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Abstract
In this study, four water quality parameters were reviewed at 14 stations of river Ganga in pre-, during and post-lockdown 
and these parameters were modeled by using different machine learning algorithms. Various mathematical models were used 
for the computation of water quality parameters in pre-, during and post- lockdown period by using Central Pollution Control 
Board real-time data. Lockdown resulted in the reduction of Biochemical Oxygen Demand ranging from 55 to 92% with 
increased concentration of dissolved oxygen at few stations. pH was in range of 6.5–8.5 of during lockdown. Total coliform 
count declined during lockdown period at some stations. The modeling of oxygen saturation deficit showed supremacy of 
Thomas Mueller model (R2 = 0.75) during lockdown over Streeter Phelps (R2 = 0.57). Polynomial regression and Newton’s 
Divided Difference model predicted possible values of water quality parameters till 30th June, 2020 and 07th August, 2020, 
respectively. It was found that predicted and real values were close to each other. Genetic algorithm was used to optimize 
hyperparameters of algorithms like Support Vector Regression and Radical Basis Function Neural Network, which were then 
employed for prediction of all examined water quality metrics. Computed values from ANN model were found close to the 
experimental ones (R2 = 1). Support Vector Regression-Genetic Algorithm Hybrid proved to be very effective for accurate 
prediction of pH, Biochemical Oxygen Demand, Dissolved Oxygen and Total coliform count during lockdown.

Keywords Artificial neural network · Biochemical oxygen demand · Dissolved oxygen · The Ganga · Modeling · pH · Total 
Coliform Count

Introduction

With the outbreak of the coronavirus pandemic, the life of 
people is adversely affected. COVID-19 came into light 
in December 2019 from Wuhan city in Hubei Province of 
China (Hasnain et al. 2020). It affects the respiratory tract 
and spreads from person to person through physical con-
tact. As researchers are not sure about its source, having 
not discovered a vaccine to date, no specific treatment is 
known yet (Chakraborty and Maity 2020). The only options 
left with the public are social distancing, lockdown and per-
sonal hygiene. COVID-19 pandemic has severely affected 
countries like Italy, the USA, Pakistan, China, Germany and 

India etc. and their respective Government applied lockdown 
strictly (Paul et al. 2020).

As a consequence, people remained indoors and com-
mercial activities were shut down (Wray 2020). India was 
also under lockdown in the wake of coronavirus pandemic. 
Restrictions on industrial activities during lockdown sig-
nificantly lowered air and water pollution. This resulted in 
the substantial rejuvenation of rivers with a positive impact 
on stable marine life. During lockdown, the water quality 
of the Ganga river has improved significantly (Singh 2020). 
Lockdown has caused a reduction in the disposal of hazard-
ous wastes not only in the Ganga but also in other rivers. The 
Ganga or Ganges is a 1,680 miles long river in India that 
originates from the Gangotri Glacier of the western Hima-
layas in Uttarakhand and the river flows from the north-
west to the southeast, merges into the Bay of Bengal. In 
India, it covers states such as Uttarakhand, Uttar Pradesh, 
Bihar and West Bengal (Chaturvedi 2012). The Ganga is 
the lifeline of millions who live along the way. Approxi-
mately 43% of India's population lives in the Ganga basin, 
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which is over 860,000  km2 and covers 26.3% of the country's 
total geographical area (Trivedi 2010). It is a sacred river, 
worshipped as the goddess Ganga in the Hinduism, which 
witnesses high religious and cultural tourism on its banks. 
In 2008, the Ganga river declared was the ‘National River’ 
of India (Sati 2021). There are over 29 cities, 97 towns and 
thousands of villages on the banks of the Ganga River (Dutta 
et al. 2020).

It hosts about 140 species of fish and 90 species of 
amphibians. For most of its course, it is a wide and sluggish 
stream that flows through one of India's most fertile and 
densely populated regions. The major contributors of pol-
lution are tanneries in Kanpur, distilleries, paper mills and 
sugar mills in the Yamuna, Ramganga, Kosi and Kali river 
catchments (Dutta et al. 2020). There has been a decrease in 
fish population along the river, indicating a lack of support-
ive habitat and water quality degradation. Fishermen report 
destructive fishing, overfishing and the construction of Far-
akka barrage as the significant reasons for the decline in 
fish population from the river-floodplain in Bihar (Dey et al. 
2019). In 2017, the river Ganga was considered to be sixth 
most polluted river in the world (Paul 2017). Lots of steps 
have been taken to clean the river, but the desired results 
have not been achieved to date. Drew (2017) mentioned that 
there are numerous hydropower stations, dams and barrages 
in the main stem of the Ganga river and its tributaries that 
are harming and obstructing the flow of the river. Apart from 
this, construction and widening of roads and tunnels in the 
upper Ganga region affects the flow of water and leaves the 
river bed dry. The author termed this as “destructive model 
of development” and added that the continuous inflow of 
untreated wastewater in the Ganga, including untreated sew-
age and hazardous waste from the industry as well as agri-
cultural runoff, is worsening the water quality of the river 
(Drew 2017).

The river Ganga passes through states that serve the vari-
ous subsistence needs of people living in the surrounding 
areas, such as drinking, bathing, fishing and agriculture. 
Despite being one of the most functionally important rivers 
in the world, serving an estimated 500 million people, the 
Ganga is contaminated in large amounts by the discharge of 
untreated wastewater and untreated industrial waste (Postel 
and Richter 2012). High population density at the basin, 
several festive celebrations at the shore, garbage disposals 
and dumping of corpses directly into the river Ganga have 
contributed most to its pollution. The river also serves the 
agriculture in the surrounding region and therefore ends up 
with a vast amount of chemical fertilizers, pesticides and 
insecticides that worsen its quality (Chakraborty 2021). A 
non-point category source of pollution, that is, open def-
ecation, is a significant and worrying cause of the disease-
causing microorganisms that dwell in the river Ganga. In the 
river beyond Kanpur, fecal coliform levels have crossed the 

acceptable bathing standard (Srinivas et al. 2020). High pol-
lution level increases the chances of obstructions, ultimately 
leads to stagnant water condition which breeds diseases such 
as dengue, malaria and chikungunya. These deadly diseases 
take millions of lives and cost the country colossal capital 
every year. The harmful microorganisms originating from 
fecal pollution are also suspected of having a pivotal role in 
antibiotic resistance (Lockwood 2016). The government has 
focused on pollution point source control policies (Srinivas 
et al. 2020), but no significant improvement has not yet been 
seen so far.

In this study, changes in water quality of the river Ganga 
have been evaluated during the lockdown phase and com-
pared with pre-lockdown statistics. Bioinspired mathemati-
cal models such as Streeter Phelps, Thomas Mueller, Sup-
port Vector Regression with Genetic Algorithm (SVR-GA), 
Lasso regression, Artificial neural network (ANN), New-
ton’s divided difference (NDD) and Polynomial regression 
model have been used for the computation of water quality 
parameters in the river water under both pre-lockdown and 
during lockdown conditions. Streeter Phelps and Thomas 
Mueller model were utilized for predicting oxygen satura-
tion deficit in the river Ganga. In addition to this, SVR-GA, 
Lasso regression and ANN were implemented to model 
levels of DO, BOD, pH and TC in the Ganga river. Finally, 
NDD and Polynomial regression models have been used to 
predict water quality parameters (DO, BOD, pH and TC) in 
the present condition and future changes in the water qual-
ity of the river Ganga such as after unlocking phase-I in 
India, i.e., 30th June 2020 based on the past trends. SVR-
GA is a hybrid algorithm which uses a hyperparameter opti-
mization algorithm (GA) along with a modeling algorithm 
(SVR) (Jiang et al. 2013). The ability of SVR marked by 
its margin approach is well suited for all kinds of data and 
has been successfully used for the modeling of pH and DO 
before. Lasso Regression model, which has a shrink or reject 
feature is advantageous when dealing with regression data. 
This model originates from Ridge regression and is a robust 
regression algorithm which was also used for lockdown data 
prediction.

ANN is an oversimplified version of the inter-neuron 
communication process that takes place in the brain. Their 
architecture depends on the number of hidden layers and 
the activation functions, thus leaving a room for improvisa-
tion and experimentation (Ahmed 2017). A highly intercon-
nected neural network is very effective for accurate predic-
tions. Still, it tends to over fit on the training data, that is 
why smaller and effective neural network models have been 
developed (Sarkar and Pandey 2015). One such model is 
the Radical Basis Function Neural Network (RBF-NN) is 
a simple one hidden layer ANN which uses a radical basis 
as its activation function. In the present study, the RBF-
NN model, Levenberg–Marquardt algorithm (LMA) and 
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a two hidden layer Multi-Layer Perceptron (MLP) model 
for prediction of water quality data have been applied. The 
RBF-NN model was used with GA as the optimizer of its 
hyperparameters. GA selects a random population based on 
the specified constraints and picks out the best possible pair 
of parameters which have the highest fitness. The GA fit-
ness function has been represented with mean squared error 
(MSE) in the present work. The present study will be useful 
in developing technologies for reducing the pollution level in 
the river Ganga and other rivers, preventing it from returning 
to the previous state based on the data available from these 
models. This study is also helpful in formulating/revising 
the laws dealing with a permissible limit of discharge of 
industrial effluents in the river Ganga and other natural water 
resources. The entire analytical study of the Ganga river 
by using CPCB data was conducted at IIT (BHU) Varanasi 
(Co-ordinate 25° 15′ 30″ N 82° 59′ 39″ E) Varanasi, India.

Ganga river (literature survey 
before and during lockdown)

Before lockdown, the river Ganga was not suitable for bath-
ing from Uttar Pradesh to West Bengal with the exception 
of certain places in Uttarakhand (Webdesk 2020). Figure 1 
shows the sources of pollution in the river Ganga.

Over 500 water samples from April to June were analyzed 
for two consecutive years, i.e., 2017 and 2018 (Haider Naqvi 
2020). The amount of DO decreased to less than 2 mg/L due 
to the hypoxic state of the river bed, which made the river 
unable to sustain aquatic life. The river Ganga has been used 
for dumping of industrial and domestic waste in industrial 

towns that contaminated the river. For instance, 400 tan-
ning units contribute 50 MLD (million liters per day) of 
hazardous waste and 140 MLD of domestic waste in Kanpur 
(Haider Naqvi 2020). The water at Haridwar and Rishikesh 
was found unfit for drinking and bathing. The river water 
was in class B ever since the foundation of Uttarakhand was 
laid (Srivastava 2020).

It was reported that only 18 spots were fit while 62 
spots were unfit for bathing and the river was almost unfit 
for drinking with a high level of coliform bacteria in the 
river. River water from 7 spots out of 86 monitoring sta-
tions was drinkable only after disinfection. The spots which 
were found suitable for drinking purpose after disinfection 
have been classified as ‘class A’ (Bhagirathi at Gangotri, 
Rudraprayag, Devprayag, Raiwala-Uttarakhand, Rishikesh, 
Bijnor and Diamond Harbor in West Bengal). Water at 78 
monitoring stations was not suitable for drinking and bathing 
in Bhusaula in Bihar, Kanpur, Gola Ghat in Varanasi, Dal-
mau in Raebareli, Sangam in Allahabad, Ghazipur, Buxar, 
Patna, Bhagalpur, Howrah-Shivpur in West Bengal and 
many others. Thus, water available in pre-lockdown condi-
tion of the river Ganga was not suitable for drinking and 
bathing.

The industrial and commercial activities almost ceased 
during the lockdown, allowing the Ganga river to breathe 
again. In India, a total of four phases of lockdowns were 
observed for 68 days (Lockdown 1.0 (21 days)—25th March, 
2020 to 14th April, 2020, Lockdown 2.0 (19 days)—14th 
April, 2020 to 3rd May, 2020, Lockdown 3.0 (14 days)—3rd 
May, 2020 to 17th May, 2020 and Lockdown 4.0 (14 days)—
18th May, 2020 to 31st May, 2020).

Fig. 1  Ganga pollution over-
view
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Amid of lockdown, the CPCB, India reported on April 
28, 2020 that the Ganga water has improved significantly 
for bathing purposes in most of the surveillance centers. 
Observations recorded during lockdown were as follows:

(a) Rise in DO level from 22nd March, 2020 to15th April, 
2020.

(b) Level of BOD showed a significant decline. The lower 
range indicated the better health of the river.

(c) A gradual rise in BOD level toward downstream 
stretches of the river Ganga.

Singh (2020) has made a remarkable observation that the 
level of DO increased from 25 to 30% at five ghats in Vara-
nasi, while the level of BOD decreased up to 35%. Detailed 
information on changes in water quality parameters during 
lockdown is tabulated in Table S2 of supporting material.

Materials and methods

Study area

The total length of the Ganga river (measured along the 
Hooghly) from source to mouth is 2, 525 km. The Ganges 
originates near the Gangotri and travels about 350 km before 
entering into the village Balawali (district Bijnor) of Uttar 
Pradesh. It flows from Balawali approximately 1,150 km in 
Uttar Pradesh and enters the village Sitab Diara, Bihar. It 
flows 450 km from Sitab Diara and arrives into the West 
Bengal in Manikchak village (district Malda town). At the 
Farraka barrage, the Indian government controls water of 
the Ganga in distributaries namely Hooghly and Padma 
in the West Bengal and Bangladesh, respectively. It flows 
550 km in West Bengal from village Manikchak to Haldia 
(near Calcutta) before merging into the Bay of Bengal. The 
14 real-time stations from Anoopshahar, Uttar Pradesh to 
Howrah bridge, West Bengal have been considered in the 
present study for data modeling.

Water quality data set

The data sets of the pre-lockdown condition were collected 
from the system software ‘Suitability of river Ganga water’ 
designed by the Central Pollution Control Board (CPCB), 
India. This is a real-time water quality monitoring system 
established by CPCB, which helps in monitoring changes 
in the river at any given time. In India, CPCB has classi-
fied water into five classes (A to E), defining different treat-
ment levels for the various purposes (Table S1 of support-
ing material shows the classes of water defined by CPCB). 
This classification helps managers and planners of the water 
quality monitoring system to set targets for water quality 

and to design appropriate rehabilitation programs for dif-
ferent water bodies. In India, water quality standards are 
established by CPCB in terms of the primary water quality 
criteria.

Water quality parameters

The parameters of water quality considered in the present 
study were pH, BOD, DO and TC. The pH is a measure 
of how acidic the water is and about 7.4 is considered as 
the optimum pH for the river water (Azad 2020). Waste-
water from sewage treatment plants comprises of organic 
matter which is decomposed by the microorganisms and 
in return the dissolved oxygen is consumed. When more 
oxygen is consumed than produced, the concentration of 
DO decreases proportionately and possibly the population 
of a few susceptible organisms may move away, weaken 
or die. The DO level fluctuates in every 24 h and season-
ally. It varies with the temperature of the water and altitude 
(APHA 1992). BOD influences the amount of DO in rivers 
and streams. Higher is the BOD value, faster is depletion 
of the oxygen in the stream, which means that there is less 
oxygen available for higher aquatic life forms. High level 
of BOD has similar effects as low DO concentration such 
as suffocation and death of aquatic organisms. A test for 
TC is the most basic measure for bacterial contamination 
of a water body. TC counts provide a general indication of 
a water supply's sanitary conditions. The risk of waterborne 
infection is increased when coliform bacteria are found in 
drinking water. Several types of malfunctions can cause TC 
contamination like seepage through the well casing, faulty 
well cap and well flooding. In order to cope with bacterial 
contamination, many long-term solutions are available such 
as inspection, repair of defective wells and installation of 
continuous disinfection equipment.

Mathematical models

Streeter Phelps model

Streeter and Phelps in 1925 developed a water quality model 
based on field data from the Ohio river, which was initially 
used by the US Public Health Service (Digvijay Kumar 
2017).

In the present study, the Streeter Phelps model has been 
used to model DO in 14 real-time stations of the Ganga river.

Considering a mixed system (no in-/out flow) (Fig. 2) 
with the state variables Z and X,

where Z is degradable organic matter (mg/L) and X is the 
DO level (mg/L).

Assuming,
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(a) Aerobic decay of organic matter ‘Z’ by bacteria sus-
pended in the water column (1st order kinetics)

(b) Consumption of oxygen ‘X’ during mineralization of 
‘Z’

(c) Exchange of oxygen between water and atmosphere

Differential equations and parameters involved in the 
model are

where kd is decay rate (1/Time), ka is aeration rate (1/Time), 
s is a stoichiometric factor (Mass X/mass Z) and Xsat is  O2 
saturation level (mg/L).

These equations are valid only when X >  > 0.
Re-definition of state variables leads to simplified form 

at boundary conditions:

Old New Relation Meaning

Z L L = Z Biochemical  O2 demand 
for complete degrada-
tion of Z

X D D = Xsat − X O2 saturation deficit

where L is BOD (biochemical oxygen demand) and Stoichio-
metric factor ‘s’ equals 1 → omitted.

Thus, Eqs. 1 and 2 can be rewritten as:

Equation 3 may be expanded by separation of variables 
for the initial condition L (t = 0) = Lo.

Integration of Eq. 3 yields Eq. 5.

(1)
d

dt
Z = −kd ⋅ Z

(2)
d

dt
X = −kd ⋅ Z ⋅ s + ka ⋅

(
Xsat − X

)

(3)
d

dt
L = −kd ⋅ L

(4)
d

dt
D = −kd ⋅ L − ka ⋅ D

(5)L = L0 ⋅ exp
(
−kd ⋅ t

)

Substituting the value of L from Eq. 5 in Eq. 4 results in 
Eq. 6

Now, using the method of integrating factor, re-ordering of 
Eq. 6 yields

Multiplication with the factor “exp (ka· t)” mimics Eq. 8

Applying the product rule, Eq. 9 was obtained as

Equation 10 was achieved after separation of variables and 
integration

Equation 10 is  O2 saturation deficit Streeter Phelps model.

Thomas and Mueller model

Thomas (1948) accounted for settle able BOD in the dis-
solved oxygen sag equation of Streeter Phelps model. Ana-
lytical solutions for simple initial and boundary conditions 
were developed by Thomann and Mueller (1987). The model 
includes changes in DO concentrations due to distributed 
sources (non-point sources) within the stream. Equation 11 
illustrates the model of Thomas and Mueller (TM):

where Ld = non-point source BOD (mg/L).
It is apparent from Eq. 11 that the soluble concentration 

of the DO generated in range by non-point sources was com-
bined at the entry point with the attenuation phenomenon of 
the DO entering into the cell.

NDD model

Polynomial interpolation determines a polynomial of order 
n that passes through n + 1 point. The NDD model is of 
interest due to its clarity and precision. This model shows 
where a function will go, based on its y-values at respective 

(6)
d

dt
D = −kd ⋅ L0 ⋅ exp

(
−kd ⋅ t

)
− ka ⋅ D

(7)
d

dt
D + ka ⋅ D = −kd ⋅ L0 ⋅ exp

(
−kd ⋅ t

)

(8)

d

dt
D ⋅ exp ka ⋅ t + ka ⋅ D ⋅ exp ka ⋅ t = −kd ⋅ L0 ⋅ exp

(
−kd ⋅ t

)
⋅ exp ka ⋅ t

(9)
d

dt

(
D ⋅ exp ka ⋅ t

)
= −kd ⋅ L0 ⋅ exp

(
ka − kd

)
⋅ t

(10)D =
kd ⋅ L0

ka − kd
⋅

(
e−kd⋅t − e−ka⋅t

)
+ D0e

−ka⋅t

(11)
D = D0e

−ka⋅t +
kd ⋅ L0

ka − kd
⋅

(
e−kd⋅t − e−ka⋅t

)

+
kd ⋅ Ld

kd × ka

(
1 − e−ka⋅t

)
−

kd ⋅ Ld

ka − kd

(
e−kd⋅t − e−ka⋅t

)

Fig. 2  A mixed system with no inflow/outflow
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x-values (Das and Chakrabarty 2016). Newton’s polynomial 
possesses the permanence property, which means that new 
data values can be represented by (n + 1)th degree polyno-
mial and the term can be added to previously obtained nth 
degree polynomial. Accuracy of the polynomial interpola-
tion depends on how close the interpolated point is to the 
middle of x-values used. It generates only one polynomial of 
least possible degree that passes through all the data points. 
Equation 19 depicts NDD model

Newton’s divided difference interpolation method has 
been used to generate the function depicting water quality 
of the Ganga river from pre-lockdown to lockdown period. 
After obtaining interpolating polynomial, it was extrapo-
lated to predict water quality parameters (BOD, DO, pH and 
TC) till 7th August, 2020 (200th day from 20th January). In 
the present study, 20th January, 2020 has been marked as 
0th day (pre-lockdown data). Using this model, polynomi-
als were obtained for BOD, DO, pH and TC separately for 
each of the 14 stations and these were plotted to extrapolate 
values for upcoming months. This model was trained using 
python programming language.

Polynomial regression model

Polynomial regression determines nonlinear relationship 
between the value of ‘x’ and the corresponding conditional 
mean of ‘y’ (Ostertagová 2012). The expected value of ‘y’ 
can be modeled as nth degree polynomial, yielding a general 
polynomial regression model (Eq. 13)

In this study, the polynomial regression model was used 
to model values of DO, BOD, pH and TC as a function of 
time to analyze and predict the Ganga water quality till 7th 
August, 2020. The model was trained to generate polynomi-
als of degree 2, 3 and 4 for DO, BOD, pH and TC at real-
time stations. Just to maintain consistency in results, this 
model was also trained using python programming language.

Radical basis function kernel support vector regression 
with genetic algorithm (SVR‑GA)

Vapnik et al. (1997) developed an algorithm that used the 
earlier work of Support Vector Machines to address regres-
sion problems, which was then known as Support Vector 
Regression (SVR). The most powerful aspect of SVR is that 
it takes into account the error limit of epsilon, which means 
that an error between the predicted and the true value is 

(12)
Pn(x) = f

(
x0
)
+
(
x − x0

)
f
[
x0, x1

]
+⋯+

(
x − x0

)(
x − x1

)
+⋯

(
x − xn−1

)
f
[
x0, x1, xn

]

(13)y = �0 + �1x + �2x
2 + �3x

3 +⋯

allowed to lie within the range of [− �, � ] and that no error 
greater than that is accepted. Using this rule, a function ‘f’ 
is generated that would be able to fulfill this condition. In 
linear form, function ‘f’ can be estimated as:

where ⟨w, x⟩ is the dot product of w and x.
Flatness in Eq. 14 would mean to obtain a small value 

of w by minimizing the norm (Smola and Schölkopf 2004).
Usually, it is not always possible to search for a function 

‘f’ which would produce data pairs which lie in the epsilon 
margin. Therefore, soft margin like approach is used, where 
slack variables (�i, �i ∗) representing the distance between 
the true values and the epsilon tunnel are introduced. This 
addition helps in making the optimization problem feasible. 
Thus, a risk function ‘R’ is defined by incorporating an epsi-
lon insensitive loss function with a constant ‘C’. The regu-
larized convex optimization problem (Smola and Schölkopf 
2004) can be written as:

where C is a positive constant that plays a role in determin-
ing the extent to which a deviation from the error tunnel is 
tolerated.

This can be seen as a trade-off between the model flatness 
and empirical risk (Smola and Schölkopf 2004). Lagrange 
construction of the primary function gives a quadratic opti-
mization problem that is solved for 

(
�i, �i ∗

)
 (Vapnik and 

Vapnik 1998):
Maximize:

Here, ( �i, �i ∗ ) are Lagrange multipliers.
The vectors xi corresponding to non-zero Lagrange multi-

pliers are then called as support vectors (Vapnik et al. 1997). 
After performing optimization, f(x) can be obtained as:

(14)f (x) = ⟨w, x⟩ + b with w ∈ X, b ∈ IR

(15)

Minimize R =
1

2
||w| |2 + C

k

k∑

i=1

(𝜉i + 𝜉i ∗)

Subject to:

yi − f
(
xi
)
≤ 𝜀

f
(
xi
)
− yi ≤ 𝜀

𝜉i, 𝜉i ∗> 0

R
�
�i , �i ∗

�
=

k∑
i=1

�
yi
�
�i − �i ∗

��
− �

k∑
i=1

�
�i + �i ∗

�
−

1

2

k∑
i=1

�
�i − �i ∗

��
�j − �j ∗

��
xi , xj

�

(16)Given ∶

k∑

i=1

(
�i − �i ∗

)
= 0 and �i, �i ∗∈ [0,C]

(17)f (x) =

k�

i=1

�
�i − �i ∗

�
⟨xi, x⟩ + b
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A kernel K
(
x, xi

)
 is defined for a nonlinear regression 

model. The kernel generates an inner product in some fea-
ture space and solves the corresponding dual optimization 
problem (Vapnik et al. 1997). Some examples of kernels are 
Polynomial, Gaussian, Radical basis function. In the present 
study, Radical basis function (RBF) kernel has been used. 
The kernel and the nonlinear objective function can then be 
written as:

The variables C, �, � are user-defined while implement-
ing SVR. Since these hyperparameters are crucial for the 
proper functioning of the algorithm, their right selection is 
of utmost importance. Genetic Algorithm (GA) was used 
to meet this requirement. It was first introduced by Holland 
(1992) and is a natural evolution-based technique that seeks 
inspiration from Darwin’s theory of survival of the fittest. 
The GAs are being applied successfully in a number of areas 
such as job shop problems (Falkenauer and Bouffouix 1991; 
Nakano and Yamada 1991), control system optimization 
(Krishnakumar and Goldberg 1992), pipeline optimization 
(Goldberg and Kuo 1987), molecular geometry optimization 
(Deaven and Ho 1995) and feature subset selection (Yang 
and Honavar 1998).

Goldberg (2006) has outlined the differences between 
GAs and other optimization techniques. Some of the advan-
tages include the use of the coding of parameter set and 
not the parameters themselves, search from a population of 
points, using payoff information when binding to auxiliary 
information and the use of probabilistic transition rules 
over deterministic rules. These four advantages give GAs 
an edge over other commonly used traditional optimization 
techniques. GA can be broken down into four steps where 
the GA selects a population of individuals and computes 
the fitness function for each individual. Individuals with the 
highest fitness function are chosen to produce offsprings. 
The second and third steps involve crossovers and mutations 
between the selected individuals, which lead to the forma-
tion of a new generation. Finally, the fitness function for this 
new generation is calculated and the process repeats from 
step one unless the goal of the algorithm is reached.

The combination of SVR with a real-valued GA has been 
used as the optimization algorithm for SVRs hyperparam-
eters ( C, �, � ). Liu et al. 2013 used this hybrid model for 
water quality estimation (DO and temperature) and com-
pared it with traditional SVR and BP neural network models. 
Their RGA-SVR model outperformed over the traditional 

(18)f (x) =

k∑

i=1

(
�i − �i ∗

)
K
(
xi, x

)
+ b

(19)K(x, y) = e−�||x−y||
2

models. Similarly, Wang et al. (2011) used SVR model with 
GA automated SVR parameter selection for the prediction 
of permanganate index (CODMn), ammonia–nitrogen 
 (NH3–N) and chemical oxygen demand (COD) and found 
this superior to MLR algorithm.

Lasso regression

The lasso regression (LR) model was developed by Tib-
shirani (1996), which is built upon the robustness of ridge 
regression. It preserves the quality features of ridge regres-
sion and subset selection by shrinking some coefficients and 
setting others to zero. For data 

(
xi, yi

)
 , i = 1, 2, … n. where, 

xi =
(
xi1,… xik

)
 are the predictor variables and yi are the 

responses.
The lasso optimization problem can be solved by mini-

mizing Eq. (20).

An assumption is made that xij are standardized to avoid 
any dependence on the measurement scale. Here, t ≥ 0 is a 
prespecified tuning parameter which controls the amount of 
shrinkage applied (Tibshirani 1996). Lasso regression has 
been previously used as a predictor algorithm for water qual-
ity estimates (Ahmed et al. 2019; Brooks et al. 2016).

Artificial neural network (ANN)

ANN is a very powerful algorithm whose architecture is 
inspired by the process of communication of neuronal cells. 
ANN can take many forms and in the present study the 
LMA, MLP and RBF-NN have been focused. ANN work 
immensely well with water quality data (El-Shafie et al. 
2011). Authors compared the ANN model with the linear 
regression model and found that ANN has high accuracy 
as compared to the other models. Najah et al. (2013) per-
formed a comparative study with different ANN models like 
RBF-NN, MLP-NN and Linear Regression model (LRM) 
for water quality estimation and found RBF-NN superior to 
MLP-NN and LRM. Authors showed that RBF-NN could be 
a reliable water quality predictor model. Both of these stud-
ies used a trial and error basis for determining the number 
of hidden layers and neuron units in the layers.

ANN with LMA The chosen ANN for the pH, DO, BOD and 
TC models consisted of one input layer with fourteen input 
variables, one hidden layer and one output layer. In addition 

(20)
Minimize

n∑

i=1

(
yi − B0 −

∑

j

|||
|||Bjxij

|||
|||

)2

subject to
∑

j

|||
|||Bj

|||
||| < t
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to this, TC consisted of a similar number of hidden and out-
put layers except for 12 input variables. The designed ANN 
models (pH, DO, BOD and TC) were trained for utilizing 
LMA as it rapidly solves and tunes the model parameters in 
comparison with other algorithms (Singh et al. 2009). The 
model simulation has been done by ANN tool in MATLAB 
2017a.

MLP The MLP is a neural network with completely con-
nected layers that are stacked against each other. Each layer 
is activated using a particular activation feature. In order to 
construct an MLP, two fully connected hidden dense layers 
were superimposed and activated by the function ‘rectified 
linear unit’ (RELU) from the python library ‘Keras.’ Data 
were then iterated over sufficient epochs until it converged 
to produce the lowest MSE (Gardner and Dorling 1998).

RBF‑NN The RBF is a feedforward neural network with one 
hidden layer between the input and output layer. In an RBF-
NN, all neurons from a layer are connected to all neurons in 
the next layer. Harpham et al. (2004) highlighted the advan-
tages of applying GAs to RBF-NN, thus creating a hybrid. 
This addition eliminates the test and error approach since 
GA automatically produces an optimal solution for hyperpa-
rameters. In the present study, a GA-based search algorithm 
has been applied to find optimal hyperparameters for RBF-
NN model.

Results and discussion

Statistics of the river Ganga: pre‑lockdown 
and during lockdown

As shown in Table 1, the parameters (pH, DO, BOD and TC) 
of the river Ganga varied in the lockdown period.

In the present study, 14 stations namely Anoopshahar; 
Farrukabad; Rajghat, Kannauj; Bithoor, Kanpur; Jajmau, 
Kanpur; Assi ghat, Varanasi; Malviya Bridge, Varanasi; 
Patna; Bhagalpur; Berhampore; Monipurghat, Nadia; Palta, 
Barrackpore; Serampore, Hooghly and Howrah bridge, West 
Bengal were analyzed. The changes in the parameters at 
these stations have been listed below.

At Anoopshahar, pH increased by 0.1, followed by an 
increment in BOD and DO with no detectable change in the 
values of TC. The increment was in the range as delineated 
by CPCB, India (shown in Table S1 of supporting material). 
Thus, this water quality at Anoopshahar permitted all the 
uses of water.

In the Farrukabad and Kannauj, there has been a decrease 
in pH, TC and DO with the simultaneous increase in BOD 
level. Though these changes were not positive yet the 
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variation in pH, DO, TC and BOD were in the permissible 
range of CPCB (Table S1 of supplementary information).

In Bithoor and Jajmau Kanpur, there was a decrease in 
pH, DO and BOD and water at these stations were consid-
ered pollution-free which can be used for drinking, bathing, 
irrigation and other purposes. Considering TC, its level was 
increased in Bithoor but declined in Jajmau, Kanpur but it 
was in the range given by CPCB in Bithoor but not in Jaj-
mau. Thus, the river ganga water can be used for all purpose 
in Bithoor but not in Jajmau, Kanpur.

In Assi ghat and Malaviya Bridge, Varanasi, a decrease in 
pH and DO level together with increase in BOD and TC was 
observed. These changes were not in an acceptable range of 
CPCB, India.

In Patna, the water quality was found unsuitable owing 
to a slight decrease in pH and DO and significant augmen-
tation in BOD indicated a high level of pollution. But TC 
was found to decline here and it was within the acceptable 
range given by CPCB. At Bhagalpur, Bihar water sample 
was found unfit for drinking, bathing and irrigation.

In Berhampore, Monipurghat, Nadia; Palta, Barrack-
pore; Serampore, Hooghly and Howrah bridge, West Ben-
gal a decrease in the pH, DO and BOD was observed with 
increase in TC and it was much higher than the acceptable 
range given by CPCB. The decrement in pH, DO and BOD 
was in the range of permissible limit demarcated by CPCB. 
Thus, these stations also possessed some positive changes 
similar to Anoopshahar, Farrukabad, Rajghat and Varanasi. 
The changes in pH, DO, BOD and TC during lockdown were 
studied and compared with pre-lockdown data as shown in 
Table 1.

As shown in Table 1, after lockdown pH in all stations 
was within an acceptable range of 6.5–8.5. Before lockdown, 
only two stations, namely Malviya Bridge, Varanasi and 
Serampore, Hooghly exceeded this range. But during the 
lockdown, these stations were within the standard range as 
depicted by CPCB. These changes replenished the Ganga 
river after a long gap.

It is appropriate to mention that there had been an insig-
nificant change in water quality parameters during lockdown 
3.0 and 4.0 as the time difference was of 14 days only.

Specifically, the health indicators of the Ganga's water 
improved significantly such as increased DO (in Anoop-
shahar), reduced BOD (in Bithoor, Kanpur; Jajmau, Kan-
pur; Malviya Bridge, Varanasi; Berhampore; Monipurghat, 
Nadia; Palta, Barrackpore; Serampore, Hooghly and Howrah 
bridge) and reduction in TC (Farrukabad, Rajghat, Jajmau, 
Patna and Palta, Barrackpore) during the lockdown.

Mathematical models

Streeter–Phelps model

Streeter Phelps model equation was used to find  O2 satura-
tion deficit (D) for 14 real-time stations of the river Ganga 
(Table 2). The value of ‘D’ was experimentally determined 
and compared with the theoretical value derived from the 
model (Fig. 3).

Table 2  Comparison of experimental and theoretical  O2 saturation 
deficit values with reference to the Streeter Phelps model

Station D 
(experi-
mental)

D (theoretical) Error (%) R2

Anoopshahar 0.2 0.19 6.62 0.57
Farrukabad 1.4 0.17 87.85
Rajghat, Kannauj 1.2 0.04 96.76
Bithoor, Kanpur 1.1 0.04 96.31
Jajmau, Kanpur 0.1 0.08 19.52
Assi ghat, Varanasi 0.03 0.01 66.67
Malviya Bridge, Vara-

nasi
0.9 0.52 41.68

Patna 0.4 0.13 68.40
Bhagalpur 0.5 0.14 71.16
Berhampore 1.5 0.34 77.29
Monipurghat, Nadia 1.8 0.49 72.94
Palta, Barrackpore 2.2 0.63 71.49
Serampore, Hooghly 1.7 0.41 75.69
Howrah bridge 2.1 0.71 66.41

Fig. 3  Comparison of experimental and theoretical values of D for 14 
real-time stations with reference to Streeter Phelps model
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It was observed from Table 2 that this model was not 
accurate for predicting the value of ‘D’ as it showed a very 
high percentage of error for each real-time station of the 
river Ganga together with a sluggish coefficient of regres-
sion (R2 = 0.57).

Bhargava (1986) revealed that Streeter Phelps models 
could not precisely predict DO sag of a stream instantly 
after sewage outfalls as model does not take bio-flocculation 
and sedimentation of the adjustable BOD into account. Jha 
et al. (2007) applied Streeter Phelps models for analyzing 
one of the most polluted rivers in India, i.e., the river Kali 
and showed the negative outcome with under and over-
prediction. Kaushik et al. (2012) modified Streeter Phelps 
model by considering the settle able component of BOD and 
the effect of storage zones on river’s DO. Authors found that 
the modified model was able to predict parameters of rivers 
more accurately.

Thomas and Mueller model

Thomas and Mueller model was used to find ‘D’ including 
non-point sources in the river water for 14 real-time sta-
tions. The theoretical results did not show a close agreement 
with the experimental values (Fig. 4, Table 3). However, this 
model had a slightly better fit as compared to Streeter Phelps 
model based on the value of R2 (= 0.75).

NDD model

The water quality parameters were predicted for 7th August, 
2020, i.e., the 200th day starting from 20th January, 2020. 
Table S3 of supporting material shows the value of predicted 
parameters on 7th August, 2020.

Assuming that the conditions do not return to original 
pre-lockdown conditions, this model analyzed the situation 
from pre-lockdown to lockdown and predicted the possible 
values for the near future. It also provided incorrect results 
for 3 stations, i.e., Rajghat, Patna and Bhagalpur, which do 

not seem to be possible. It was inferred from this model that 
the actual values were close to predicted values (pH, BOD, 
DO and TC) for 7th August, 2020.

Polynomial regression model

Water quality parameters were predicted using 2, 3 and 4 
degree polynomials on 30th June, 2020 (i.e., on day 162 
starting on 20 January 2020) and these values are shown in 
Tables S4, S5, S6, S7 and S8 of the supporting material. For 
prediction, 30th June, 2020 was selected as it falls close to 
31st May, 2020, and reduces the chance of error that could 
increase if one moves away from the 31st May, 2020 data 
values. Considering the range of values from these polyno-
mials, it can be predicted that the water quality parameters 
(BOD, DO, pH and TC) will fall within the range of values 
that were predicted for 30th June, 2020.

The actual value of these parameters will depend on how 
the level of pollution goes back to the previous one. The val-
ues will more likely to fall in the ranges stated in Table S4, 
S5, S6, S7 and S8 of the supporting material.

This model analyses the situation from pre-lockdown 
to lockdown statistics and predicts somewhat possible val-
ues for near future. From the graphs, it was clinched that 
all values fall in acceptable range except BOD at Patna 
and Bhagalpur. Also, the DO levels at Rajghat, Patna and 
Bhagalpur show steep changes. The quality of the Ganga 

Fig. 4  Comparison of experimental and theoretical of D for 14 real-
time stations with reference to the Thomas and Mueller model

Table 3  Comparison of theoretical and experimental D values with 
reference to the Thomas and Muller model

Station D 
(experi-
mental)

D (theoretical) Error (%) R2

Anoopshahar 0.2 0.14 30.00 0.75
Farrukabad 1.4 0.48 65.43
Rajghat, Kannauj 1.2 0.46 61.27
Bithoor, Kanpur 1.1 0.42 61.43
Jajmau, Kanpur 0.1 0.07 30.00
Assi ghat, Varanasi 0.03 0.01 83.33
Malviya Bridge, Vara-

nasi
0.9 0.59 34.03

Patna 0.4 0.17 57.87
Bhagalpur 0.5 0.20 59.57
Berhampore 1.5 0.65 56.76
Monipurghat, Nadia 1.8 1.41 21.44
Palta, Barrackpore 2.2 1.76 20.00
Serampore, Hooghly 1.7 0.79 53.26
Howrah bridge 2.1 0.79 62.53
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water appeared to be improved from pre-lockdown situation. 
Since the values and curves for polynomial second degree 
were the same as for NDD model, this implied that the NDD 
model was the reliable one.

The polynomial regression model was better than NDD 
as it provided the range (generated by 2nd- , 3rd- , and 4th-
degree polynomial) in which the predicted parameters would 
lie. The polynomial regression model fitted better than NDD 
as most of the actual values lie in or near the predicted range. 
This is due to the fact that NDD is an interpolation method; 
however, in the present work it predicts the future values by 
extrapolating the curve. Also, NDD resulted in the second-
degree polynomial, which does not correspond to the actual 
variation in the parameters in due course of the time.

SVR‑GA

The SVR model, a kernel-based regression model was used 
and its parameters, i.e.,C, �, � were optimized for each water 
quality parameter with the help of a simple GA. Here, GA 
was employed using a one-point crossover function having 
mutation with a root mean square as the fitness measure. 
The algorithm was performed on a population of 50 ran-
domly selected individuals iterated upon 30 generations with 
a crossover probability of 0.5 and a mutation probability of 
0.02. Upon running, the algorithm first randomly selects 50 
individuals with their ranges being, C = [1, 100], � = [0.1, 1] , 
� = [0.001, 0.01] . Each of these individuals undergoes cross-
over and mutation, after which the fitness of an individual 
is calculated. This process runs over a set of 30 generations 
with each generation producing a slightly better generation 
than itself. From the last generation, the individual with the 
highest fitness function is chosen as the best individual.

Table 4  Mean absolute error using different models

Model pH DO BOD TC

SVR with GA 6.80e−08 1.05e−07 55.12 84.12 ×  105

Lasso regression 0.17 7.65 79.47 10.09 ×  107

MLP 0.001 0.08 0.19 23.09 ×  108

RBF-NN GA 0.21 7.39 78.32 36.17 ×  107

Table 5  R2 value for pH, DO, BOD and TC for different models

Model pH DO BOD TC

SVR-GA 0.99 0.99 0.47 0.99
Lasso regression 0.32 0.05 0.24 0.93
MLP 0.99 0.99 0.99 0.90
RBF-NN GA 0.09 0.06 0.24 0.75
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The model showed overfitting with zero MSE upon 
running. To solve this, fivefold cross-validation was used 
wherein the data were split into test and train set five times. 
This helped in solving overfitting. The model reported dif-
ferent MSE for pH, DO, BOD and TC in Table 4.

The R2 value for the pH, DO and TC approached unity 
signifying a perfect fit. BOD, however, showed a low R2 
value (Table 5).

These values show that out of the three parameters stud-
ied, the SVR—GA model works best for the pH, DO with 
R2 value approaching unity (Table 6, Fig. 5).

For TC analysis, data from January were paired with 
other parameters (pH, DO, BOD and TC). This was used as 
the input data set for the prediction of TC during the lock-
down. SVR-GA gave an R2 value of 0.99, pointing toward a 
high goodness of fit.

Lasso regression

In this model, a ‘t’ value of 0.01 was used. Trial and error 
basis were used and alpha values have been modified and 
tested. The alpha value of 0.01 was finally selected. The 

Fig. 5  SVR-GA predicted values of BOD, pH, DO and TC
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model provided R2 values leaning toward zero for pH, 
DO, BOD and TC and failed to predict the data correctly 
(Tables 4, 5, 7, Fig. 6).

Apart from this, Lasso regression performed robustly for 
TC prediction and gave R2 values of 0.93.

ANN with LMA

In the present study, a nonlinear transfer function (TANSIG) 
in the hidden layer was used for ANNs. The ANN predicted 
output and error in pH, DO, BOD and TC model for real-
time stations of the river Ganga are shown in Table 8.

The plots between experimental and theoretical values of 
pH, DO, BOD and TC values are shown in Fig. 7.

The best validation performance in ten neurons was 
0.08877, 0.38177, 34.7517 and 16,371,716.42 at epoch 3, 
3, 2 and 7 for pH, DO, BOD and TC, respectively, with the 
lowest MSE (Fig. 8).

The linear R2 values for training, validation and test data 
sets used for all the models (pH, DO, BOD and TC) are rep-
resented in Figure S1 of supporting material. The selected 
ANN generated the most trustworthy models for all three 
data sets. The experimental and theoretical values pH, DO, 
BOD and TC derived through these models were in close 
agreement (R2 = 0.92–1.0). This suggested that the model 
fitted well with the experimental data sets. ANNs have also 
been used to estimate and forecast the water quality variables 
like modeling of DO and BOD in the river water (Singh 
et al. 2009).

Similarly, Shamseldin (2010) used ANN for forecasting 
the flow of rivers in the developing countries. The chlorine 
concentration in the water distribution network has been 
assessed through ANN by Cordoba et al. (2014). ANN has 
been used for the prediction of water quality index (Bansal 
and Ganesan 2019; Gupta et al. 2019). The results of ANN-
based modeling have shown significant accuracy over other 
traditional modeling techniques. Shakeri Abdolmaleki et al. 
(2013) applied ANN for predicting copper concentration in 
the drinking water reservoir of Iran. Authors found that pre-
dicted values were very close to the real concentration of 
copper. The BOD, DO and other water quality parameters 
were forecast by using ANN in the Karoon river (Emamg-
holizadeh et al. 2014). The predicted values were close to 
the real ones, which proved ANN, an effective modeling 
technique for predicting water quality variables in the river. 
Gomolka et al. (2018) used ANN to estimate the BOD level 
and for controlling rate of aeration in river.
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MLP

Two RELU activated hidden layers were used and epochs 
were performed until full convergence of loss function was 
observed.

The MLP showed excellent results for pH, DO and BOD 
with R2 values very close to one (Tables 4, 5, 9, Fig. 9) but 
it's prediction for TC was not at par with its performance for 
the other indices.

RBF‑NN

An RBF-NN was applied with GA to optimize the hyper-
parameters like learning rate (lr) and several kernels (k). A 
multi-feature input algorithm was constructed which picked 
the hyperparameters using a GA where MSE was chosen as 
the fitness function. The initial population was picked out 
where the kernel number and learning rate constrained to a 
range of [1, 7] and [0.0001, 0.02], respectively. An initial 
population size of 50 was chosen. The algorithm was run 

Fig. 6  Lasso predicted values of BOD, pH, DO and TC
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for 30 generations with a crossover and a mutation prob-
ability of 0.7 and 0.02, respectively. The model ran for 100 
epochs each time. The results of the model showed poor 

performance for BOD, DO and TC. The model’s goodness 
of fit for pH is better than Lasso regression but not SVR and 
MLP (Tables 4, 5, 10, Fig. 10).

Table 8  ANN predicted output and error using L–M algorithm for pH, DO and BOD models for 14 stations of the river Ganga

Stations pH 
(Model 
Output)

DO 
(Model 
Output)

BOD 
(Model 
Output)

TC (Model Output) pH (Error) DO (Error) BOD (Error) TC (Error)

Anoopshahar 7.14 9.68 3.12 − − 0.04 + 0.09 − 0.12 –
Farrukabad 6.98 8.56 2.97 2954.02 + 0.12 + 0.14 + 0.03 − 754.02
Rajghat, Kannauj 7.35 7.76 1.63 6983.80 + 0.56 − 0.02 + 1.37 − 2283.80
Bithoor, Kanpur 7.25 8.08 1.95 4183.84 + 0.55 − 0.42 − 0.78 − 83.841
Jajmau, Kanpur 7.79 8.04 1.86 10,468.71 − 0.15 + 0.14 − 0.07 + 3531.28
Assi ghat, Varanasi 6.86 4.89 3.04 11,275.76 − 0.27 + 0.11 − 0.04 + 2724.23
Malviya Bridge, Varanasi 7.82 7.27 1.52 11,278.03 + 0.23 + 0.35 − 0.12 + 5721.96
Patna 7.54 0.38 30.03 11,265.72 + 0.09 − 0.13 + 0.09 − 9565.72
Bhagalpur 7.70 0.52 29.92 − − 0.84 + 0.21 + 1.47 − 
Berhampore 8.03 6.77 4.41 2739.70 − 1.03 + 1.47 − 4.21 − 1039.70
Monipurghat, Nadia 7.94 5.79 2.25 10,334.87 − 0.19 + 0.04 − 0.09 + 6665.12
Palta, Barrackpore 7.90 5.78 1.95 129,949.78 − 0.10 + 1.12 − 0.53 + 50.21
Serampore, Hooghly 7.44 6.57 1.02 70,229.23 0.09 − 0.05 + 0.02 − 229.23
Howrah bridge 8.05 4.95 0.59 70,229.23 − 0.4 + 0.05 − 0.01 − 229.23

Fig. 7  Comparison of the experimental and theoretical a pH, b DO, c BOD and d TC levels in the river Ganga
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Comparative study

Several studies conducted by other researchers on the quality 
of the Ganga's water during lockdown have been discussed 
in detail in Table 11. The outcomes of their work with the 
technique involved in the estimation of water quality param-
eters are included and have been compared with the present 
study.

Conclusion

In the present study, the water quality of the river Ganga has 
been evaluated during the lockdown and predicted for post 
lockdown conditions. It was found that the pH of all stations 

was within the standard range 6.5–8.5 in lockdown period. 
An increment in DO has been observed in Anoopshahar. 
Apart from that, all stations had DO > 5 mg/L except Patna 
and Bhagalpur. It was noted that Patna and Bhagalpur sta-
tions had very high BOD levels compared to other stations 
that signified a substantial level of pollution. During the 
lockdown, Anoopshahar, Farrukabad, Rajghat, Kannauj and 
Assi ghat, Varanasi had BOD exactly as 3 mg/L. The decre-
ment in TC was observed in Farrukabad, Rajghat, Jajmau, 
Patna and Palta during the lockdown period. In the present 
study, bioengineered mathematical models, namely Streeter 
Phelps, Thomas Mueller, SVR-GA, Lasso Regression, ANN, 
NDD and Polynomial regression, were attempted to pre-
dict the water quality parameters. Polynomial regression 
and NDD model were able to predict pH, BOD, DO and 

Fig. 8  Performance plot for modeling of a pH, b DO, c BOD and d TC levels in the river Ganga
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TC levels from 20th January, 2020 to 30th June, 2020 and 
07th August, 2020. Thus, NDD and polynomial regression 
models were used to predict the near future values of the 
water quality parameters (BOD, DO, pH and TC) of the river 
Ganga. But NDD model was not able to predict TC values. 
However, the NDD model is simply an interpolation method, 
which can be further extrapolated to predict the values. On 
the other hand, polynomials of 2, 3 and 4 degrees were gen-
erated in polynomial regression model to obtain the range of 
predicted values. The NDD model is verified by the polyno-
mial degree 2 regression that appeared to be acceptable after 
comparison. Overall, polynomial regression model was bet-
ter than NDD model. In ANN models using LMA, the best 
validation performance was observed with ten neurons as 
0.08877, 0.38177, 34.7517 and 16,371,716.42 at epoch 3, 3, 
2 and 7 for pH, DO, BOD and TC, respectively. Additionally, 
SVR-GA hybrid was superior compared to its counterparts 
such as Lasso Regression and RBF-NN in the prediction of 
real-time water quality data indices such as pH, DO of the 
river Ganga. It also produced the best results for TC forecast 
during the lockdown period. It was unable to predict the 
lockdown BOD values correctly. MLP was the second-best 
algorithm after SVR-GA, which showed accurate fits for 
three (pH, DO, BOD) of the indices but couldn’t accurately 
predict TC levels. SVR-GA and MLP showed a nearly per-
fect fit for the pH and TC data with significantly lesser MSE 
values. The R2 value for pH modeled by SVR-GA (R2 = 0.99) 
and MLP (R2 = 0.99) was near unity, pointing to a perfect fit. 
Similarly, the R2 value for TC modeled by SVR-GA is 0.99. 
The abnormal high deviations in BOD modeling in all the 
models except MLP (R2 = 0.99) can be due to the presence 
of outliers. It can, therefore, be stated that SVR and MLP 
are relatively quicker and better choices as the modeling 
techniques for predicting values of water quality parameters 
of the river Ganga. Thus, in the present study, SVR-GA, 
MLP and polynomial regression model were found supe-
rior to NDD for the prediction of water quality parameters 
in the long run. Moreover, as these models are fitted with 
the least error, there are numerous applications where their 
use is highly recommended. Like, SVR-GA algorithm can 
be effectively implemented to estimate parameters of water, 
MLP is capable of modeling a sequencing batch reactor that 
will treat municipal wastewater. The comparison of different 
models showed their applicability in predictive modeling of 
river flow and wastewater treatment.
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Fig. 9  MLP predicted values of BOD, pH, DO and TC
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Fig. 10  RBF-NN predicted values of BOD, pH, DO and TC
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