-2 can still threaten public health if used gloves and face 
masks are not adequately collected and disposed of under 
various environmental circumstances (Lo Giudice 2020). If 
SARS-CoV-2 contaminated PPE (Kasloff et al. 2021) waste 
is not appropriately managed (Ong et al. 2020), hundreds 
of MPs can be emitted by plastics. Thus, MPs may transmit 
the SARS-CoV-2 virus (< 10 μm) emitted from PPE waste 
up to 10 miles by wind or ventilation systems, especially 
sewage systems, from indoor to outdoor environments or 
from urban to remote areas (Silva et al. 2020). If PPE is dis-
posed of improperly, MPs are released into the sewage (Silva 
et al. 2020), providing an additional transmission vector for 
SARS-CoV-2 (De-la-Torre et al.2021).

Since the 1980s, wastewater treatment has enhanced 
effluents' final quality (Talvitie et al. 2017). Based on the Ta
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concentrations of MPs in influent and effluent, the removal 
efficiency of the WWTP was calculated (Iyare et al. 2020). 
Except for the study that determined that it is possible to 
remove up to 88% of MPs from wastewater using conven-
tional treatment techniques (preliminary and primary treat-
ment), tertiary treatment removes up to 97% (Sun et al. 
2019). Furthermore, the pre-treatment impacted MPs size 
distribution, as it removed MPs of larger sizes (Talvitie et al. 
2017). Although conventional WWTPs can significantly 
reduce MPs, the high volumes of effluent discharged make 
them a significant MPs source (Sun et al. 2019). Between 
35–59% of the MPs were removed before a primary treat-
ment (preliminary treatment) (Bilgin et  al. 2020) and 
50–98% after primary treatment (Wu et al. 2021). The MPs 
in wastewater are further reduced to 0.2–14% (Talvitie et al. 
2017) by secondary treatment (usually biological treatment 
and clarification). In this condition, sludge flocs or bacte-
rial extracellular polymers (Zhang et al. 2020) in the aera-
tion tank help accumulate debris from the plastic removal 
process (Petroody et al. 2021). A secondary treatment using 
chemicals such as ferric sulphate or other flocculants could 
also be effective in removing MPs since these chemicals 
could cause suspended particulates to aggregate and form 
flocs (Zhang et al. 2020). The MPs are likely to be removed 
significantly more efficiently with tertiary treatment. Fol-
lowing the tertiary treatment, the MPs in the wastewater 
declined further to 0.2–2% relative to the influent. Mem-
brane-related technologies have been shown to be the most 
effective at removing MPs (Wu et al. 2021).

Detection of MPs in WWTPs effluent and influent can 
reasonably be expected. There have only been a few stud-
ies on MPs in WWTPs influent, and studies have reported 
particle concentrations ranging from 1 to 10,044 particles/L 
(Estahbanati et al. 2016). MP concentrations that ranged 
from 0 to 447 particles/L have been measured from WWTPs 
effluents. The MPs concentration varies significantly 
between these WWTPs, possibly due to the different sam-
pling methods, pretreatments, and analysis methods used in 
each study. The MPs concentrations may increase if a more 
refined mesh size is applied (Stanton et al. 2020). The analy-
sation of quantitative data without chemical characterisation 
may lead to errors (Mason et al. 2016), particularly when 
distinguishing natural fibres from synthetic ones. Thus, some 
studies included fibre count in their analysis. The standard-
ising or harmonising sampling and analysing methods of 
MPs are urgently needed to compare MPs concentrations 
across studies.

The polymers have been detected in influent and efflu-
ent from WWTPs (Cheung et al. 2017). A variety of poly-
mers were found to be dominant in influent and effluent of 
WWTPs, including polyester (PES, 28–90%), polyethylene 
(PE, 4–41%), polyethylene terephthalate (PET, 33–25%), 
and polyamide (PA, 33%-35%) (Ziajahromi et al. 2017). 
Synthetic clothes are made out of PES, PET, and PA, while 
personal care products, such as body scrubs and soaps, and 
food packaging, are made from PE (Cheung et al. 2017; 
Lares et al. 2018; Ziajahromi et al. 2017). The shape is 
another critical indicator used for MPs classification. MPs 

Table 2  Due to the extensive use of masks and PPE kits during the COVID-19 epidemic

Polymers detected in WWTPs Different shapes of MPs detected in the WWTPs

Polymers Density (g/cm3) Size of 
MPs 
(µm)

Fibre (%) Granule (%) Pellet (%) Film (%) Foam (%) Fragment (%) References

Polyethylene 0.89–0.98 125 58 – 0 4 4 35 Duis and Coors 
(2016)

Polypropylene 0.83–0.92 125 8 – 4 15 4 70 Duis and Coors 
(2016)

Polystyrene 1.04–1.1 125 58 – 1 8 2 30 Gies et al. (2018)
Polyethylene tere-

phthalate
0.96–1.45 125 39 – 2 5 1 53 Lares et al. (2018)

Polyester 1.24–2.3 125 15 – 2 6 – 77 Long et al. (2019)
Polyamide 1.02–1.16 125 68 – 5 2 5 21 Mason et al. (2016)
Polyoxymethylene 1.41 125 13 – 6 13 3 65 Müller et al. (2018)
Polyvinyl chloride 1.16–1.58 65 18.5 – 3 9.9 1.3 67.3 Murphy et al. 

(2016)
Synthetic rubber 0.85–0.9 64 65.6 0.45 5.4 0.2 0.22 28.1 Lares et al. (2018)
Polyaryl ether 1.14 43 17.7 49.8 2.5 – – 30 Gies et al. (2018)
Polyurethane 1.2 50 85.92 – – 14.08 – – Murphy et al. 

(2016)
Polyvinyl fluoride 1.7 Yang et al. (2019)
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have a complex shape that can affect their removal efficiency 
in WWTPs, affecting how they interact with other contami-
nants and microorganisms (Zahmatkesh et al. 2020). There 
are currently two typical classification schemes used to clas-
sify MPs. MPs are retained on different sieve sizes in the first 
method, and a second technique uses microscopic imaging.

Several studies have concluded that humans consume 
MPs mainly through food and drinking water, although 
the conclusions are extrapolated from a limited amount of 
research. MPs are rare in the body, but limited information 
regarding their size and characteristics. The direct measure-
ment of MPs in humans and large mammals is challenging 
due to ethical and technical issues. Nevertheless, the faeces 
can serve as excellent representative samples for studying 
the interactions between MPs and gut flora, as they may 
provide direct evidence of MP inhalation. MPs have been 
identified in the faeces of animals in only a few studies, but 
not in an effective and optimised manner.

Microplastics removal efficiency in advanced 
wastewater treatment:

An advanced treatment could provide a significantly dif-
ferent treatment process to improve effluent quality before 
discharge. The tertiary treatment technologies could be used 
(Zhang et al. 2021a, b, c), including denitrifying biological 
aerated filters (BAFs), gravity sand filtration (GSF), disc 
filters, and dissolved air flotation (DAF), membrane biore-
actors (MBRs), and advanced oxidation processes (AOPs). 
The primary and secondary treatments have already removed 
most of the MP from wastewaters; tertiary treatment is likely 
to have less impact on MP removal. In addition, the tertiary 

effluent has a fewer MPs concentration of 0.2–2%, in con-
trast to the tertiary influent. The concentrations of MPs 
would depend on the samples taken from the effluent and 
the measurement methods (Zahmatkesh et al. 2022f).

The removal efficiency of MPs can vary depending on 
the advanced treatment technique. In several studies, the 
removal efficiency of MPs using various advanced treatment 
techniques has been compared, and tertiary treatment that 
utilises membrane-related techniques proved to be the most 
effective method. On average, the MPs are declined by 97% 
with advanced treatment. The treatment process affects the 
removal efficiency of MPs. The most powerful technology 
that can remove MPs is a MBR (99.9%), followed by three 
main types of methods: rapid sand filter (97%), dissolved air 
flotation (95%) and disc filter (40–98.5%) (Ngo et al.2019) 
(Figs. 4, 5).

Effect of membrane process on removing 
microplastics

The MPs are still a challenge for membrane technology. The 
studies have highlighted the potential when membrane sepa-
ration and membrane bioreactor MBR technology are used 
alongside other treatment methods to achieve more effective 
MPs removal (Poerio et al. 2019). There is a strong correla-
tion between removing plastic particles and the parameters 
used to identify them, such as their shape, size, and mass. 
Several factors can affect the membrane process perfor-
mance, including material, pore size, thickness, and surface 
properties (Golgoli et al. 2021; Zahmatkesh et al. 2022g) 
(Fig. 6).

As wastewater treatment progresses, biofilms are becom-
ing more popular with processes such as fluidised bed 

Fig. 4  Removed various MPs 
in the primary treatment (grit 
chamber + primary settling), 
secondary treatment (bioreac-
tor + secondary settling), and 
tertiary treatment (coagula-
tion + ozone, membrane disc 
filter and rapid sand filtration) 
and effluent
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reactors, rotating biological contactors, and MBR. Due to 
its high capacity to remove contaminants, MBR is the most 
popular among these technologies for high-strength waste-
water treatment (Padervand et al. 2020). As a result of the 
dual biodegradation and membrane filtration mechanisms, 
only small molecules can pass through the membrane. The 
solid particles, biomass, and macromolecules are captured 
in the membrane and removed with the slow sludge (Zhang 
et al. 2020). Thus, MBRs can remove up to 99.9% of MPs. 
In test results conducted at Kenkaveronniemi WWTP in 
Finland, the technology reduced MPs concentrations from 
6.9 ± 1.0 item/L down to 0.005 × 0.004 item/L. Talvitie 
et al. (2017) test found only two MPs passing through the 
MBR system because of clogged filters and leaks in seals. 
The technology was also successful for Lares et al. (2018), 
who observed 99.4% MP removal. MPs were removed at a 
consistent and significant rate by MBR. In contrast to other 
wastewater treatment filters, membrane bioreactor filters 
do not have large pores (around 0.08 m) that MPs cannot 
pass through. As a result, MBR effectively eliminates MPs 
from wastewater flow, and it is probably the most efficient 
wastewater treatment technology (Zahmatkesh et al. 2022h) 
(Table 3).

The MBR technology has identified the three main limita-
tions: controlling biofilm thickness (Ngo et al.2019), conges-
tion (Joo et al. 2021), and liquid distribution (Lv et al. 2019), 

determining its efficacy. According to Lares et al. (2018), 
99.4% of the MPs were removed in comparison to Talvitie 
et al. (2017). The size of the MPs in Lares et al. (2018)'s 
research was significantly greater than that of the other stud-
ies, 250 m versus 20 m, with the MPs being removed at a 
rate lower than 99.4%. The membrane primarily captures 
MPs of larger size. As a result of the constrained factors, 
MBR technology is ineffective after a period of operation.

Effect of ultrafiltration on removing microplastics

Removing MPs during the coagulation and ultrafiltration 
processes (UF) represents a significant challenge because 
these technologies are used to produce drinking water (Ma 
et al. 2019). In recent years, only a few papers have reported 
the removal of MPs through coagulation and UF processes. 
The ultrafiltration and coagulation techniques are used along 
with Fe-based coagulants, and (Ma et al. 2019) reviewed the 
type and behaviour of PE removed from drinking water. PE, 
one of the plastic pollutants detected in the water, has a den-
sity similar to water (0.92–0.97 g/cm3), making its removal 
by water treatment challenging. Following coagulation, there 
was a low removal efficiency (below 15%) of PE particles, 
indicating that the only coagulation process is insufficient 
to remove MPs. However, when coagulation was enhanced 
with polyacrylamide (PAM), PE removal efficiency was 

Fig. 5  Overview of previous studies for removing MPa (Dubaish 
et  al. 2013; Dris et  al.2015; Tagg et  al. 2015; Mason et  al. 2016; 
Carr et al. 2016; Mintenig et al. 2017; Michielssen et al. 2016; Talvi-

tie et  al.2017; Talvitie et  al.2017; Leslie et  al. 2017; Ziajahromi 
et al.2017; Lares et al. 2018)
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significantly increased from 13 to 91% for small-particle 
size (d < 0.5 mm) (Li et al. 2021).

As part of the UF performance, coagulation with PE led 
to a progressively reduced layer of membrane fouling. Due 
to large PE particles being present in the floc cake layer 
by increasing the dosage of coagulant, the porosity of the 
layer increased. Using only flocs resulted in less severe 
membrane fouling, and the PE particles with larger sizes 
influenced membrane fouling positively. Following the coag-
ulation with 0.2 mmol/L PAM and 2 mmol/L  FeCl3·6H2O, 
the membrane flux dropped by 10% only in the presence of 
large-particle PE (2 < d < 5 mm) (Enfrin et al. 2020). There 
is no guarantee that these results will be valid since many 
factors can influence them. For example, membrane process 
and plastic characteristics (chemical composition, size, and 
shape) may influence the results.

Effect of reverse osmosis on removing microplastics

According to Ziajahromi et  al. (2017), reverse osmosis 
(RO) effectively removed MPs. In order to characterise and 
quantify MPs, samples were taken from a wastewater treat-
ment facility that uses several treatment methods such as 
sand and sedimentation, biological treatment, flocculation, 
de-chlorination / disinfection, ultrafiltration, and RO. The 
observations of the samples after RO reveal the presence 
of microplastic fibres. A FTIR is beneficial in detecting and 
identifying irregular-shaped MPs in attenuated total reflec-
tance techniques (ATR) as modified polyester resin (alkyd 
resin), commonly used in paints. According to the authors, 

Fig. 6  Water filtration membrane

Table 3  Using various technologies to remove MPs

Various treatment 
methods for remov-
ing MP

Smallest 
size of MP 
(µm)

MP Influent 
concentration 
(mg/L)

MP Effluent 
concentration 
(mg/L)

MP removal (%) Techniques for detec-
tion

References

A 2O 50 – – 54.4 FTIR Yang et al. (2019)
A 2O 47 47.4 34.1 28.1 Raman Liu et al. (2019)
Activated sludge 25 1.4 0.5 66.7 FTIR Ziajahromi et al. (2017)
Trickling filters 64 2.6 0.5 80.8 FTIR Gies et al. (2018)
Primary/RO 25 2.2 0.2 90.4 FTIR/Visual Ziajahromi et al. (2017)
Primary/dissolved air 

flotation
20 2 0.1 95 FTIR Talvitie et al. (2017)

Primary/MBR 20 6.9 0 99.9 FTIR/Raman Talvitie et al. (2017)
Primary/MBR 250 57.6 0.4 99.4 FTIR/Raman Lares et al. (2019)
Primary/MBR 0.7 68 51 – Visual Leslie et al. (2017)
Primary/MBR 20 91 0.5 99.4 Visual Michielssen et al. 

(2016)
Primary/MBR 250 57.6 0.4 99.3 FTIR/Visual/ Raman Lares et al. (2018)
Primary, secondary, 

tertiary (GF, BAF)
125 – 0.009 – Visual Mason et al. (2016)

Primary, secondary, 
tertiary (gravity 
filter)

40 – 0 – FTIR/Visual Carr et al. (2016)
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this microplastic detection is due to membrane defects or 
a small opening in the pipework, thus showing the need to 
devise methods to remove MPs ad-hoc (Im et al. 2021). In 
conjunction with membrane bioreactor technology, MPs can 
be removed most effectively with RO (Skuse et al. 2021).

Nanotechnology has revolutionised RO processes, and 
biomimetic RO membranes have improved RO efficiency. 
However, this technology has captured only 90.45% of 
the plastic debris that extends beyond 25 cm. Compared 
to MBR, the result is lower, 99.9%, with more minor MPs 
(20 µm). Although the WWTPs have four treatment stages, 
including primary, secondary (Poerio et al. 2019), tertiary 
treatments and RO, 10 M of plastic debris are released into 
the natural aquatic environment each day.

Effect of chlorination and UV‑oxidation on removing 
microplastics

The chlorination and UV-oxidation are the most widely 
used advanced oxidation processes in WWTPs. Chlorine 
as a disinfectant is widespread in WWTPs (Kelkar et al. 
2019). Despite this, MPs were not entirely resistant to chlo-
rine attacks. More MPs were formed during chlorination 
because MPs cracked during the process (Ruan et al. 2019). 
This may have been caused by chlorination breaking the 
bonds and creating new ones during the reaction (Lv et al. 
2019). According to the new chemical structure of high-den-
sity polyethylene (HDPE) in chlorine disinfection (Eichhorn 
et al. 2001), it consisted of C–C–C asymmetrical chains, 
C–C–C symmetrical chains,  CH2 twists, and  CH2 bends, 
observing a compression force on Raman peaks after intense 
chlorination (Wang et al. 2018). In addition, an entirely new 
chlorine-carbon bond was formed (Cl–CH2–C–H). Increas-
ing toxicity and hydrophobicity of carbon-chlorine bonds 
could lead to MPs adsorbing and accumulating potential 
hazards quickly.

The chlorine occurs during polystyrene's aliphatic and 
aromatic degradation (Zebger et al. 2003). Moreover, the 
aliphatic C-H backbone shifted towards a higher wavenum-
ber (from 2901 to 2940  cm−1). The shift signified that the 
backbone bond was compressed towards higher energy. The 
solid nature of MPs oxidised by chlorination also changed 
their physical and chemical characteristics (El-Shahawi et al. 
2010). A polypropylene was not susceptible to chlorination. 
Although high dosages and long exposure times were used, 
no changes in chemical bonds were observed. The coexist-
ence of other pollutants, microorganisms, and biofilms may 
affect the MPs structures due to competitive reactions and 
chlorine quenching.

MPs, due to UV-oxidation, changed in topography and 
chemical properties. The MPs were primarily homogenous 
and compact in the original. In the process of UV-oxidation, 
MPs become rather rough. Polyethene, polypropylene, and 

polystyrene suffered everyday degradations due to slight oxi-
dation, cracks, and flakes. Having a crack or flake in MPs 
caused them to break easily, which led to smaller and even 
nanoscale plastics (Cooper et al. 2010). Fractures can extend 
into cracks, considered stress concentrators, and fracture 
loci. The brittle surface areas or layers cause the embrittle-
ment of flakes of microplastic. The UV-oxidation MPs are 
less well known for their intermediates and toxicity. The 
MPs degradation should be studied in detail in regard to 
UV irradiation time and environment differences. Salinity 
and organic matter dissolved in wastewater also affect the 
degradation of MPs in WWTPs (Zahmatkesh et al. 2022i).

Effect of ozonation and activated carbon 
on removing microplastics

Advanced water treatment technologies such as ozonation 
and granular activated carbon (GAC) filtration are used pri-
marily to reduce contaminants (Wang et al. 2020a, b, c). 
The effects of ozonation integrated with GAC filtration on 
MPs removal have been investigated. They found that MPs 
concentrations in effluent were slightly increased; however, 
56.8–60.9% of the MPs were removed using the GAC fil-
tration process (Zahmatkesh et al. 2022j). MPs may also 
be broken up into smaller sizes during the ozonation pro-
cess, which will benefit subsequent GAC filtering since this 
method is particularly effective at removing small particles. 
The top three polymer types removed by GAC filtration were 
PE, PP, and PAM.

Microplastics in the airborne

Sources of MPs in the air are widely dispersed, which 
determines exposure to them in the environment. With 
the assumption that MPs are evenly distributed per cubic 
metre on the surface and are vertically distributed up to 
10 km above the ground, an effective radiative forcing of 
0.044 × 0.399 mW/m2 has been calculated for present-day 
AMPs. Several factors lead to primary MPs, primarily syn-
thetic textiles, erosion of synthetic rubber tyres, and city 
dust (Revell et al. 2021). The wind transfer is credited with 
creating 7% of all ocean contamination (Chen et al. 2020). 
There may also be sources of AMPs, such as plastic frag-
ments released from clothing and house furnishings, materi-
als in buildings, waste incineration, landfills, industrial emis-
sions, particle resuspension, particles from traffic, synthetic 
particles used in horticultural soils (e.g., polystyrene peat), 
sewage sludge used as fertiliser, and tumble dryer exhaust 
(Prata 2018; Wang et al. 2021a, b, c). Fashion and season 
play a significant role in influencing the amount and quality 
of MPs particles in airborne clothing. In addition, artificial 
textiles may contribute to environmental pollution in indoor 
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and outdoor settings (O'Brien et al. 2020). Several factors 
affect their fate and dispersal in indoor and outdoor environ-
ments. MPs may also be subject to the same factors affecting 
particle transport in the atmosphere as particulate matter 
(Horton et al. 2018), including wind, temperature, and pol-
lution concentration (Bullard et al. 2021).

Despite the lack of studies on environmental exposure, 
AMPs cause illnesses in industrial workers (Fig. 7). MPs 
can cause occupational illnesses in certain positions even 
when they are expected to be exposed to low environmental 
concentrations (Prata 2018). The following industries can 
produce airborne MPs: (a) synthetic textiles, (b) flocks, and 
(c) vinyl chloride and polyvinyl chloride (PVC) (Amato-
Lourenço et al. 2020).

Plastic particles or leachates from plastic particles have 
been linked with occupational diseases (Xu et al. 2020). 

Depending on an individual's metabolism and suscepti-
bility, response to inhaled particles may be manifested in 
different ways, including immediate bronchial reactions 
(asthma-like), diffuse interstitial fibrosis (Campanale 
et al. 2020) and granulomas with fibre inclusions (extrin-
sic allergic alveolitis, chronic pneumonia), inflammatory 
and fibrotic changes in bronchial and peribronchial tissues 
(chronic bronchitis), and pneumonia (Silva et al. 2021). 
The synthetic textile, flock, vinyl chloride, and PVC indus-
tries are often occupational diseases. This is because the 
plastic particles irritate the skin and cause these diseases, 
and they are usually undifferentiated. For example, two 
workers have been died when chronic inhalation of poly-
acrylate nanoparticles caused respiratory failure from 
inadequate ventilation in an air spray unit.

Fig. 7  Effect of AMPs on the human body system
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Airborne microplastic and SARS‑CoV‑2 in the area 
surrounding

SARS-CoV-2, a new human coronavirus that causes severe 
respiratory tract infections, has recently emerged as a sig-
nificant concern for global health (Fig. 8). Transmission of 
SARS-CoV-2 is believed to occur primarily through direct 
contact between people and surfaces, and it is crucial for 
viral transmission that a virus can survive in the environ-
ment. The viruses survived on plastic surfaces for up to 
five days at room temperature and 3 h in aerosols (Prather 

et al. 2020). Due to MPs' ability to be carried in the air, 
SARS-CoV-2 can incubate in formed viral biofilms on their 
surfaces (Zahmatkesh et al. 2022d). Since MPs are carried 
airborne over long distances (over 100 km), this allows for a 
more extended range of travel for the virus than is currently 
expected (Wang et al. 2020a, b, c) (Table 4).

The SARS-CoV-2 virus is easily contracted by touching 
contaminated surfaces and hands; thus, it has been strongly 
urged to wash hands with soap or sanitiser to prevent the 
virus from being spread and wear masks to avoid excreting 
droplets/fluids (Fig. 9). An airborne MPs contaminated with 

Fig. 8  Effect of SARS-CoV-2 on respiration

Table 4  Epidemiological comparison of respiratory viral infection

Disease Flu SARS-CoV-2 SARS-CoV MERS

Disease-causing pathogen

R
0
(basic reproductive number) 1.3 2–2.5 (COVID-19 data as of March 2020 3 0.3–0.8

CFR (case fatality rate) 0.05–0.1% 3.4% (COVID-19 data as of March 2020) 9.6–11% 34.4%
Incubation time 1–4 days 4–14 days (COVID-19 data as of March 2020) 2–7 days 6 days
Hospitalisation rate 2% 19% (COVID-19 data as of March 2020) Most cases Most cases
Community attack rate 10–20% 30–40% (COVID-19 data as of March 2020) 10–60% 4–13%
Annual infected (global) 1 billion N/A (ongoing) 8098 (in 2003) 420
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the virus is another way to contract it. According to stud-
ies, SARS-CoV-2 can survive on plastic surfaces (also in 
aerosol) for five days at room temperature (Aboubakr et al. 
2021). In contrast, it does not survive on copper for four days 
(Fig. 10), stainless steel for two to three days, wood or glass 
for four days, or cardboard for 24 h (Marquès et al. 2021). 
The SARS-CoV-2 and MPs were found in faeces, and it is 
believed that the aerosolisation of viruses in contaminated 
faeces has led to the spread of this outbreak.

Since MPs, as well known, can transport to new areas 
and contaminate them by re-concentrating, they are asso-
ciated with significant ecological risks. The research has 
recently shed light on their sources, pathways, reservoirs, 
and their distribution and deposition in the environment. 
SARS-CoV-2 can survive and spread in aerosol forms; it has 
primarily been detected downstream up to 13 feet from the 
source, although there have been isolated infections found 
up to 8 feet upstream. MPs appear at all levels of the atmos-
phere, as demonstrated by airborne MPs. Due to its size 
(around 120 nm) (Zahmatkesh et al. 2022e), SARS-CoV-2 
can adhere to MPs' surfaces and transport them via biofilms. 
MPs have enormous surface-to-volume ratios, making them 
an excellent sorbent for contaminants. However, Microbial 
communities and viruses are closely associated with par-
ticulate matter in urban environments. SARS-CoV-2 may 
be able to bind MPs through a mechanism of adsorption. 
The MP fibres and the high air temperature and humidity 

were associated with SARS-CoV-2 RNA shown in Figs. 11 
and 12. MP's may carry viruses in the air and increase their 
survival, thus helping them enter the human body.

Despite ongoing research, airborne particulate matter-
associated microbiomes, particularly viruses, remain largely 
unexplored in urban environments. The SARS-CoV-2 may 
be able to bind MPs through adsorption. Given that fibres 
have a large surface area, they are valuable carriers. Also, 
proof substances prevent rapid evaporation, thereby extend-
ing virus survival. It would appear that SARS-CoV-2 can 
survive and internalise MPs with the help of the protective 
protein coating they acquire during environmental exposure, 
referred to as eco-corona (Zahmatkesh et al. 2022d).

Detection of microplastics in human faces

There are growing concerns about MPs' impact on the environ-
ment, and they have already entered the food chain. Further-
more, plastic packaging for food and water, such as polyeth-
ylene and polystyrene, is also a source of MPs. MPs can enter 
the body in other ways in humans, including digestion, absorp-
tion, and metabolism through the digestive system, breathing 
through the lungs, and ingestion through the mouth. Human 
lung tissue has been found to contain MPs. MPs can also be 
ingested through food; as well as; MPs are known to carry 
heavy metals and organic pollutants into the environment and 

Fig. 9  The process of killing SARS-CoV-2 with soap
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Fig. 10  SARS-CoV-2 less viable on a copper surface

Fig. 11  The impact of temperature on MPs and SARS-CoV-2
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organisms after they are ingested. Despite the growing evi-
dence that biota absorbs MPs, laboratory experiments have 
begun showing that MPs are also being ingested in faeces 
and solid waste. Numerous organisms naturally eliminate 
MPs from the inside of the human body through the excre-
tion of digestible and indigestible materials in faeces. Mus-
sels can even eliminate MPs as pseudofeces. Several studies 
have examined excreta from low and high trophic organisms to 
understand better the presence of MPs in faeces under ambient 
conditions. They have provided essential data regarding the 
composition and dimensions of microplastics found in faeces. 
Schwabl et al. (2019) demonstrated that human stool con-
tains nine different polymer types of MPs. Thus, plastics are 
assimilated differently depending on the plastic colour, shape, 
and size. Recent studies have detected colour, size, shape, and 
polymer characteristics of microplastics ending up in the envi-
ronment through faeces, and thus these characteristics could 
help identify what type of MPs ends up in the environment.

Conclusion

Human health is threatened by microplastics' penetration 
into food chains, which pose a serious threat to aquatic 
and terrestrial ecosystems. WWTPs provide an entry point 
for MPs into natural aquatic systems, preventing them 
from spreading throughout the environment. In advanced 

wastewater treatment, removing MPs can be achieved with 
a potential approach compared to other techniques, particu-
larly membrane bioreactors, which have a high capacity for 
removing MPs.

When personal protective equipment is improperly dis-
posed of, MPs and SARS-CoV-2 may be released into the 
atmosphere. By transmitting the illness, these MPs contrib-
ute to its spread. SARS-CoV-2 can be transmitted through 
the air if MPs are improperly disposed of or contaminated. 
SARS-CoV-2-contaminated plastic waste, such as gloves 
and face masks used in medical care, should be managed 
appropriately to prevent further SARS-CoV-2 infections. It 
is important that incentives are provided to encourage tech-
nological advancement in order to reduce environmental 
pollution from plastic waste.
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