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Abstract
Overpopulation and rapid development have put an increasing burden on the environment, leading to various water crisis. 
Importing water from abandoned mines as an alternative raw water source could be the next answer to alleviate water scar-
city problems globally. However, due to its high heavy metals content, there is a need to find an economical and effective 
method to remove heavy metals before reusing it as potable water source. Biochar, a low-cost and carbon-rich biosorbent, has 
received increasing attention on its application as a remediating agent to remove heavy metals from water. Previous studies 
have revealed the potential properties of biochar as a heavy metal removal agent including high cation exchange capacity, 
high surface area, active surface functional groups, as well as efficient adsorption. Apparently, the most important factor 
influencing the sorption mechanism is the type of feedstock materials. Spent mushroom compost (SMC), a waste product 
from mushroom cultivation, has been found as an excellent biosorbent. SMC has received global attention as it is low cost and 
eco-friendly. It also has been proved as an efficient heavy metals remover from water. Nevertheless, its application as biochar 
is still scarce. Therefore, this review focuses on the potential of transforming SMC into modified biochar to remove heavy 
metals, especially from abandoned mining water. The present review emphasizes the current trends in adsorption methods 
for heavy metal removal from water, assembles data from previous studies on the feedstock of biosorbents to biochars, and 
discusses the potentials of SMC as a biochar for water treatment.
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Introduction

Access to clean water is essential for all living organisms 
to maintain well-balanced biological processes. However, 
increasing global water demand is due to rapid development 
and overpopulation, while massive disruption from indus-
trial activities has resulted in various forms of pollution and 
water shortage. According to the United Nations, around 
40% of the world’s population will suffer from water short-
age by 2050 (Rahman et al. 2014). World Health Organiza-
tion (WHO) and United Nations Children’s Fund (UNICEF) 
also reported that an estimation of 1.6 billion people will 

face lack access to safe household drinking water by 2040. 
Recently, due to COVID-19 pandemic, 3 out of 10 people 
faced lack of hygiene due to difficult access to clean water 
(Sahithya et al. 2022). Hence, to alleviate the water scar-
city problems, one of the alternatives that has been imple-
mented by some countries including Malaysia is by import-
ing water from abandoned mining ponds as alternative 
water resources. However, the current standard operating 
procedures are not designed to remove high level of heavy 
metal contaminants in abandoned mining ponds, making 
such water is unsuitable as potable water. Thus, there is a 
significant need for a cost-effective, sustainable and practical 
solutions in removing high concentrations of heavy metals 
from ponds prior to clean water discharge.

Adsorption is a common method used in heavy metal 
treatment due to its effectiveness and economic advantage 
adsorbents (Fu and Wang 2011). This process has been 
approved to be the most promising technique in treating 
heavy metals other than the conventional method (Rosales 
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et al. 2017). Many materials can be used as adsorbents to 
remove these heavy metals. However, the removal effi-
ciency depends heavily on the physicochemical proper-
ties and the types of adsorbent. Hence, recent studies 
have been focused on searching the low-cost adsorbents 
with low maintenance, easy handling and high adsorption 
capacity properties. Low-cost adsorbents are distinguished 
for its scarcity process, abundant in nature, easily avail-
able, biomass waste products or waste materials from other 
industry (Abdolali et al. 2015). To date, numerous stud-
ies have demonstrated biochar as low-cost adsorbent to 
remove heavy metals from water treatments (Rosales et al. 
2017). Biochar is a carbon-rich material made from bio-
mass waste formed through thermal decomposition in lim-
ited oxygen condition. Biochar also is a great biosorbent 
in removing heavy metals from wastewater (Fu and Wang 
2011; Wang et al. 2019; Yaashikaa et al. 2019) due to its 
large surface area and active functional groups that aids 
in metal adsorption. Compared to activated carbon, bio-
char is considered as less expensive and does not require 
any additional activation process. Therefore, biochar as an 
adsorbent filtration media in water treatment technology 
has gained more attention as it is economical, low mainte-
nance but has high performance in removing heavy metals.

On the other hand, spent mushroom composts (SMC) are 
agricultural waste from mushroom crops harvested. Accord-
ing to Wu et al. (2019b), every 1 kg of mushroom production 
generates 5 kg of SMC residues. China covers 80% of the 
world’s mushroom production with more than 20 million 
tons of fresh mushrooms harvested. In Malaysia, approxi-
mately 100 tons of fresh mushroom harvested per annum, 
generating approximately 438 tons of spent mushroom 
composts left to be disposed (Phan and Sabaratnam 2012). 
However, as SMC contains high amount of organic con-
tents (Frutos et al. 2016), many attentions have been given 
on its application as potential raw biomass for biosorbents 
and recently as biochar. In a previous study, SMC biochar 
was used as biosorbent to remove fluorine from water (Chen 
et al. 2016). Another study also has been done to explore the 
adsorption of SMC biochar to remove copper metal from 
aqueous solution (Jin et al. 2021). The findings revealed 
SMC biochar contains abundance of lignin and demon-
strated effective copper removal.

However, there are limited studies on the application of 
spent mushroom compost (SMC) as the biochar filtration 
media for removing heavy metals especially in wastewater 
and stormwater treatment technologies as well as abandoned 
mining water. Therefore, the current review focuses on the 
potential of SMC as a low-cost and abundantly available 
material to remove heavy metal contaminants from water. In 

this study, the focus will be on the potential usage of SMC 
in water treatment. The discussion in this review is divided 
into three categories:

(1) Abandoned mining water as an alternative water source 
and the conventional treatment technologies in remov-
ing heavy metals.

(2) Converting biosorbents including SMC to potential 
biochar for heavy metal removals.

(3) Potential applications of SMC biochar as filtration 
media for abandoned mining water.

Abandoned mining water as an alternative 
water source

River is the primary raw water source in Malaysia, covering 
almost 97% of the demand, unlike countries that depend on 
groundwater and seawater. However, due to severe water 
pollution in rivers caused by rapid industrialization and 
urbanization in Malaysia, water scarcity has become an 
increasing concern. According to an assessment on lakes 
for meeting the water needs and demands in Malaysia, most 
of the lakes are polluted with crucial water quality param-
eters which were higher than the permitted levels set by the 
Department of Environment (DOE) Malaysia (Koki et al. 
2018). Consequently, a significant project for alternative 
water sources has been implemented since 2007, where 
rainwater harvesting systems have been implemented in Sel-
angor and Sarawak while other states like Kelantan, Perlis, 
Pahang and Terengganu use surface water and groundwater 
(Hamid 2015). Nevertheless, the water demand in Malaysia 
has an increasing trend and the water scarcity is still a prob-
lem. To address this issue, the authority of Selangor state 
has imported water from abandoned mining ponds as raw 
water resources (Kusin et al. 2016). However, this approach 
resulted in some disagreement among researchers on the 
water quality as abandoned mining ponds contain high con-
centrations of heavy metals (Lau et al. 2017). The World 
Health Organization (WHO) reported that most human dis-
eases are from water sources, and one of them is from heavy 
metal contamination (Abdolali et al. 2017).

Anthropogenic and natural sources can contribute to 
high level of heavy metals, but researchers found that most 
water pollution cases are linked to human activities from 
rapid industrialization (Koki et al. 2018). The environmen-
tal impacts from pollution especially heavy metal contami-
nation and their impacts on human have been discussed in 
many studies as presented in Table 1. This table shows that 
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the heavy metals which are lead (Pb), manganese (Mn), zinc 
(Zn) and copper (Cu) are the most commonly found in the 
abandoned mining water and the impacts on human bodies 
from long term of exposure.

Water quality is assessed using many chemicals, physical 
and biological parameters set by authorities. In Malaysia, 
the National Water Quality Standards (NWQS) are formally 
used to develop the water quality index (WQI) and repre-
sent the overall status of a water source. The WQI uses the 
assessment recommended by the DOE in 1974 to evaluate 
the pollution levels in Malaysian rivers. In this process, six 
important water quality parameters including pH, ammo-
niacal nitrogen (AN), biological oxygen demand (BOD), 
chemical oxygen demand (COD), suspended solids (SS) 
and dissolved oxygen (DO) are calculated to classify the 
water into five classes starting from Class I (practically no 
treatment necessary) to Class V (not meant to be used at all) 
(DOE 2006). The details of these five classes are provided in 
Table 2. Consequently, due to the increasing speculations on 
the water quality status, numerous studies have contributed 
to the evaluation of the water quality in abandoned mining 
ponds throughout Malaysia.

Table 3 shows the heavy metals analyses in water from 
abandoned mines in Malaysia. Based on the data, there are 
a few abandoned mining sites that have high heavy met-
als concentrations that exceeded the standard limits for 
raw water quality by the Ministry of Health (MOH). Other 
than high concentrations of heavy metals, studies also have 
detected low pH in the abandoned mining ponds, indicat-
ing high level of heavy metals presented in the abandoned 
mine ponds, which was possibly related to acid mine drain-
age (AMD). AMD occurs due to the weathering of sulphide 
minerals, resulting in very acidic water and elevated concen-
trations of heavy metals (Kefeni et al. 2017). Hence, these 
studies concluded that there is an urgent need for appropriate 
water treatment before using the water as alternative raw 
water source.

Generally, the water of abandoned mining ponds mostly 
contains heavy metal contaminants, leading to a great con-
cern among researchers. Most researchers suggested that 
further treatment is required before releasing the treated raw 
water into river streams for water supply. However, there is 
no specific approach to treat heavy metals prior to release 
into water bodies. Conventional water treatment processes 
generally consist of series of steps. The primary treatment 
includes aeration, the secondary treatment consists of bio-
logical treatment to eliminate dissolved organic materials, 
and the tertiary treatment involves further improvement of 
the effluent quality. Heavy metal ions are typically treated 
in the third step of water treatment. Table 4 summarizes 
the conventional methods of heavy metal removals with 
respective advantages and limitations. The most appropriate 
and employed method among water treatment technologies Ta
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is adsorption. Only certain heavy metals are successfully 
removed in the tertiary treatment, except for adsorption, 
which is known to remove high concentrations of heavy met-
als (Alias et al. 2020). Adsorption has already been applied 
as a supplementary treatment to remove organic and inor-
ganic contaminants in wastewater (Vareda et al. 2019). The 
method is cheap, easy to operate and offers flexibility in 
design and operation (Nasir et al. 2019). The most com-
mon adsorbent used is activated carbon (Yang et al. 2019) 
due to its well-developed porous structure, high surface area 
and multifunctional groups. However, activated carbon is 
expensive and the recovery of heavy metals is a tedious pro-
cess (Burakov et al. 2018). Therefore, more research and 
alternative technologies are required to remove heavy metal 
contamination in wastewater.

Converting biosorbents to biochar for heavy 
metals removal

Biosorbents are the most popular alternative adsorbents to 
replace the costly activated carbon as adsorption media. 
Biosorbents from biomass have drawn much attention due 
to biosorption mechanisms that can immobilize metals from 

industrial effluents (Niazi et al. 2016). Various biomass has 
been identified to produce low-cost biosorbents for water 
and wastewater treatments due to the ability in immobilizing 
heavy metals and feasibility to store more carbon, increase 
crop yields and enhance adsorption mechanisms (Li et al. 
2017; Pan et al. 2019; Wang et al. 2019).

Biomass waste as biosorbents

Producing low-cost biosorbents from agricultural wastes 
for removing organic and inorganic contaminants (includ-
ing heavy metals) has been studied previously for variety 
of biomass materials such as sugarcane bagasse (Hussain 
and Qazi 2016; Mattos et al. 2015; Mohamed et al. 2017; 
Sarker et al. 2017), rice husk (Noor Syuhadah and Roha-
sliney 2012) and oil palm (Daneshfozoun et al. 2016; Mohd 
Salleh et al. 2018; Montoya-Suarez et al. 2016). Although 
these biosorbents showed satisfactory results in removing 
heavy metals through adsorption, the biosorbents have lower 
sorption capacity than other sorbents, such as activated car-
bon and ion-exchange resins. Hence, research has focused 
on enhancing the sorption capacity of biosorbents through 
chemical and physical modifications.

Table 2  WQI classification for 
Malaysia (DOE, 2006)

Parameter Unit Class

I II III IV V

pH –  > 7 6–7 5–6  < 5  > 5
Dissolved oxygen (DO) mg/L  > 7 5–7 3–5 1–3  < 1
Biochemical oxygen demand (BOD) mg/L  < 1 1–3 3–6 6–12  > 12
Chemical oxygen demand (COD) mg/L  < 10 10–25 25–50 50–100  > 100
Suspended solids (SS) mg/L  < 25 25–50 50–150 150–300  > 300
Ammoniacal nitrogen (AN) mg/L  < 0.1 0.1–0.3 0.3–0.9 0.9–2.7  > 2.7
Water quality index (WQI) –  < 92.7 76.5–92.7 51.9–76.5 31.0–51.9  > 31.0

Table 3  Heavy metal analysis in water from abandoned mining ponds in Malaysia

ND is not detected, NA not applicable

Location State pH Heavy metals (mg/L) References

Cu Mn Pb Zn As

Serendah and Biru Kun-
dang lake

Selangor 5.7 0.06–0.1 ND 1.84 ND ND Hamzah et al. (2018)

Klang valley Selangor 3.4–5.0 NA  > 0.028 6 NA 56 Koki et al. (2018)
Melaka Melaka 3.4–5.0 NA NA 6 NA  > 10 Koki et al. (2018)
Multiple locations Perak 6.2–9.0 NA NA 0.019–0.075 NA 0.004 Orji et al. (2013)
Multiple locations Pahang 2.38–7.9 0.01–6 NA 0.54 0–9.86 0–0.02 Wan Yaacob et al. (2009)
Multiple locations Pahang 5.0–7.99 0.01–0.025 0.104–1.299 ND 0.01–0.642 NA Madzin et al. (2017)
Bestari Jaya Selangor 3.2–7.2 0.003 0.647–0.727 0.001–004 0.013–0.239 0.01–0.18 Madzin et al. (2015)
Bukit Besi Terengganu 2.5–6.5 0.001–0.19 2.03–7.82 0.003–0.009 0.021–0.166  < 0.001 Kusin et al. (2021)
MOH untreated raw 

water
5.5–9.0 1.0 0.2 0.1 5.0 0.05 Ministry of health
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Biomass waste as potential biochars

Biochars are chars produced from raw biomass via low oxy-
gen thermochemical processes that increase the total surface 
area and produce strong active sites for adsorption (Mohanty 
et al. 2018; Phing et al. 2014). The entire process is similar 
to the production process for activated carbon, but activated 
carbon requires additional processes that need costly oxygen 
and strong acids for char activation (Mohanty et al. 2018). 
Biochars have received increasing attention due to their 
economic production and unique features, such as high car-
bon content, cation exchange capacity and large activation 
sites for metal binding (Wang et al. 2019). Various biomass 
materials have been transformed into biochars and critically 
investigated. The overall adsorption capacities in removing 
heavy metals are tabulated in Table 5, including SMC. The 
adsorption performance and efficiency of biochars are highly 
depending on the biochar properties.

From the table, it can be concluded that these feedstock 
materials that have been transformed into biochars have very 
high potential in removing heavy metals. However, different 
types of biomass biochar give different adsorption capaci-
ties. Thus, it is crucial to explore different types of biomass 
and investigate their feasibility to remove heavy metals, as 
well as the performance of SMC as biochar in heavy metal 
removal. Hence, more research should be done in the future 
to utilize the feasibility of SMC biochar especially as filter 
media in bioretention system.

3.3. Spent mushroom compost as biosorbent

Mushroom production and demand in Malaysia have been 
gradually increasing, and mushroom is identified as one of 
the high-value commodities under the National Agro-food 
Policy (2011 − 2020). Mushrooms are delicious, highly 
nutritional, low in calories, free from cholesterol and con-
tain proteins, vitamins, fibre and also rich in potassium, iron 
and phosphorus minerals (Mattos-Shipley et al. 2016). The 
demand for mushrooms increases yearly, and improper han-
dling of SMC may result in environmental pollution. SMC 
contains a mixture of cellulose, hemicellulose and lignin, 
which contain high amount of hydroxyl, carboxyl, carbonyl, 
amino and phosphate that act as active functional groups on 
the surface of this material. These active functional groups 
favour metallic ion biosorption to achieve high adsorption 
capacity (Xiao-jing et al. 2014). SMC has been applied 
extensively in environmental remediation treatments. In 
many studies, SMC has been used as biosorbents to remove 
organic and inorganic pollutants. Applications of SMC as 

biosorbent to remove heavy metals are presented in Table 6. 
Generally, SMC has shown great adsorption capacity in 
removing single and multiple metal ions and is an excellent 
biosorbent as it minimizes the plugging in bioreactors and 
has large pore spaces and small void volume (Muhammad 
et al. 2017). On the other hand, SMC contains different types 
of polymers such as lignin, cellulose and hemicellulos which 
are degraded into numerous pores that are suitable for metal 
adsorption (Kulshreshtha 2019).

However, one of the limitations in utilizing SMC is 
the compost which can easily get exhausted, affecting its 
long-term performance (Roychowdhury et al. 2015). Thus, 
to improve the biosorption capacity of SMC, chemical or 
physical modification is introduced to pre-treat SMC biosor-
bents. However, very limited studies have been done. For 
example, the co-pyrolysis of SMC and macroalgae improved 
the cationic dye adsorption capacity by 2.2 times higher 
than the raw SMC (Sewu et al. 2017). The study added that 
more oxygen-containing groups, exchangeable cations and 
coarser surface morphology were obtained through this tech-
nique, improving adsorption synergism. Meanwhile, SMC 
adsorbent was modified using cationic surfactants (Zang 
et al. 2017) and the uptake capacity of Cr (VI) improved to 
21.44–27.34% using chemically modified SMC with cetyltri-
methylammonium bromide (CTAB). These studies showed 
that the modification of SMC is effective in enhancing the 
adsorption capacity. However, further studies on SMC modi-
fication need to be conducted, specifically on physical modi-
fications where simple operation, easy handling and minimal 
investment are required.

Role of spent mushroom compost as biochar

The application of SMC as biochar is still relatively new in 
the research field. Therefore, the discovery of SMC as bio-
char is limited and needs to be explored thoroughly. Most 
studies of SMC biochar are pioneered by the countries pro-
ducing mushrooms on a large scale, where the waste produc-
tion has become a waste management problem and adequate 
management is required to turn the waste into a potential 
feedstock especially for biochar. Table 7 lists the applications 
of SMC biochar to remove heavy metals from previous lit-
eratures. Abdallah et al. (2019) studied the role of SMC bio-
char in removing heavy metals (Zn, Cu and Pb) from waste-
water in both batch and continuous systems. In this study, 
SMC biochar was produced via slow pyrolysis and tested to 
remove heavy metals by considering the effects of several 
factors including pH, initial solution, contact time, tem-
perature and competitive adsorption. The characterization 
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Table 5  Biochar from various feedstock materials and the adsorption capacities in removing Cu(II), Zn(II) and Pb(II)

Biochar Pyrolysis tem-
perature (°C)

Residence time Heavy metals Adsorption 
capacity (mg/g)

References

Agricultural and forest residues
Oil palm 700 12 h Cu (II)

Pb (II)
Zn (II)

49.4
58.8
45.7

Samsuri et al. (2014)

Rice husk 700 12 h Cu (II)
Pb (II)
Zn (II)

37.5
43.9
34.3

Samsuri et al. (2014)

Peat moss 800 90 min Cu (II)
Pb (II)

39.8
81.3

Lee et al. (2015)

Pistachio shell 550 1 h Cu (II)
Pb (II)

1.17
1.22

Komnitsas et al. (2015)

Peeled pine wood 700 3 h Pb (II) 91.98 Komnitsas et al. (2015)
Hickory chips 600 2 h Zn (II) 0.71 Ding et al. (2016)
Phyllostachys pubescens 450 3 h Pb (II) 67.4 Zang et al. (2017)
Mushroom stick 800 90 min Cu (II)

Pb (II)
2.43
4.9

Chen et al. (2016)

Spartina alterniflora 500 2 h Cu (II) 48.49 Li et al. (2017)
Nut shield 600 1 h Pb (II) 4.61 Vítková et al. (2016)
Sugarcane bagasse 500 3 h Cu (II) 86.96 Abdelhafez and Li (2016)
Orange peel 500 3 h Cu (II) 27.86 Abdelhafez and Li (2016)
Cactus fibres 600 1 h Cu (II) 3.5 Hadjittofi et al. (2014)
Porplyra tenera 500 1 h Cu (II) 75.1 Kim et al. (2016)
E. Compresa (microalgae) 500 1 h Cu (II) 137 Cho et al. (2015)
Colocasia esculenta 600 1 h Cu (II) 2.31 Banerjee et al. (2016)
Swine and goat manure 800 1 h Cu (II) 40.64 Zeng et al. (2018)
Pinewood 600 2 h Pb (II) 4.91 Wang et al. (2019)
Plum stone 600 2 h Pb (II) 47.05 Vítková et al. (2016)
Marine macroalgae 600 1 h Cu (II)

Zn (II)
23.16
22.22

Bakshi et al. (2018)

Sugarcane leaf 550 1 h Pb (II) 103 Li et al. (2017)
Rice hull 400 2 h Pb (II) 367.65 Han et al. (2016)
Hickory wood 600 1 h Pb (II)

Cu (II)
22.82
15.7

Wang et al. (2019)

Banana peels 230 1 h Pb (II) 241 Zhou et al. (2017)
SMC 500 3 h Cu (II)

Zn (II)
Pb (II)

364.2
333.2
564

Abdallah et al. (2019)

SMC 300–600 4 h Cu(II) 65.6 Jin et al. (2021)
Industrial by-products
Sewage sludge 900 20 min Cu (II)

Pb (II)
Zn (II)

0.19
0.926
0.2

Chen et al. (2014)

Dried sewage sludge 650 30 min Pb (II)
Cu (II)

40.30
6.70

Otero et al. (2009)

Anaerobically digested sugarcane bagasse 600 Pb (II) 135.5
Anaerobically digested whole sugar beet 600 Pb (II) 40.8
Anaerobically digested animal waste 600 Pb (II) 51.4 Inyang et al. (2012)



6996 International Journal of Environmental Science and Technology (2023) 20:6989–7006

1 3

of SMC biochar showed the presence of functional groups 
and the value of cation exchange capacity. Based on the 
results, the maximum adsorption obtained was 564 mg/g 
for Pb, 364 mg/g for Cu and 332 mg/g for Zn, higher than 
the adsorption for biochars from apricot stone, soybean hulls 
and pecan shells. The adsorption efficiency of SMC bio-
char was evaluated to remove Pb (II) (Wu et al. 2019). The 
authors mentioned that the physicochemical properties of 
the SMC biochar (i.e. large Brunauer–Emmett–Teller (BET) 
surface area, small pore structure and abundant functional 
groups) contributed to the high adsorption capacity of Pb 
(II) with the maximum adsorption capacity of 326 mg/g.

Jin et al. (2021) conducted an advanced study on the char-
acterization of various species of SMC and evaluated the 
adsorption performance in removing Cu (II) from aqueous 
solution. A total of 16 biochars from four types of SMC were 
utilized and produced at different pyrolysis temperatures. All 
SMC biochars showed highly different properties and were 
significantly affected by the pyrolysis temperatures. Further-
more, all four SMC biochars showed effective removal of 
Cu (II) with the maximum adsorption capacities between 
52.6 and 65.6 mg/g for biochars pyrolyzed at 600 °C. These 
properties define each unique condition. Different materials 
show different performances and efficiencies, depending on 
their physical properties (i.e. surface morphology and pore 
size), chemical composition and materials. The performance 
of biochars as adsorbents is also influenced by pH, initial 
metal concentration that involves adsorption isotherms, con-
tact time (adsorption kinetics) and adsorbent dosage.

Other than that, the production of biochar using differ-
ent pyrolysis temperature affects the overall removal per-
formance of SMC biochar. Chang et al. (2020) and Aga-
ricus (2021) studied the effect of pyrolysis temperature on 
the adsorption capacities and revealed SMC had the high-
est removal at high pyrolysis temperature (> 650 °C) due 
to rapid increase in surface area and well development of 
mesoporous structure causing effective adsorption of heavy 
metals.

The performance of adsorbents in various field applica-
tions is strongly dependent on its characteristics. The physi-
cal and chemical characteristics vary significantly depending 
on the raw material and the production processes (Spokas 
et al. 2014).

Physical characteristic such as surface morphological 
and pore size is a crucial property to measure adsorption 
efficiency. Chemical properties also contribute to the adsorp-
tion performance of an adsorbent. Table 8 shows the com-
parison of physicochemical properties of SMC as biosorbent 
and biochar at 700 °C as compared to an activated carbon 
from previous studies. This information compiles a thor-
ough explanation on how SMC biochar has been a great 
improvement from its raw material which can outstand or 
has similar performance of activated carbon. Surface area 
and pore volume of biochars are relatively important features 
affecting adsorption and retention properties of the mate-
rials. Masebinu (2019) found that the uptake of adsorbate 
into biochar relies on the accessible volume of micropores 
and surface area of the biochar. Based on the radius of the 

Table 6  Application of SMC as biosorbent to remove heavy metals from literature

Biosorbent Heavy metals Adsorption capacity 
(mg/g)

Removal efficiency 
(%)

References

Spent mushroom compost (SMC) Cr(VII) 9.327 80–98 Dong et al. (2018)
Pb (II) 149.1 Liu et al. (2018)
Mn (II) 17.25 Kamarudzaman et al. (2015)
Cu (II) 50 Xiao-jing et al. (2014)
Cd(II)
Pb(II)
Fe(II)
Co(II)
Mn(II)
Zn(II)
Cu(II)

Corral-Bobadilla et al. (2019)

Pb(II) 60–97.87 Molahid et al. (2018)
Mn (II) 3.341 Kamarudzaman et al. (2015)
Cd(II)
Pb(II)
Cu(II)

40.43
15.16
36.2

Frutos et al. (2016)

Ni(II) 3.04 Tay et al. (2011)
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openings, three types of pores can be defined: (1) micropo-
res, which are responsible for the surface area and immersive 
adsorption capacity factor of biochar; (2) mesopores, which 

are critical for liquid–solid adsorption processes; and (3) 
macropores, which are responsible for aeration, hydrology 
and bulk soil structure (Qambrani et al. 2017).

Table 7  Application of SMC biochar in removing heavy metals from aqueous solution to date

Biochar Heavy metals system Initial con-
centration 
(mg/L)

Adsorption 
capacity 
(mg/g)

Description References

Spent mushroom compost Pb
Cu
Zn

Batch and column 30 Pb 564
Cu 364
Zn 332

Biochar was prepared 
by carbonization and 
evaluated by several 
laboratory factors 
including initial pH, 
contact time, tempera-
ture and competitive 
adsorption in removing 
mixed metals

Abdallah et al. (2019)

Spent P.ostreatus sub-
strate

Pb Batch 1000 326 Two types of SMC were 
chosen as biochar raw 
materials to investi-
gate Pb adsorption 
performance and study 
the physicochemical 
properties

Wu et al. (2019a)

Spent shiitake substrate Pb Batch 1000 398 Wu et al. (2019a)
Spent mushroom compost Cu Batch and column 50 52.6–65.6 16 biochars were 

produced from four 
types of SMC to study 
the effect of pyrolysis 
temperature and charac-
terization in removing 
Cu(II) in batch and 
continuous system

Jin et al. (2021)

Spent mushroom compost Cu
Zn
Cd

batch 100 68.1
55.2
64.8

Novel application of 
mineral-rich biochar 
from SMC with various 
pyrolysis temperature 
(350–750 °C) to remove 
mixed metals

Agaricus (2021)

Spent mushroom compost Pb
Cd

batch 700 262.75
75.82

SMC biochar to remove 
Pb and Cd from water 
with effect of pyrolysis 
temperature

Chang et al. (2020)

Table 8  Comparison of physicochemical properties of SMC biosorbent and SMC biochar

*Values may vary

Media pH BET surface 
area  (m3/g)

Pore volume 
 (cm3/g)

Pore size (nm)_ Elemental analysis References

C H N O

SMC biosorbent* 7.2 0.32 0.003 30.73 54.3 3.45 2.16 24.9 Corral-Bobadilla 
et al. (2019)

SMC biochar at 700 °C* 12.07 218.70 0.138 2.52 44.85 1.23 1.09 9.55 Wu et al. (2019)
Activated carbon* 5.84 1162 0.6193 10.6 41.59 6.18 1.67 45.98 Tsai et al. (2020)
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As stated by Chen et al. (2016), greater pore volume and 
Brunauer–Emmett–Teller (BET) analysis grants stronger 
physical adsorption capacity, whereby BET is a method 
to calculate the surface area involving nitrogen adsorption 
(Shaheen et al. 2018). From the table, the BET surface area 
of biochar with pyrolysis temperature of 700 °C is 200 times 
higher than the SMC as raw materials. The pyrolysis pro-
cess decomposed the lignin material, released the volatile 
substance and enhanced the surface area of biochar. High 
surface area contains more micropores which are respon-
sible for adsorption of heavy metals. Hence, higher pore 
volume showed by SMC biochar compared to biosorbent 
aids in adsorption and increases the adsorption performance. 
Although high surface area gives an excellent adsorption 
performance, smaller pore size is needed to increase the 
adsorption rate and this is shown with the smaller size dis-
tribution of SMC biochar compared to biosorbent. Kizito 
et al. (2015) concluded that smaller particle size increases 
the adsorption rate due to shorter diffusion path and causes 
higher penetration of the adsorbate into the pores of the 
adsorbent, increasing adsorption performance. Further 
statement on the porosity can be supported by the surface 
morphological images using scanning electron microscope 
(SEM) in Fig. 1. From the SEM images, it is shown that the 
porous image of SMC biosorbent is enhanced by the pyroly-
sis process which promotes the formation of micropores in 
SMC biochar.

Chemical properties such as pH and elemental analysis 
play significant roles in the adsorption of heavy metals. 
SMC biochar has slightly higher pH than SMC biosorbent 
and this favours the adsorption of heavy metals. High pH 
contributes to better heavy metals adsorption by biochar 
(Mohan et al. 2014). Samsuri et al. (2014) found that low 
pH creates higher hydrogen ion condition which competes 
with heavy metals for the sorption sites. High pH adsorbent 
can also act as alkalinity generator to increase the acidic 

pH in acid mine drainage, which subsequently facilitates 
the condition for metal removal (Muhammad et al. 2017). 
Hence, by an increase in pH, more adsorption sites are avail-
able for heavy metals. Additionally, elemental analysis is an 
important parameter as it exhibits the elemental composition 
of feedstocks and different materials have different propor-
tions of element composition, thus exhibiting different prop-
erties and adsorption capacities. The content of carbon in 
the biochar is important as it gives idea about the stability 
of the biochar. The carbon content in SMC biochar is highly 
similar to activated carbon hence explaining the stability of 
the biochar.

Perspectives

In summary, the role of SMC as biochar has been proven 
effective in removing heavy metal from aqueous solutions. 
Previous studies have assessed the applications of SMC 
biochar in removing various heavy metals in a batch and 
column experiments and concluded the potential of SMC 
biochar as an effective biosorbent. SMC biochar is not just 
highly abundant, and it is also economically practical as it 
reduces disposal cost and promotes sustainability. Addition-
ally, this carbon-rich material has its unique features such 
as large surface area that promotes higher adsorbent effi-
ciency, just like other feedstock materials and activated car-
bon. Therefore, further application to utilize SMC biochar 
is recommended especially as filtration media which has not 
been explored yet.

Application of biochar as filtration media 

As mentioned in Introduction, there is no study yet on incor-
porating SMC biochar as a filter media to treat heavy metals 
related to mining water. Most of previous studies were done 

Fig. 1  SEM images of a SMC biosorbent and b SMC biochar
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in a batch and column experiments using other biochars 
and the potential application of these biochars to treat acid 
mine drainage was explored. In a study by Oh and Yoon 
(2013), poultry litter-derived biochar was used to treat heavy 
metal contaminations from acid mine drainage. The study 
used the poultry litter-derived biochar produced from slow 
pyrolysis at 400 °C in both batch and column experiments. 
The study revealed that biochar could treat heavy metals at 
low pH with metals removal of 99%, 61%, and 31% for Zn, 
Mn, and SO4, respectively. The authors reported that the 
biochar reacts as an alkaline generator, increasing the pH 
using the existing carbonate minerals from the biochar. Most 
of the heavy metal removal mechanisms include precipita-
tion and sorption on the biochar surface. Similarly, microbi-
ally enriched poultry litter-derived biochar was applied to 
decontaminate mine drainage (Soares et al. 2018). The cow 
manure sulphate-reducing bacteria (SRB)-enriched biochar 
was used as the remediating media to treat sulphate from 
mining water. The biochar reduced 41% of sulphate con-
centration and was 39% more effective than other treatment 
methods. The high surface area of the biochar assists the 
overall removal of sulphate. Interestingly, the presence of 
SRB in different environments showed potential in treat-
ing heavy metals. However, by using the SRB-rich biochar, 
nutrient leaching might occur, causing competitive interac-
tions and consequently leading to poor adsorption.

The conventional filter media using soil layer can pro-
vide successful physical–chemical and biological treatments. 
However, the performance was variable and research proved 
that it has first flush effect and transient wetting and drying 
which could hinder contaminant attenuation as well as re-
immobilizes contaminants which leads to advanced design 
using other materials that is readily available, replaceable 
and inexpensive which includes biochar (Tsang et al. 2019). 
On the other hand, the application of biochar as filter media 
for stormwater treatment has been religiously explored and 
shown imperative result in removing contaminants. Selec-
tion of an optimum filtration media is crucial as it will influ-
ence the heavy metal removal. The roles of biochar as filter 
media in the best management practices (BMPs) include 
bioretention systems (Biswal et al. 2022), low impact devel-
opment (LID) (Mohanty et al. 2018), stormwater biofilters 
(Valenca et al. 2021) and anaerobic bioreactors (Küçükağa 
et al. 2022). Two common properties for filtration media are 
(1) high hydraulic conductivity to minimize flooding and 
(2) high storage volume to enhance contaminant removals. 
Hence medium–coarse sand is commonly used to maintain 
high conductivity. While clay is used to increase the storage 
volume, it lowers the hydraulic conductivity. In contrast, bio-
char provides both advantages simultaneously. Biochar has 

unique property of extensive internal pore structures which 
not only increase storage volume but also increase hydrau-
lic conductivity (Mohanty et al. 2018). Thus, to alleviate 
the efficiency of stormwater treatment facilities, researchers 
have attempted to enhance the performance by mixing it 
with suitable materials including biochar.

Biochar as filter media exhibits outstanding performance 
in removing heavy metals. A study using wood-derived bio-
char for stormwater treatment using bioretention column 
demonstrated highly efficient metal removal and supressed 
desultory degree of metal remobilization with metal removal 
of 50–70% (Sun et al. 2020). Sun et al. (2020) mentioned 
that biochar could replace activated carbon (AC) in remov-
ing contaminants. While it cost much lesser than AC, its 
outstanding metal-binding adsorption effectively eliminates 
heavy metals and its mechanism of action is diverse due to 
its large surface area and multiple active functional groups. 
Moreover, Tsang et al. (2019) published a review paper on 
the novel application of biochar in stormwater harvesting 
and gathered various heavy metals removal efficiencies 
using various biochar types. The study added, to enhance 
biochar adsorption performance, higher bed height can 
lengthen the life span of adsorbent while increasing flow 
rate and metal concentration would fasten the exhaustion 
rate. Hence, column design and filter media play important 
roles in influencing the adsorption performance. However, 
competition for binding sites of multiple elements could 
raise a challenge where a study showed a significant drop 
of Zn in multiple metal solutions compared to Cd and Cu 
(Park et al. 2016). Interestingly, biochar-amended woodchip 
bioreactor to treat heavy metals in stormwater was evaluated 
in a pilot scale and was found capable of removing nitrate 
and five metals (Ashoori et al. 2019).

Additionally, Biswal et al. (2022) reviewed biochar-based 
bioretention systems for removal of chemical and microbial 
pollutants including heavy metals. The authors highlighted 
that biochars have been successfully used as additional 
adsorptive media to the existing filter media in order to 
improve heavy metal removals. The authors also reported 
that the dominant removal mechanisms in such systems are 
sorption and ion exchange.

Heavy metal removal mechanisms of biochar

Interestingly, adsorption is not the only removal mechanism 
in heavy metals removal, although it is known as the most 
important mechanism. There are many other mechanisms 
controlling the heavy metals removal in water treatment 
system (e.g. surface micro-precipitation, ion exchange, 
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electrostatic attraction and chemical complexation). Adsorp-
tion is mainly associated as the main removal method as it 
may have a high sorption capacity for metallic contaminants. 
Mandu et al. (2015) reported that biochars have an enormous 
surface area with an astounding pore network, consisting 
of micropores, mesopores and macropores. Besides, the 
biochar removal capacity is influenced by its surface con-
ditions, feedstock materials and pyrolysis status. Biochars 
with high surface areas and pore volume have strong inter-
action with metallic ions because the ions can be physically 
adsorbed onto the surface of biochars and remained in the 
pores. Heavy metal ions in the aqueous solution diffuse from 
the solution onto the surface of biochars with an opposite 
surface charge. Hence, the metal ions attach to the surface 
and are removed from the solution. This type of adsorption 
occurring at the surface of biochars is associated with van 
der Waals forces (Sulyman et al. 2017). This method does 
not involve any chemical bonds. Therefore, surface area and 
porosity are essential for biochars.

Apart from adsorption, ion exchange with dissolved metal 
species is argued as the most dominant mechanism (Fakhre 
and Ibrahim 2018). The ion-exchange mechanism involves 
the exchange of ionizable cations on the surface of biochars 
with metallic ion contaminants. Several researchers sug-
gested that the abundance of negatively charged sites on the 
surface of biochars provided by multiple functional groups, 
such as carboxyl, hydroxyl and phenol (–COO− and –OH−) 
bind the metallic ions, such as Cu, Pb and Zn (Joseph et al. 
2019; Shaheen et  al. 2018; Shamsollahi and Partovinia 
2019). Dai et al. (2018) explained the ion-exchange mecha-
nism and proposed that the removal of heavy metals is accel-
erated by carboxyl and hydroxyl groups, as well as electron 
donor functional groups (–C–OH, C–O and C–O–R) that 
promote the chemisorption of  Cu2+,  Pb2+ and  Zn2+ on the 
surface of biochar. The pH of the aqueous solution is vital in 
this mechanism. Functional groups (phenol) can deprotonate 
metal ions by a decrease in pH according to the following 
chemical formula in (1):

Meanwhile, a study observed that the most optimum 
deprotonation at higher pH (3 ≤ pH ≤ 5) and an increase in 
negative charges allow heavy metals to coordinate with the 
surface functional groups and increase the removal efficiency 
(Paranavithana et al. 2016). This statement is supported by 
Kaya and Ozer (2014), where adsorption decreased with a 
decrease in pH.

During sorption, the formation of solids in a solution 
or on the surface of the adsorbent is inevitable due to the 

(1)Me
2+ + 2(−ROH) = Me(RO)

2
+ 2H

2+

binding of metallic ions and the presence of chemical 
groups, hence creating precipitation. This mechanism is 
often correlated to the immobilization of heavy metals by 
biochars. Moreover, precipitation is favoured with strong 
interaction between metallic ions and plant biochars. The 
biochars produced at high temperatures will have high min-
eral matter content (Ca, Mg, Fe, Cu and Si). Hence, this 
mineral matter will come in contact with metallic ions and 
successfully immobilize the materials through precipitation 
(Shen et al. 2019).

Many biochar applications have only been conducted in 
batch and column experiments. In SMC biochar, the alka-
linity of the biochar promotes precipitation, which could 
be proven in the X-ray diffraction patterns where the peak 
intensities show a crystallization process in the form of 
quartz. The functional groups present in SMC biochar are 
mainly aromatic and aliphatic functional groups that pro-
vide π-electrons, thus promoting adsorption. This property 
could be proven by the images from Fourier transform infra-
red (FTIR) characterization before and after adsorption as 
the peaks stretched and changed (Wu et al. 2019). Removal 
mechanisms can be best explained in the adsorption kinet-
ics test. For example, in the batch experiment, the high R2 
values in the pseudo-second-order model for the kinetics test 
indicate the involvement of chemisorption (Abdallah et al. 
2019). Jin et al. (2020) determined the dominant adsorption 
mechanism for four types of SMC biochars through pre-
cipitation, followed by π-complexation. The complexation 
mechanisms involved surface functional groups abundant in 
SMC biochars, highlighting a promising low-cost adsorbent 
for heavy metal removal. Therefore, it is crucial to further 
explore the potential of these biochars and to identify the 
maximum adsorption efficiencies for an optimum perfor-
mance of metal removal.

Perspectives 

Although biochars have been applied as sorbents in remov-
ing organic and inorganic contaminants, little attempt has 
been made to employ biochars as a reactive media associ-
ated with mining water. Based on a review study on SMC 
biochar, theoretically, SMC biochar is an economical and 
effective approach to be used as filtration media to remove 
heavy metals from mining water. The high pH characteristic 
of SMC biochar will be a great alkaline generator to treat 
the low pH mining water. Its many physical and chemical 
composition features will provide multiple binding sites 
and enhance the adsorption performance. Therefore, fur-
ther studies on SMC biochar as a potential filter media in 
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bioretention systems could be essential, specifically for 
applications such as mining water treatment. It is also sug-
gested that further study on the adsorption efficiencies, the 
long-term performance and the new applications of SMC 
biochar in large field-scale projects need to be carried out.

Conclusion

A review on biochars and the remediation of heavy metals 
from water bodies using biochars have been presented in 
this paper. As demand on clean water is escalating, global 
water scarcity has become a vital issue. Therefore, import-
ing water from abandoned mines as an alternative raw water 
source could be a feasible option to alleviate the global water 
scarcity problem. However, heavy metals contamination in 
mining water is also an issue need to be addressed before the 
water can be reused, and the removal of heavy metals can 
be costly. Thus, there is also a need to find an economical 
and effective method to remove heavy metals prior to further 
use. Biochar is a carbon-rich material with large surface area 
and active functional groups that has higher adsorption effi-
ciency than the conventional biosorbents. This economical 
biochar improves heavy metal removal via the adsorption 
mechanism, which can be a promising technology in the 
future. The effectiveness of biochar depends largely on the 
feedstock material and the water quality conditions which 
include pH, initial metal concentration, contact time and 
adsorbent dosage. This review has evaluated the potential 
application of SMC that offers many unique features as 
biosorbents, demonstrating effective heavy metal removal. 
The limitations of SMC as biosorbents have been reviewed 
and further development has been conducted to physically 
modified SMC into biochar.

The role of SMC as biochar has been critically assessed 
and reviewed. The properties of SMC biochar with larger 
surface area, more active functional groups and the ability 
to remove heavy metals have been discussed extensively, and 
the comparison of physicochemical properties of SMC as 
biosorbent and biochar has been highlighted in this review. 
These conditions affect the overall performance of heavy 
metal removal and the immobilization of heavy metals on 
the biochar. This review has also examined the overall heavy 
metal removal mechanisms, which are the critical factors 
for biochars from various feedstock materials, including 
SMC, to clearly explain the processes occurring in aqueous 
solution. Adsorption and ion exchange are the most com-
mon removal mechanisms, along with the interactions in 

electrostatic forces and precipitation. The efficiencies of 
these mechanisms have been further described in terms of 
kinetics and adsorption isotherms for explaining the mechan-
ics of the process. In short, biochars are feasible, cost-effec-
tive materials and effective in removing heavy metals from 
aqueous solutions, with the potential to remove heavy metals 
in mine drainage treatment. Biochars are readily available in 
large quantities and can simultaneously reduce the disposal 
costs and promote sustainability.

Therefore, future research should be conducted to explore 
the role of SMC biochar and evaluate their application on 
a pilot scale. Although many researchers have considered 
the production of biochar from numerous waste materi-
als to remove heavy metals, the application of biochar in 
removing mining water is still lacking. To date, no study has 
been conducted on the performance of mushroom compost 
as biochar in removing heavy metal contaminants in mine 
drainage treatment. This information is highly important 
for the characteristics of mine drainage treatment contain-
ing high heavy metal contents and sometimes can have low 
pH, thus affecting the overall performance of biochar. The 
future approach of batch and continuous laboratory-scale 
experiments is therefore recommended. Pilot tests can be 
conducted to evaluate the overall adsorption performance, 
the kinetics and adsorption isotherms and the optimization 
study. In conclusion, there is a need to determine whether 
SMC biochar can remove heavy metals in abandoned min-
ing water.
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