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Abstract
The present study performs landcover modelling using the SLEUTH model. The urban land use changing factors are cali-
brated to predict the Land Use Land Cover (LULC) for a densely populated and developing smart city, Prayagraj, India. 
This research aims to use the SLEUTH model for simulating the future urban growth with the help of historical LULC 
(1990–2020), road network and elevation data. The influence of road gravity and slope resistant coefficients is very sig-
nificant in this study's outcome. The built-up area of the region increased from 40.22  km2 (5.10% of total area) in 1990 to 
85.89  km2 (10.89%) in 2020. According to prediction results, in the next 20 years, the built-up growth rate would be 1.9% 
and approximated built-up area would be 118.66  km2 (14.98%) in the year 2040. The quality of the result has been quantified 
in terms of best fit value of Optimal SLEUTH Metric (OSM) and validated against the existing LULC. The study utilises a 
spatially explicit urban growth model with 30 m resolution remote sensing data and provides future landuse of Prayagraj city.

Keywords SLEUTH model · Urban LULC calibration · Prediction · Scenario-based planning · Smart city

Introduction

The anthropogenic activities have been intensified in the last 
three decades with technological enhancements. The geo-
graphic processes accelerate the human population surge 
(Mosammam et al. 2017; Franco et al. 2017). The low-den-
sity urban areas become high density urban regions along 
with the expansion of the city boundaries worldwide. The 
human population is expected to shoot up and migrate to 
urban regions (Kar et al. 2018). Today, 56.2% of the world’s 
population is living in cities and according to the United 
Nations (UN) report, this figure is expected to reach 60.04% 
by the year 2030 (United Nations 2019). In India, the urban 
population in 2015 was 429,069 thousand (32.8%); this fig-
ure raised to 483,099 thousand (34.9%) in 2020 and by the 
year 2030, it is expected to reach 607,342 thousand (40.1%) 
(United Nations 2020). The significant urban population 
increment is predicted to occur in the lesser developed 
regions of East Asia, South Asia and Africa, whereas 35% of 

the total increased population will reside in India, China and 
Nigeria only (United Nations, 2020). In this scenario, smart 
urban land use planning is essential for socio-economic and 
sustainable development.

The Land Use Land Cover (LULC) pattern 
changes as the infrastructure grows for human needs. 
These changes are usually manifest as the forest and veg-
etation get converted into built-up LULC like residential 
building, commercial complex, industrial plant, transporta-
tion infrastructure etc. (Kassawmar et al. 2018; Kumar and 
Agrawal 2019). The scenario worsens when these activities 
grow irregularly, leading to the loss of natural resources and 
ecological imbalance. Despite the devastating impact of the 
COVID-19 pandemic, it has been proven that behavioural 
changes can retard carbon emission and improve air quality 
in cities globally (United Nations 2020; Muhammad et al. 
2020). The government's development and environmental 
policies could help to reduce the impact of rapid urbani-
zation. The simulation and modelling of the urban growth 
patterns can help in the monitoring of the complex urbani-
sation process (Megahed et al. 2015). Accurate temporal 
monitoring can help to control the irregular developments 
and can support stakeholders in sustainable development 
planning (Kar et al. 2018). Various remote sensing data with 
Geographic Information System (GIS) technology ease the 
information gathering. Due to abundant remote sensing data 
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availability, spatial assessment of urban sprawl patterns is 
possible (Deep and Saklani 2014; Mishra et al. 2020). The 
frequent simulations of urban growth were carried out at the 
micro-level due to the availability of open-access spatial data 
and satellite images. Urban growth dynamics and behaviour 
is varied according to various geographical features and usu-
ally shows a nonlinear growth pattern (Deep and Saklani 
2014).

Urban growth prediction and its impact on other natural 
LULC has been trending for the last two decades. The pro-
jection and revitalisation of land use development and con-
version monitoring helped in the agricultural and economic 
output prediction (Yang et al. 2021), flood-prone area detec-
tion (Al Rifat and Liu 2022), scenario impact assessment 
(Alay et al. 2021), calculation of environmental indicators 
(Singh et al. 2022) and various other applications world-
wide (Nwaogu and Pechanec 2018; Shukla and Jain 2020). 
The urban growth modelling is further enhanced by linking 
the image spectral information to the independent variables 
and ancillary data through machine learning. The machine 
learning approaches use the temporal LULC information 
to calibrate the spatial parameters and changing fashion of 
urbanisation. Many models simulate the urban growth in 
past, mainly using Cellular Automata (CA) (Shafizadeh-
Moghadam et al. 2017; Lu et al. 2019), fractal analysis 
(Rastogi and Jain 2018), Artificial Neural Network (ANN) 
(Fattah et al. 2021), spatial statistics (Abdullahi et al. 2015) 
etc. CA has been extensively used in past studies. CA-based 
modelling was applied in environmental monitoring and now 

it is used ubiquitously in urban growth modelling (Guzman 
et al. 2020). CA is suitable for the complex model, which 
compiles elements showing nonlinear variation and widely 
used in urban sprawl detection analysis (Kantakumar et al. 
2019; Lu et al. 2019; Faichia et al. 2020). CA integrated 
with LULC data and neighbourhood information has given 
accurate spatial data simulation results in the past (Saxena 
et al. 2021a). The neural network models are now trending 
as they have provided satisfactory results in recent years (Li 
et al. 2019). The composite technology such as MLP-ANN 
and MC-CA techniques also applied to get more accurate 
prediction results (Yang et al. 2019).

The researchers used models that included the multi-
temporal LULC information along with geographical and 
socio-economical urban growth driving variables such as 
elevation, slope, distance from roads, population and other 
geographic components. In the recent past, some popular 
static and dynamic models such as Multi-Layer perceptron 
(MLP) using Land Change Modular (LCM) (Megahed et al. 
2015; Vinayak et al. 2021), CA-Markov (Nath et al. 2020; 
Khwarahm et al. 2021a, b), ANN-based prediction (Rah-
man et al. 2017; Anand and Oinam 2020), SLEUTH urban 
growth model (Ilyassova et al. 2021; Alay et al. 2021) and 
ANN-Markov chain-based model (Al Rifat and Liu 2022) 
were used by different researchers globally. These models 
are compared in Table 1.

Compared to other urban growth prediction approaches 
like ANN, regression tree and Markov chain, it is found that 
the SLEUTH model has provided greater accuracy to urban 

Table 1  Comparison of LULC prediction models

Characteristics Cellular Automata Markov chain CA- Markov SLEUTH LCM

Variable input needed Built-up pixel cells LULC map LULC maps, suitabil-
ity maps

LULC, slope, exclu-
sion, transportation 
network, urban, 
hillshade

LULC, independent 
variables

Support Data format ASCII Raster image Raster image Raster GIF Raster-RST (Idrisi)
Cost/Price Free Free Free Free Commercial
Land suitability Feasible Unlikely Feasible Unlikely Feasible
Public/expert knowl-

edge
Yes, but not essential Yes, but not essential Yes, but not essential Not required Not required

Application type Stand-alone Stand-alone/software Stand-alone/Software Cygwin (Unix plat-
form)

Components of IDRISI

Stability High High High High Low
Output Predicted cellular 

information
Transition probabil-

ity maps, LULC 
predicted area

Predict multiclass 
map

Transition driving 
coefficients, pre-
dicted raster

Predicted geospatial 
raster, transition 
vulnerability map

Shortcomings Human behaviour 
influence not 
included and allows 
modelling for a 
single feature

Predicts output in 
non-geospatial 
format and depends 
upon two temporal 
images for predict-
ing change over the 
time

Lacks in input vari-
ables such as slope, 
aspect, elevation 
etc.  and presence 
of non-real edges on 
modelled map

Involves tedious cali-
bration process

 Lack of population 
data inclusion
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variation (Berberoğlu et al. 2016). The urban prediction 
models such as the Markov chain are static where the growth 
could be known in a quantitative transition of LULC classes 
but unable to give a spatial output of future urbanisation. 
SLEUTH model overcomes such limitations and provides 
the prediction output spatially based on several factors like 
slope, road transportation network etc., including LULC 
(Alay et al. 2021). The SLEUTH model works well even 
for the medium resolution images as it can achieve a good 
model of fit value on data of up to 30 m resolution (Eyelade 
et al. 2021).

Keith Clarke developed the SLEUTH model in Santa 
Barbara at the University of California (Clarke et  al. 
1997). SLEUTH is an acronym of Slope, Landuse, Exclu-
sion, Urban, Transportation and Hillshade (Ilyassova et al. 
2021). These are the name of the input layers of this model. 
SLEUTH is a CA-based forecasting model used for Urban 
Growth Modelling (UGM) and land use modelling by using 
the Deltatron Model. The UGM application of the model 
is more popular. There are recent researches held on urban 
growth prediction using SLUETH model globally (Hos-
sain Shubho and Islam 2020). There are four growth rules 
in SLEUTH: spontaneous growth rule, spreading centre 
growth rule, edge growth rule and road influenced growth 
rule (Saxena and Jat 2020a). All these four growth rules are 
related with five coefficients named Dispersion Coefficient 
(Diff), Breed Coefficient (Brd), Spread Coefficient (Sprd), 
Slope Resistance Coefficient (Slp) and Road Gravity Coef-
ficient (RG). The description of these growth rules and their 
relation with corresponding coefficients is given in Table 4. 
Along with these growth rules, secondary ‘self-modification 
rules’ are applied in this model, which is used to alter the 
value of growth coefficients to achieve a typical S-curve 
for urban expansion growth rate (Jawarneh 2021). Self-
modification rules like boom, bust, critical low and critical 
high constants are responsible for the nonlinear simulation 
of urban growth patterns (Saxena and Jat 2019). The urban 
cells are the living organisms which are regulated through 
transition rules that train within CA as nested loops set. The 
outer loop performs the Monte Carlo iterations and the inner 
loop executes the growth rule (Capan 2019; Saxena and Jat 
2020b).

Land use change models were started from 1973 Markov 
inter-temporal change simulation model. The CA-based 
models were most frequently used by different researchers. 
CA Markov model has been applied maximum times for 
simulation using historical LULC data such as CA Markov, 
CA SLEUTH, Logistic CA, or separately CA. SLEUTH 
model was applied in land use change simulation popularly 
as it proves the better identification of new isolated growth 
centres (Mondal et al. 2020). SLEUTH model is imple-
mented globally in different cities by different researchers 
and planners (Li et al. 2021; Jayasinghe et al. 2021; Alay 

et al. 2021). There is an urgent requirement for studies 
that can simulate and predict urban growth. The SLEUTH 
model was initially developed for the San Francisco Bay area 
(Şevik 2006). Over the time, it was repeatedly used for North 
America and Europe (Peiman and Clarke 2014; Berberoğlu 
et al. 2016; Liu et al. 2019). Some Indian subcontinent stud-
ies were carried out using the SLEUTH model (Kantaku-
mar et al. 2011; Chaudhuri and Clarke 2019; Saxena and 
Jat 2020a, b; Vani and Prasad 2021), but they are mainly 
focused on the metropolitan cities. This work attempts to 
fill these gaps by implementing the SLEUTH model for the 
urban growth of Prayagraj city of India, an emerging smart 
city.

Urban centres that experience continued demand for 
more development and so wish to grow further, typically an 
increase in built-up areas or both horizontally and vertically 
expansion since these are the only options with limited suit-
able land availability. Prayagraj is the rapidly growing city of 
India which has education and religious significance. Urban 
agglomeration is developing here at the cost of natural land-
cover. It is hypothesised that the SLEUTH model will help 
to understand the urban dynamics here and predict the future 
LULC. This simulation and perdition would be done up to 
the year 2040 on the basis of input data of the past three 
decades with the help of the SLEUTH model. However, a 
high growth rate and too far future prediction would be the 
challenges for the results of this model.

In the present study, built-up land density is considered 
to be proportional to the relative probability of the devel-
opment of a particular area or location having a higher 
developmental potential resulting in a possible increase in 
built-up area vertically and horizontally per unit area of land. 
This is reflected in terms of the desire of more people to 
use that location for various built-up activities (residential, 
commercial, infrastructure, industries, etc.). This research 
aims to project the urban growth of Prayagraj city in India. 
To achieve this aim, following research objectives have been 
formulated: (1) To identify the LULC and its temporal vari-
ation for the study area. (2) To check the efficiency of the 
SLEUTH model and validation of its results (3) To predict 
the LULC dynamics for the year 2040 based on the data of 
the past three decades. (4) To identify the major drivers for 
LULC change and urban growth.

The research paper is segmented into four main sec-
tions. The first section introduces the study, including some 
research background, problem statement and objectives. The 
second section is of material and methods which describes 
the details and geographical significance of the study area 
along with  the data used and methodology. The methodol-
ogy includes prepossessing of data as input required for the 
model, calibration and validation of the SLEUTH model. 
Section  three presents the results of classification, calibra-
tion, prediction and validation. It includes a brief discussion 
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of the research corollary with the help of critical graphs and 
quantity matrices of spatial parameters. Finally, in the last 
section conclusion and limitations and future scope are cov-
ered. The research was performed at the GIS Cell of Motilal 
Nehru National Institute of Technology Allahabad, Praya-
graj, India, from May 2020 to November 2021.

Materials and methods

Study area

The study area for urban growth analysis is Prayagraj 
city which is located in the Uttar Pradesh state of India. It is 
a tier-II type developing city and was selected for the Smart 
City Mission of India. According to the census 2011, the 
total population was 1,117,094 (Census of India 2011). The 

climate of the region is tropical and has a high-temperature 
variation from 2 °C in the winter months (December–Janu-
ary) to 45 °C in the summer months (June–July). The city is 
situated at the 98 m elevation above mean sea level (Ministry 
of Urban Development 2014).

The Municipal Corporation Area (MCA) of Prayagraj city 
contains 82  km2 area and is divided into 80 municipal wards 
(Government of UP 2012). The municipal ward boundary 
shapefile of the city was constructed through the digitisation 
process. A 5 km buffer was created outside the municipal 
ward boundary region, which is facing transformation due to 
high built-up construction and public settlement. Eventually, 
a square area extent which includes the municipal adminis-
trative wards of the Prayagraj city and a 5 km buffer area 
around the municipal boundary was selected as the study 
area, as illustrated in Fig. 1. The geographical extent of the 
study area is from 81 ̊ 40''51'E to 81 ̊ 57" 31' E longitude and 

Fig. 1  The study area contain-
ing the city ward boundary and 
5 km buffer region
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from 25 ̊ 19" 49' N to 25 ̊ 35" 6' N latitude. The total study 
area is of 785.12  km2.

The city has a significant share in the economic and cul-
tural development of the country. The city is situated at the 
confluence of two sacred rivers: Ganges and Yamuna. The 
renowned Kumbh fair is celebrated every six years at rivers' 
confluence (Sangam). One of the largest mass gatherings 
in the world takes place in this fair. In 2019, over 240 mil-
lion pilgrims visited the fair during 55 days event (Agrawal 
and Bapurao 2021). The open land for the Kumbh recrea-
tional activities is preserved as ground, covering 16.02% of 
the total MCA. The study area includes various real state 
projects, central and state government offices, industries 
and renowned educational institutions. According to Sarif 
and Gupta (2021, 2022) the built-up land in the city was 
18.54  km2 in 1988, which increased up to 47.15  km2 in the 
year 2018 at the cost of agriculture and forest land.

Data used

The present analysis work was performed in two stages, 
stage I and stage II. Stage I analysis was performed to vali-
date the model and included input datasets from 1990 to 
2010. Stage II was the prediction stage, which gave the pre-
diction output of urban growth and used input data from 
1990 to 2020. To prepare input data for the SLEUTH model, 
the opensource datasets of a fixed time interval were col-
lected. The datasets details are listed in Table 2.

The city ward map was collected through Prayagraj 
Nagar Nigam's official website. The Survey of India (SOI) 
topographical maps were downloaded through its respec-
tive official websites. The study area is covered in four SOI 
topographical sheets, i.e. G44P10, G44P11, G44P14 and 
G44P15. The Landsat images of 1990, 1995, 2000, 2010 
and 2020 were acquired through the USGS Earth Explorer 
portal to generate the LULC maps. Stacking was performed 
to obtain the composite images since the images were in 
a sequential band format. To prepare slope and hillshade 

data, an open-source Digital Elevation Model (DEM) was 
acquired from Shuttle Radar Topographic Mission (SRTM) 
data. Afterwards, the transportation road network data col-
lection was done with the help of OpenStreetMap, which 
was validated and corrected through a digitised road map of 
Prayagraj city. The projection system of all the images was 
set to World Geodetic System 1984 (WGS84) and Universal 
Transverse Mercator (UTM) zone 44 north. Google Earth 
historical time series data were used for ground-truthing and 
validation for LULC changes.

Methodology

Input layer preparation

Six input layers are required in the SLEUTH model. These 
layers were slope, landuse, exclusion, urban, transportation 
and hillshade. The methodology for the preparation of these 
input data layers is given in Fig. 2.

The landuse layer is prepared through supervised classifi-
cation of Landsat satellite images. Supervised classification 
is used to obtain the landuse layer, a user-controlled process 
that involves training sample collection for signature identi-
fication of a particular feature. These signatures are the spec-
tral reflectance range for a specific element and were further 
used to assign the LULC class to each pixel (Nguyen et al. 
2020). There are various classification techniques which 
give excellent accuracies such as Random Forests (RF), 
Support Vector Machine (SVM) and Maximum Likelihood 
Classifier (MLC) (Alshari and Gawali 2021). Among these 
techniques, MLC is the most commonly used classification 
technique for various remote sensing applications (Allam 
et al. 2019; Chughtai et al. 2021).

The LULC features, i.e. fallow land, sand, urban, veg-
etation and water were extracted through MLC supervised 
classification method. The description of LULC classes is 
given in Table 3. In the landuse layer generation, at least 15 
training samples dispersed in the whole image were taken 

Table 2  SLEUTH model input 
dataset details

Dataset Acquisition date/ Year Spatial 
Resolu-
tion

Row/Path Cloud Cover % File Format

Landsat-5 TM 25 May, 1990 30 m 42/143 0.00 Tiff
Landsat-5 TM 20 March, 1995 30 m 42/143 0.00 Tiff
Landsat-7 ETM + 25 March, 2000 30 m 42/143 0.00 Tiff
Landsat-5 TM 29 March, 2010 30 m 42/143 0.00 Tiff
Landsat-8 OLI 24 March, 2020 30 m 42/143 0.17 Tiff
Ward map 2012 NA NA NA Tiff
Topographical map 2000 NA NA NA Tiff
OpenStreetMap 2020 NA NA NA Shapefile
SRTM DEM (1arc second) 2000 30 m NA NA Tiff
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for each category. After the spectral signature preparation, 
the image pixels were sorted into a given number of feature 

classes by using some mathematical algorithms known as 
decision rules.

Fig. 2  Methodology for input 
layer creation
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Table 3  LULC class description Landuse feature Description

Fallow land It is the open land where the soil is not sand and currently not used for agriculture
Sand The coarse-grained white sand which is present alongside of the rivers
Urban It includes the built-up and human settlement. Concrete settlement such as 

residential, commercial, mixed-use surface areas, asphalt and bituminous road 
pavements etc

Vegetation It includes the clustered green cover, which includes cropland, trees, bushes etc
Water It includes rivers, lakes, ponds, etc
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After the image classification, an accuracy assessment 
was performed with the help of confusion matrix genera-
tion. Two hundred fifty stratified random points were com-
pared with the ground truth data and the kappa coefficient 
was computed for the classified image. The high-resolution 
Google Earth time series data, SOI toposheets and ancillary 
data were used as reference data. The classification accuracy 
was affected by classes' heterogeneous behaviour and spec-
tral signatures' overlapping ranges (DN values) into different 
spectral bands.

A minimum of nine multitemporal layers are required 
to perform one set of analyses in the SLEUTH model: four 
urban layers of different years, one slope layer, one hillshade 
layer, one exclusion layer and two road networks layers. 
For the analysis of a stage-I, total of twelve input layers 
were taken in this work, which included four urban layers 
(1990, 1995, 2000 and 2010), three road layers (1990, 2000 
and 2010), two landuse layers (1990 and 2010), one slope 
percent layer, one hillshade layer and one exclusion layer. 
In stage-II, total of thirteen input layers were taken, which 
included four urban layers (1990, 2000, 2010 and 2020), four 
road layers (1990, 2000, 2010 and 2020), two landuse lay-
ers (1990 and 2020), one slope per cent layer, one hillshade 
layer and one exclusion layer. These layers were prepared 
in true greyscale Graphics Interchange Format (GIF) image 
type.

The urban layers were extracted through multitemporal 
LULC maps. The landuse images of different years were 
reclassified and assigned a value of one to the urban class 
and zero to all other pixels for creating urban layers. The 
LULC layer was then prepared into greyscale image for 
the input into the SLEUTH model. Therefore, LULC maps 
were reclassified into a range from one to five and converted 
into a greyscale image. Transportation networks and junc-
tions significantly influenced urbanisation (Chaudhuri and 
Clarke 2019). The road network of the region was captured 
from OpenStreetMap in shapefile format. The polyline road 
shapefile was converted into a raster image with pixel size 
30 m × 30 m and the same extent as the urban layer. All the 
road pixels were assigned a value of 100 and the remaining 
pixels were set to 0. The road network layer formed through 
digitisation of the city's arterial and sub-arterial roads from 

the road map of the Public Work Department (PWD) was 
used as reference data for validating OpenStreetMap data. 
The road network of the year 1990, 2000 and 2010 was 
obtained with the help of satellite data and Google Earth 
historical imagery. The slope percent and hillshade layers 
were generated with the help of the SRTM DEM. The SRTM 
DEM of 1-arc second resolution was downloaded and repro-
jected as the existing input layers. It was clipped by the study 
area boundary for making slope percentage and hillshade 
layers. The exclusion input layer represented the area where 
urban settlement and development was either forbidden or 
not possible such as a waterbody or government restricted 
area. River and cantonment areas were considered in the 
exclusion layer obtained from the city ward map. This layer 
can be modified as per local criteria that ultimately alter 
the prediction results (Liu et al. 2019). Afterwards, all the 
input layers datasets were resampled for all three calibra-
tion phases, i.e. 120 m for coarse calibration, 60 m for fine 
calibration and 30 m for final calibration. For the SLEUTH 
model, all data were converted into a true greyscale 8-bit 
GIF file format. The naming convention described on the 
SLEUTH website was followed before placing the data into 
the input directory of the model.

SLEUTH modelling

SLEUTH is a modified CA that predicts urban growth 
according to the type of growth pattern in the past and 
through four growth rules stimulated by controlling fac-
tors. These rules were spontaneous growth, spreading cen-
tre growth, edge growth and road influenced growth. These 
rules are governed by five coefficients, i.e. dispersion, breed, 
spread, slope and road gravity coefficient. A short descrip-
tion of these rules and the relative coefficient is given in 
Table 4. All these coefficients were initialised with value 
zero at coarse calibration which limits up to value 100. The 
change in the coefficient values in different phase impacts 
the growth rules (Harb et al. 2020).

The SLEUTH model was executed in this study using 
the brute force method. The structure of the model is given 
in Fig. 3.

Table 4  Growth rules description and relation with coefficients in SLEUTH (Dietzel and Clarke 2007)

Growth rule Influencing coefficients Description

Spontaneous growth Dispersion, Slope Conversion of random non-urban cell to urban cell
Spreading centre growth Breed, Slope Some of the new spontaneously urbanised cells become a 

new urban spreading centre
Edge growth Spread, Slope Define occurrence of urban growth from existing urban 

spreading centres
Road influenced growth Breed, Road gravity, Dispersion, Slope Define attraction of urbanisation from existing traffic roads
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This model has been completed in three phases: test, 
calibration and prediction (Berberoğlu et al. 2016). The 
test mode run ensured the accuracy of input data prepara-
tion and if any remaining error, it showed the relative error 
statements. The calibration phase of the model was the most 
crucial phase, which involved training the model to achieve 
the best fit values of growth coefficients (Peiman and Clarke 
2014). There were three modes of calibration, i.e. coarse, 
fine and final calibration. In particular analysis, the dataset 
with a spatial resolution of 120 m, 60 m and 30 m were 
used for coarse, fine and final calibration, respectively. The 
calibration refined and narrowed down the limits of the coef-
ficient from coarse to final calibration. Eventually, the coef-
ficients and best-fit parameters defined from the calibration 
were used in the prediction phase. This phase was carried 
out in a single run with 100 Monte Carlo iterations. The 
mean coefficient values of all Monte Carlo iterations were 
used to predict urban growth. The prediction results were 

the probabilistic map of landuse growth based on growth 
rules and coefficients defined (Agyemang et al. 2022). Each 
coefficient set replicated the historical urban growth pattern 
regarding the urban extent's initial seed layer (urban layer 
of 1990). The subsequent input layers of later years (1995, 
2000, 2010 and 2020) were used as control points.

The prediction output has been assessed through sta-
tistical data generated in the form of 13 metrics. These 
metrics are (1) ‘product’ statics represents the product of 
all matrices, (2) ‘compare’ statistic that shows the urban 
growth pattern, (3) ‘population’ that represents the number 
of urban pixels, (4) ‘edge’ represents the peripheral urban 
pixel count, (5) ‘cluster’ that shows urban cluster edge cells, 
(6) ‘cluster size’ that represents mean, (7) ‘Lee-Sallee’ is a 
shape index and represents the fitness of models between the 
given input year data, (8) ‘Slope’ compare the slope of given 
and modelled slope through least square regression, (9) ‘% 
urban’ shows a least square regression value comparing from 

Fig. 3  Methodology for execut-
ing the SLEUTH model
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modelled and given urban cells, (10) ‘Xmean’ represents the x 
coordinate of cluster radius, (11) ‘Ymean’ represents y coordi-
nate of cluster radius, (12) ‘Radius’ is a standard normalised 
radius extracted from Xmean and Ymean, and (13) ‘F-match’ 
represents the fitness of landuse (Dietzel and Clarke 2007; 
Capan 2019).

The Lee-Sallee statistic was used for shape measurement 
and showed the pattern of urban growth (Lee and Sallee 
1970). Many researchers used Lee-Sallee to sort the best-fit 
range of coefficient in the calibration process, but in 2007 
(Dietzel and Clarke 2007) published the concept of Opti-
mum SLEUTH Metric (OSM). The OSM is the product 
of seven metrics, i.e. compare, population, edges, clusters, 
slope, Xmean and Ymean. The top 20 coefficients correspond-
ing to OSM were used to select the range of coefficients in 
the subsequent calibration phase. After the final calibration, 
the best fit values of all coefficients came in the forecasting 
calibration step's output. The next phase was a prediction 
that used these best-fit values of coefficients and simulates 
the results in the output folder. The output includes statistical 
and image data, including average, standard deviation, log 
file, cumulative urban maps, animated land urban maps, etc., 
for modelled years (Jantz et al. 2010).

The results of stage-I prediction have been validated 
quantitatively as well as visually. The prediction results for 
the year 2020 were validated with actual urban growth data. 
The validation of the model was necessary to assess the 
model capability of urban behaviour simulation.

Results and discussion

Input layers

LULC classification

The first objective of this work was to identify the LULC 
of the study area. The Landsat images of 1990, 1995, 2000, 
2010 and 2020 were classified using the MLC technique. 
All five classified maps are shown in Fig. 4, and the area 
of classes in different years is mentioned in Table 5. The 
majorly existing LULC defined the characteristics of that 
area. There were five dominant LULC classes in the study 
area: fallow land, sand, urban, vegetation and water. Fal-
low land was present in the surrounding area of the city. It 
contained new alluvial soil at river banks, non-agricultural 
lands, land acquired for industries, construction sites, unmet-
alled roadwork, etc.

In year 1990, the fallow land area was 430.59   km2 
(54.61% of total study area) which remained only 343.52  km2 
(43.56%). This decreasing trend indicates the increased 
anthropogenic activities in the area and urban sprawl. The 
second most found feature was vegetation. Vegetation class 

included the groups of tree canopy, farmland, green foliage, 
dense green scrubs, etc. The decreasing vegetation trend 
indicated the loss of flora and fauna in the region over the 
years. The area of sand was large (10.11% of total) due to the 
confluence of two major rivers. The increasing trend of sand 
area between year 1990 and 2000 has occurred due to river 
meandering and was verified through previous studies (Sarif 
and Gupta 2022).The sand was spread on the river banks. 
The built-up or urban area has increased consistently in the 
last three decades. The urban class included concrete roads, 
buildings, impervious constructions, etc. Initially, in the year 
1990, it was 5.1% of the total area, whereas, in the year 
2020, it reached up to 10.89%. This increase in the urban 
area has affected the natural land cover patterns like vegeta-
tion and fallow land. Water bodies were shrinking in the 
region. Although, according to Saha and Agrawal (2020) in 
the monsoon season comparatively larger area came under 
the waterlogged region. The percentage of water was 12.39% 
in 1990 which reduced to 5.26% in 2020. Vegetation and 
fallow land area have been reduced in the last three decades.

The validation of the classification results was carried out 
with the help of ground truth data. The historical images of 
Google Earth had been used to collect some ground control 
points for reference. Accuracy assessment of each classified 
map was performed through an error matrix which includes 
the User Accuracy (UA), Producer's Accuracy (PA), over-
all accuracy and kappa coefficient. These are mentioned in 
Table 6. The overall accuracy of all the classified maps was 
above 90% and the kappa coefficient values were above 0.85.

Over three decades, several LULC transitions took place. 
Figure 5 depicts the major LULC transitions. These transi-
tions are further illustrated with the help of Google Earth 
images. From these transitions, it is clear that the natural 
land cover is losing at the cost of anthropogenic activities.

SLEUTH input layers

The input data layers of SLEUTH were in raster format with 
identical numbers of rows and columns. The input layers had 
WGS 84 datum and UTM zone 44 north projection. All the 
layers had a cell size of 30 m. The images were resampled 
into GIF greyscale format in three spatial resolution sets, 
i.e. 30 m, 60 m and 120 m. The prepared layers are shown 
in Fig. 6.

The temporal urban layers depict the sprawl of built-up 
activities in the city's outer area over the years. The city's 
ward boundary only covers approximately half of the urban 
region. The exclusion input layer represents the area that was 
not available or prohibited for performing construction activ-
ities. In this layer, the mainstream river area and restricted 
military area (cantonment) were included. Slope and hill-
shade layers were generated from the same SRTM DEM 
image. The slope layer represents the slope of the region 
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Fig. 4  LULC maps of the study area
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Table 5  LULC area in different 
years in km.2

LULC 1990 1995 2000 2010 2020

Classes Area % Area % Area % Area % Area %

Fallow land 430.59 54.61 239.99 30.44 247.02 31.33 332.19 42.13 343.52 43.56
Sand 65.07 8.25 92.68 11.75 126.39 16.03 69.85 8.85 79.78 10.11
Urban 40.22 5.10 54.41 6.90 62.79 7.96 75.07 9.52 85.89 10.89
Vegetation 154.87 19.64 345.14 43.77 283.03 35.90 277.87 35.24 237.76 30.15
Water 97.73 12.39 52.85 6.70 69.25 8.78 33.48 4.24 41.50 5.26

Table 6  Accuracy assessment of LULC classification

1990 1995 2000 2010 2020

Classes UA PA UA PA UA PA UA PA UA PA

Fallow land 90.00 86.54 97.87 93.88 95.45 100.00 90.48 84.44 93.18 97.62
Sand 88.00 86.27 92.31 90.57 79.49 86.11 88.00 86.27 88.00 89.80
Urban 87.76 93.48 90.00 93.75 91.84 100.00 80.85 100.00 92.00 100.00
Vegetation 91.67 89.80 95.74 93.75 94.00 94.00 87.50 89.36 92.00 92.00
Water 95.83 100.00 90.00 90.00 96.00 94.12 95.83 93.88 92.00 90.20
Overall Accuracy 90.85% 92.88% 92.53% 89.36% 92.10%
Kappa Statistics 0.89 0.91 0.91 0.87 0.9051

Fig. 5  Major LULC transitions in Prayagraj from 1990 to 2020
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in percentage, whereas the hillshade layer shows the sunlit 
and shadowed areas. The road network data collection and 
creation were a complex process. The OpenStreetMap road 
data had been downloaded. It was corrected with the help 
of the digitised map to generate a road network for the year 

2020. Due to past road network data unavailability, Google 
Earth time-series images were used to extract roads from 
1990, 2000 and 2010. The road network highly influences 
the development of new urban settlements (Parchianloo et al. 
2021). The development rate of roads has increased with 

Fig. 6  The input data layers of the SLEUTH model
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the urban sprawl simultaneously with the state and national 
highway projects in the last three decades. Lastly, the LULC 
images of 1990, 2010 and 2020 are converted in greyscale 
GIF format for input in SLEUTH.

Model calibration and validation

This study has used the brute force calibration method. 
'Brute force calibration' means checking every possibility. In 
the calibration phase, the coefficient range limit for the data 
was decided by three resolutions, i.e. coarse, fine and final 
spatial resolution. Generally, coarse spatial resolution was 
taken four times of actual resolution, whereas fine data had 
resolution two times coarser than real data. The calibration 
phase was used to find the best fit values of five coefficients, 
i.e. dispersion, breed, spread, slope and road gravity. The 
convergence of these coefficients from the range of 0–100 to 
a single best fit value was carried out in the coarse, fine and 
final calibration. For coarse calibration, the 120 m spatial 
resolution dataset was selected as input data, the range of 
coefficients was selected from 0 to 100, and the step value 
was selected as 25. The upper 20 OSM metrics values and 
their corresponding coefficients values were selected to con-
verge the coefficients range for the next calibration, i.e. fine 
calibration. The values of metrics generated after coarse cal-
ibration of stage-I corresponding to the top 20 OSM values 
are given in Table 7. For the fine calibration, the dataset of 
60 m layers was selected. The narrow-downed range through 

OSM had been used in the final calibration. The final cali-
bration was the most time taking process of all the processes. 
The step values had narrowed down to 1 in the final calibra-
tion and only a single value was coming as output for each 
coefficient. These values were further put in the forecasting 
step and found the best fit values for each coefficient.

It can be noticed in Table 7 that the value of compare 
metric was 0.55 for the top OSM values which was satis-
factory. This value further varied between 0.55 and 0.59 
in all three calibrations that indicated good comparison 
between modelled and actual urban extent. The least square 
regression value of population varied from 0.98 to 1 that 
showed a greater similarity between actual and modelled 
growth. The regression values of edge and cluster were also 
lied in satisfactory range in all three calibration phases. It 
represented the comparison between shape and form of the 
modelled and actual urban growth. The Lee-Sallee values of 
more than 0.4 are acceptable and indicates near perfection 
calibration (Chandan et al. 2020). The results of calibration 
indicated that the coefficients for growth modelling charac-
terises matched with the actual growth pattern and could be 
used for the further prediction for LULC of the Prayagraj. 
The values and statistics for the stage-I calibration process 
are mentioned in Table 8.

The best fit values express the influence of the coeffi-
cient during the prediction process. The obtained dispersion, 
breed and spread values were less (best-fit = 1), showing 
lesser spontaneous growth. It depicted that the development 

Table 7  Result of coarse calibration in stage-I

Compare Pop Edges Cluster Lee-salle e Slope %Urban Xmean Ymean Rad Fmatch Diff Brd Sprd Slp RG OSM

0.55 1.00 0.49 0.76 0.39 1.00 0.98 0.96 0.87 0.99 0.53 1 1 100 1 75 0.17219
0.55 1.00 0.49 0.76 0.39 1.00 0.98 0.96 0.87 0.99 0.53 1 1 100 25 75 0.17219
0.55 1.00 0.49 0.76 0.39 1.00 0.98 0.96 0.87 0.99 0.53 1 1 100 50 75 0.17219
0.55 1.00 0.49 0.76 0.39 1.00 0.98 0.96 0.87 0.99 0.53 1 1 100 75 75 0.17219
0.55 1.00 0.49 0.76 0.39 1.00 0.98 0.96 0.87 0.99 0.53 1 1 100 100 75 0.17219
0.58 0.97 0.78 0.52 0.40 0.96 0.98 0.58 0.96 0.98 0.54 1 1 50 1 100 0.12354
0.58 0.97 0.78 0.52 0.40 0.96 0.98 0.58 0.96 0.98 0.54 1 1 50 25 100 0.12354
0.58 0.97 0.78 0.52 0.40 0.96 0.98 0.58 0.96 0.98 0.54 1 1 50 50 100 0.12354
0.58 0.97 0.78 0.52 0.40 0.96 0.98 0.58 0.96 0.98 0.54 1 1 50 75 100 0.12354
0.58 0.97 0.78 0.52 0.40 0.96 0.98 0.58 0.96 0.98 0.54 1 1 50 100 100 0.12354
0.55 0.97 0.72 0.58 0.39 0.98 0.98 0.42 1.00 0.96 0.53 1 1 1 1 75 0.09177
0.55 0.97 0.72 0.58 0.39 0.98 0.98 0.42 1.00 0.96 0.53 1 1 1 25 75 0.09177
0.55 0.97 0.72 0.58 0.39 0.98 0.98 0.42 1.00 0.96 0.53 1 1 1 50 75 0.09177
0.55 0.97 0.72 0.58 0.39 0.98 0.98 0.42 1.00 0.96 0.53 1 1 1 75 75 0.09177
0.55 0.97 0.72 0.58 0.39 0.98 0.98 0.42 1.00 0.96 0.53 1 1 1 100 75 0.09177
0.55 0.99 0.70 0.25 0.40 0.99 0.98 0.71 0.97 0.98 0.53 25 25 25 1 50 0.06460
0.55 0.99 0.70 0.25 0.40 0.99 0.98 0.71 0.97 0.98 0.53 25 25 25 25 50 0.06460
0.55 0.99 0.70 0.25 0.40 0.99 0.98 0.71 0.97 0.98 0.53 25 25 25 50 50 0.06460
0.55 0.99 0.70 0.25 0.40 0.99 0.98 0.71 0.97 0.98 0.53 25 25 25 75 50 0.06460
0.55 0.99 0.70 0.25 0.40 0.99 0.98 0.71 0.97 0.98 0.53 25 25 25 100 50 0.06460
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of new urban centres was significantly less during the study 
period. The results were verified through the previous urban 
growth analysis carried out by Sarif and Gupta (2021) for 
Prayagraj city. They also concluded that the urban growth 
was more concentrated to the city centre. The slope gradient 
and road gravity coefficients were 49 and 17, respectively. 
It showed that the road influenced growth was dominating 
in this region. The results were validated through temporal 
LULC maps where the built-up change was clearly visible 
in the linear patterns alongside the roads. The optimum val-
ues of self-modifying parameters were taken as suggested 
by previous researches (Saxena et al. 2021b). The values 
of boom, bust critical low and critical high were taken as 
1.3, 0.10, 0.90 and 1.25, respectively, whereas critical slope 
value was taken as 15. The procedure followed in stage-I has 
been used again in stage II. For the stage-II calibration, the 
layers of the years 1990, 2000, 2010 and 2020 were used to 
predict the output landuse till 2040. The values of statistical 
parameters are mentioned in Table 9.

After calibration, the validation of the model was carried 
out with the actually observed classification of 2020. Fig-
ure 7 shows the comparison between actual and modelled 
urban landuse areas. Although the landuse pattern of both 
images was the same, some spatial disparity was established 
between them. The modelled and real built-up area came as 
75.34  km2 and 85.89  km2, respectively. This difference was 
occurring because of two major regions. First was the gov-
ernment policies that promoted the development along the 
highways. The impact of this can be seen on the actual urban 
area. The modelled urban area missed this development. 

Another cause of mismatch was the exclusion river layer. 
Over time, unplanned urbanisation took place in this region 
because of haphazard development and change in the river 
coast, which the modelled results could not capture.

Model prediction

SLEUTH model can forecast a future urban settlement by 
calculating appropriate calibration. Prayagraj city has a plane 
topography, but the region of rivers contains slopes and is 
less affected by settlement. The growth might be observed 
in new locations away from the existing urban centres. The 
best fit values express the influence of the coefficient dur-
ing the prediction process. The obtained dispersion, breed 
and spread values were less (best-fit = 1), indicating lesser 
spontaneous growth. According to Aithal et al. (2019), the 
values of dispersion and breed coefficients for major four 
Indian cities Delhi, Mumbai, Kolkata and Hyderabad was 
found to be low. This similar behaviour specifies the lesser 
chances of outward dispersive growth and formation of new 
urban centres on its own. Road gravity's most significant 
influence was shown as the road gravity (best fit value 17 
after stage II), which shows the growth alongside the roads 
and development of change during the last three decades. 
The economic activities and other social factors are directly 
related with growth and are highly influenced by transporta-
tion network (Liu et al. 2020). The prediction result of the 
LULC for the year 2040 is given in Fig. 8.

The modelled 2040 urban region is matching with the 
urban growth trend. The extension of urban areas in the last 

Table 8  Coefficient range selection during the stage-I calibration process and best fit values

Diffusion Breed Spread Slope resistant Road gravity Monte Carlo 
iteration

Best fit Lee- Salle Best fit OSM

Coarse calibration
Start 0 0 0 0 0 5 0.40075 0.17218
Step 25 25 25 25 25
Stop 100 100 100 100 100
Fine calibration
Start 0 0 50 25 50 7 0.40103 0.05146
Step 5 5 5 10 10
Stop 20 20 80 75 100
Final calibration
Start 1 10 75 25 90 8 0.40096 0.09234
Step 1 2 1 5 2
Stop 5 20 80 45 100
Forecast
Start 2 14 80 25 96 100
Step 1 1 1 1 1
Stop 2 14 80 25 96
Best fit values 1 1 1 49 94
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Table 9  Coefficient range selection during the stage-II calibration process and best fit values

Coefficient Diffusion Breed Spread Slope resistant Road gravity Monte Carlo 
iteration

Best fit Lee-Salle Best fit OSM

Coarse calibration
Start 0 0 0 0 0 5 0.35914 0.00108
Step 25 25 25 25 25
Stop 100 100 100 100 100
Fine calibration
Start 0 0 50 1 1 7 0.36058 0.00143
Step 5 10 10 10 10
Stop 20 50 100 50 50
Final calibration
Start 1 40 90 11 21 8 0.46756 0.14267
Step 1 2 2 5 2
Stop 5 50 100 31 31
Forecast
Start 1 50 98 11 21 100
Step 1 1 1 1 1
Stop 1 50 98 11 21
Best fit values 1 1 1 49 17

Actual Landuse 2020Modelled Landuse 2020

Modelled LULC area (sq km) Actual LULC area (sq km)

Fig. 7  Modelled and actual landuse image of 2020
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three decades and predicted expansion for 2040 is shown 
in Fig. 9. The new spontaneous urban growth depends on 
the existing transportation network. The area of urban is 
expanded around highways prominently.

The urban settlement in Prayagraj city is seen in all four 
directions (Fig. 9). The National Highway (NH-2) went from 
east to west and passed by centre of the city. Major construc-
tion network temporally increasing over the time along with 
NH-2. The trans-river development was shown mainly after 
2000 to 2020 which is indicated by dark green and red col-
ours, respectively. Over the time, the densification of city 
taken place and construction and development of new road 
were found in the outskirts of city. New built-up region found 
along the national and states highways which passes from rural 
area and connects other cities through them. This indicates 

the increment of people settlement on the outer city region at 
the cost of agriculture and fallow land (Mekonnen and Ghosh 
2020). Various analysis took place regarding sensitivity and 
other calibration best fit values over the years (Saxena et al. 
2021b; Sarica et al. 2021; Zhang et al. 2021; Jat and Sax-
ena 2021). The road network gravity factor was also promi-
nent for horizontal urban growth development. Researchers 
had achieved good results while validating the model from 
observed results.

Fig. 8  Modelled LULC for the 
year 2040 Modelled Landuse 2040

LULC area (sq km)
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Conclusion

Urban areas have been proliferated in developing coun-
tries. The urban dwellers' demands may become a severe 
burden on natural resources in the near future. LULC pre-
diction models are a valuable tool to counter the urbani-
sation challenges as they will help decide the develop-
ment policies. This study investigates the LULC trend and 
predicts the future LULC using the SLEUTH model. The 
study aims to predict urban expansion and its impact on 
other LULC for the smart city region of Prayagraj. For 
this purpose, Landsat images, OpenStreetMap, SRTM 
DEM, Google Earth and topographic maps are used. 
Firstly, LULC of the years 1990, 1995, 2000, 2010 and 
2020 is generated using the supervised image classifica-
tion. The results have shown the trend of LULC change. 
The most prominent among them is the continuous growth 
of urban/ built-up areas, which increased from 40.22  km2 
to 85.89  km2.

In order to study and predict urban sprawl, SLEUTH 
model has been used. It ran for coarse, fine and final cali-
brations. The value of the five coefficients ranges from 0 to 
100 and converges to best-fit values after these calibrations. 
The road gravity coefficient is proven as the most affecting 
driver of landuse change. To better understand the urban 
growth drivers, the best fit values of coefficients have helped. 
The influence of slope gradient and road gravity is strong 
rather than other drivers. The least-square regression metrics 
have shown satisfactory values, indicating that the model has 
properly captured the historical growth. SLEUTH model has 
forecasted the growth in urban areas to 118.65  km2 by 2040. 
In the past three decades, the urban growth rate was 3.78%, 
whereas, in the upcoming 20 years, the growth rate will be 
1.9%. This would take place at the cost of natural land cover 
and open land. The results have been validated with respect 
to the LULC maps, topographic maps and Google Earth 
images. Although the results are satisfactory, but the analy-
sis using this model included a tedious calibration process.

Fig. 9  Urban area expansion in 
Prayagraj from 1990 to 2040
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SLEUTH is a sophisticated model that yields correct 
results in a complex problem. The results will help the city 
planners, administrators and government in making appro-
priate plans and policies. More sustainable growth plans 
could be made based on the predicted 2040 LULC results. 
There is an alarming situation for the natural and agricultural 
land alongside the state and national highways outside the 
existing cities. The policymakers should plan to ameliorate 
the current situation. The model considered a number of 
input datasets to simulate landuse change and urban growth. 
However, it did not take crucial socio-economic factors, 
which is one of the limitations.
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