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Abstract
Plastic pollution in various forms has emerged as the most severe environmental threat. Small plastic chunks, such as micro-
plastics and nanoplastics derived from primary and secondary sources, are a major concern worldwide due to their adverse 
effects on the environment and public health. Several years have been spent developing robust spectroscopic techniques 
that should be considered top-notch; however, researchers are still trying to find efficient and straightforward methods for 
the analysis of microplastics but have yet to develop a viable solution. Because of the small size of these degraded plastics, 
they have been found in various species, from human brains to blood and digestive systems. Several pollution-controlling 
methods have been tested in recent years, and these methods are prominent and need to be developed. Bacterial degradation, 
sunlight-driven photocatalyst, fuels, and biodegradable plastics could be game-changers in future research on plastic pollu-
tion control. However, recent fledgling steps in controlling methods appear insufficient due to widespread contamination. As 
a result, proper regulation of environmental microplastics is a significant challenge, and the most equitable way to manage 
plastic pollution. Therefore, this paper discusses the current state of microplastics, some novel and well-known identification 
techniques, strategies for overcoming microplastic effects, and needed solutions to mitigate this planetary pollution. This 
review article, we believe, will fill a void in the field of plastic identification and pollution mitigation research.
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Abbreviations
MMT  Million metri ton
MPs  Microplastics
LDPE  Low density polyethylene
MFs  Microfibers
PE  Polyethylene
PP  Polypropylene
PVC  Polyvinylchlorde
PS  Polystyrene

PUR  Polyurethane
PET  Polyethyleneterepthalate
WHO  World health organizations
SEM  Scanning electron microscopy
FTIR  Fourier transform infrared spectroscopy
SEC  Size exclusion chromatography
GC-MS  Gas chromatography-Mass spectroscopy
HT-GPC  High temperature gel permeation 

chromatography
HSI  Hyperspetral image
ROS  Reactive oxygen species

Background

In 2019, around 368 million metric tons (MMT) of plas-
tics were manufactured worldwide, with half of them pro-
duced in Asia (Tiseo 2021). The prevailing estimate sug-
gests that, by 2050, approximately 12 billion metric tons 
of plastic waste will be in landfills or could spill over to the 
natural habitat which will be more than 250% compared to 
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4.9 billion metric tons (60% of all plastic ever produced) 
produced in 2015 (Geyer et al. 2017). In 2020, this upward 
trend was disrupted, with production falling to around 367 
MMT, a 0.3 percent decrease due to COVID-19 (Plastics 
Europe 2022). However, this increasing trend is going sky-
high after the COVID due to the overproduction of facial 
masks. Customers’ preferences for “single-use” packaging, 
which is more efficient and chemically stable, have has-
tened and contaminated various ecosystems, harming the 
environment and posing health risks (Lusher 2015). With 
more time, rather than biodegrading, plastics are crumbled 
into smaller and smaller chunks, resulting in micro- to nano-
sized fragments (Allan et al. 2021; Hartmann et al. 2019; 
The Lancet Planetary Health 2017). If we are to comprehend 
the fate of plastics, we must first consider the mechanism by 
which plastics enter nature. In particular, littering, dumping 
of plastic waste, and waste collection are all ways plastics 
end up in the environment. The mode and amount of plastic 
dispersion into various environmental components is a criti-
cal issue requiring further research (Lambert et al. 2014; Yin 
et al. 2019). Furthermore, the potential effects of degraded 
small chunks on the human body and the environment are 
of global concern (Wagner and Reemtsma 2019). Even 
nanoplastics derived from a single microplastic particle 
are expected to be a more complex issue around the world 
due to their small size, which allows them to pass through 
biological membranes easily (Hernandez et al. 2017; Ter 
et al. 2017; Yee et al. 2021). In turn, researchers must devise 
efficient methods for detecting these particles in fractions 
of a second to microseconds. Consequently, future research 
should concentrate on this, and here, we have summarized 
some techniques that can assist in the identification of MPs; 
however, these methods do not provide sufficient solutions.

Several studies have been conducted that have demon-
strated that MPs have a significant negative impact on public 
and environmental health. It has been a long-standing issue 
due to the large number of MPs, and it must be addressed 
as soon as possible. This review will cover how MPs have 
evolved, their global challenges, emerging techniques for 
MPs monitoring, a potential route to environment penetra-
tion, impact on human health, and current environmental 
hazards in a global context. In addition, this review summa-
rizes the most recent rules and regulations enacted concern-
ing plastic issues, international collaborations, and potential 
alternative solutions adopted by many countries. We hope 
that this review will inspire researchers working in MPs 
management and plastics mitigation to come up with some 
innovative ideas.

Plastics type, origin, and sources

With the massive development of plastic materials, frag-
mented plastics have been adopted and named based on their 
size, origination, and process of fragmentations. Several 
researchers have begun to consider sub-scale plastics frag-
mentation, also known as “nano-plastics,” and various stud-
ies have set their upper size limits of 1000 nm or 100 nm. 
Further, small chunks of degrading plastic of 1–5000 μm 
in length are known as MPs in general. They were first dis-
covered in German beer brands (Liebezeit and Liebezeit 
2014), water samples, and air samples (The Lancet Plan-
etary Health 2017). Cosmetics, polythene bags and plastic 
containers, electrical appliances, goods packaging, glass, 
and many other items are significant sources of MPs. When 
using sources for further research and mitigation, the dis-
tinction between primary and secondary sources must be 
considered.

Plastic pellets in manufacturing industries, scrubbers, 
commercial cleaning abrasives, plastic resin flakes, plas-
tic powder or fluff used to produce plastic goods (Andrady 
2011), along with volatile particulate contaminants such as 
micro-polyester, nano  Fe3O4, and  SiO2 from printing toners 
are the potential sources of primary MPs (Jujun et al. 2013).

Likewise, secondary MPs originate from the breakdown 
of larger plastics subsequently into nano-, micro-, and mac-
rosizes. Before being discharged into the environment due to 
weathering, such as exposure to wind abrasion, wave action, 
photodegradation, biodegradation, hydrolysis, and ultravio-
let radiation from sunlight are the potential routes to gener-
ate secondary MPs (Gewert et al. 2015; Picó and Barceló 
2019; Rogers 2020). Also, the fragmentation process, which 
emphasizes routes to generate secondary MPs, resulting 
from the gradual degradation of plastics in water, consists 
of three mechanisms: bio-fragmentation, assimilation, and 
biodeterioration showing emphasized, impactful MPs gen-
eration pathways (Emadian et al. 2017). The primary and 
secondary MPs sources are evolved from the different ways 
of plastic degradation, as depicted in Fig. 1.

Moreover, small fragmented plastics called microbeads 
(size 10–500 mm) are also patented as ingredients in per-
sonal care products for exfoliating skin in hand and facial 
scrubs and used as an increasing viscosity in toothpaste 
(Anagnosti et al. 2021). The high demand and gradual envi-
ronmental deterioration of plastic materials have become 
a significant global threat. If we talk about forms of plas-
tics or group types of polymers used in plastics, they have 
been classified as various forms. However, the industries 
are dominated by six plastics groups, namely polyethylene 



4675International Journal of Environmental Science and Technology (2023) 20:4673–4694 

1 3

(PE) (high and low density), polypropylene (PP), polyvinyl 
chloride (PVC), polystyrene (PS), polyurethane (PUR), and 
polyethylene terephthalate (PET) (Kole et al. 2017). Some 
major plastic types found in MPs and microbeads are shown 
in Fig. 2.

The recent data showed that packaging and construc-
tion are the two major consumer end-use markets, and the 
automotive industry is the third-largest consumer. Most of 
these plastics comprise PE and PP (Plastics-the Facts 2020). 
These plastics products are mainly synthetic ones; however, 
such plastics can also be extracted naturally from trees 
(latex), plants (cellulose), animals (horn and milk), insects 
(shellac) (Science of Plastics 2016).

Fig. 1  Types, sources, and the way of formation of primary and sec-
ondary MPs (GESAMP 2015)

Fig. 2  Some major polymer products found in MPs
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Detection techniques of MPs

Rapid separation and characterization of primary and sec-
ondary MPs from aquatic and terrestrial environments have 
risen to the top of the research agenda. Using visual and 
a combination of visual and analytical tools, many studies 
have been conducted to identify and quantify MPs (Lusher 
et al. 2017; Shim et al. 2017). MPs can be identified in gen-
eral using two techniques: physical characterization (micros-
copy) followed by chemical characterization (spectroscopic) 
for plastics confirmation (Shim et al. 2017). The four most 
preliminary steps, such as density separation, filtration, siev-
ing, and visual sorting of MPs, are required before iden-
tification. These four initial techniques can easily identify 
the morphology (shape, size, and color) of larger MP frag-
ments (Hidalgo-Ruz et al. 2012). Furthermore, fluorescence 
combined with density separation provides a sensitive and 
simple method for highlighting the most common plastic 
polymer fragments in marine sediments (Maes et al. 2017). 
Besides this, Wagner et al. used various techniques and came 
up with a unified result, which could be the best knowledge 
in the field of detection techniques, as evidenced by high 
accuracy (Wagner et al. 2019). Hence, techniques that can 
identify these MPs and their small fragments are essential 
for the identifying process, and renowned techniques are 
highlighted below.

Visual techniques

The naked eye or an optical microscope with objectives 
ranging from 10 to 50 times magnification is used for visual 
identification. Image-analysis software such as Histolab 
and Olympus stream were sometimes used in conjunction 
with the microscope (Elkhatib and Oyanedel-Craver 2020). 
Visual identification is used in the majority (79%) of MP 
characterization studies (Picó and Barceló 2019) because 
it is simple and easy to use. However, it is not reliable for 
identifying MPs because non-plastic particles such as cel-
lulose, keratin, viscose rayon, coal/fly ash, and paint chips 
can interfere with this approach, resulting in false-positive 
and also this approach has difficulties in identifying parti-
cles smaller than 100 µm and translucent particles (Elkhatib 
and Oyanedel-Craver 2020; Picó and Barceló 2019). In turn, 
to optimize the techniques for the digestion of human hair, 
cotton clothing fibers, and cigarette filters, the wet peroxide 
oxidation (WPO) and staining method (rapid screening of 
MPs done by using Nile Red dye) can be used (Erni-Cassola 
et al. 2017). Another unique approach includes an expedited 
digestion step that uses a mixture of sodium hydroxide 
(NaOH) and nitric acid  (HNO3) to digest all organic mate-
rial in one hour, as well as a separate separation step that 
uses sodium iodide (NaI) to minimize mineral residues in 

samples when needed. Except for polyamide, this approach 
provided an MPs recovery rate of 95%, and all studied poly-
mer types were recovered with only slight changes in weight, 
size, and color (Roch and Brinker 2017). Further, if we add 
a scanning electron microscope (SEM), which visualizes the 
surface properties of particles, it would be an easy task for 
research purposes. By scanning the surface of a material 
with a concentrated electron beam, this approach produces 
high-resolution pictures. In addition, particle distinction is 
possible due to the fine sample pictures (> 0.5 nm), how-
ever, the polymer’s composition is not determined by SEM 
(Elkhatib and Oyanedel-Craver 2020). As a result, for poly-
mer compositions, we should identify and focus on other 
techniques that provide both.

Spectroscopic techniques

While the prominent MPs can be easily seen in visual tech-
niques with the help of chemical methods, small fragments 
of particles are difficult to identify. Hence, such particles can 
be easily identified through spectroscopy techniques (Möller 
et al. 2020). The most frequent analytical procedures used 
to determine the composition of MPs, such as PE, PP, PS, 
or PVC, were Raman spectroscopy and Fourier transform 
infrared spectroscopy (FTIR) (Hidalgo-Ruz et al. 2012). 
Spectroscopic techniques are used to analyze the molecules 
of the samples, resulting in a characteristic polymer spec-
trum that can be identified using a reference spectra library 
(Elkhatib and Oyanedel-Craver 2020). Moreover, for small 
plastic fragments, spectroscopy (FTIR spectroscopy, near-
infrared spectroscopy, and Raman spectroscopy) is strongly 
suggested since it can reliably establish the chemical com-
position of unknown plastic fragments (Munno et al. 2020). 
However, Cabernard et al. proved that Raman spectroscopy 
is aloof better than the FTIR technique for quantification and 
analyzing the data of MPs (Cabernard et al. 2018). Some-
times we falsely measure the MPs fragments in the sam-
ple by other techniques; however, spectroscopic techniques 
give us the reliable result whether this plastic-type is real or 
fake like sodium dodecyl sulfate can give spurious results 
in MPs’ analysis (Witzig et al. 2020). The recent study by 
Hu et al. identified several types of MPs deploying differ-
ent techniques (Fig. 3), showing various morphology, FTIR 
wave numbers of Fig. 1 molecules of functional groups of 
plastic types.

Moreover, these techniques required sample preparation 
and laborious work in the laboratory to perform; thus, spec-
troscopic techniques are not fulfilling the desires of ana-
lytical techniques, but they could have the potential to be a 
landmark step in the identification field of MPs if they are 
overcome by some limitations (Shim et al. 2017). Recently, 
Rennel et al. gave the solution to a time-consuming task in 
spectroscopy data analysis. In his research, his team shows 
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about 98% correct identification of plastics types by match-
ing with the spectrum of the library within a concise period. 
This paper further added that this is mainly working by the 
algorithm and is limited to FTIR techniques and applied to 
other spectroscopic techniques. Some of the MPs identifi-
cation using spectroscopic techniques are summarized in 
Table 1.

Chromatographic techniques

This technique involves identifying individual polymer types 
of MPs that work in conjunction with extraction techniques 
and can identify the MPs qualitatively and quantitatively 
(Möller et al. 2020). In chromatographic procedures, pro-
gress is made sequentially, allowing MPs identification to 
be made quickly. The series of advancements include high-
temperature gel permeation chromatography (HT-GPC), 

liquid extraction with size-exclusion chromatography (SEC), 
and pyrolysis gas chromatography–mass spectrometry (Pyr 
GC–MS). Pyr GC–MS is a sensitive and well-proven tech-
nology for mass quantification and characterization. Pyr 
GC–MS is well suited for detecting MPs in environmental 
samples of numerous polymer types and their organic addi-
tives when used in conjunction with attenuated total reflec-
tance (ATR-FTIR) spectroscopy (Möller et al. 2020). For 
instance, pyrolysis coupled with gas chromatography/mass 
spectrometry (Py-GC/MS) is used to obtain information on 
the composition of MPs (Hermabessiere et al. 2018). Ther-
mal decomposition of materials is used in pyr-GC/MS, and 
the decomposition products are separated using gas chro-
matography and analyzed using mass spectrometry (Witzig 
et al. 2020). Although much research has been carried out to 
identify and quantify MPs, very few and efficient techniques 
are available to analyze them. The identification techniques 
recently used for different MPs containing samples are sum-
marized in Table 1.

Although, having the several advantages of existing detec-
tion techniques described above, they are not sufficient to 
detect MPs in a second to a few minutes. Several preliminary 
techniques should be replaced with efficient and fast meth-
ods. For example, using castor oil to separate MPs could be 
the ideal technique to replace the existing density separation 
method (Mani et al. 2019). The hyperspectral image (HSI) 
could also be the future of MPs identification because of the 
significant reduction in reagent consumption, which saves 
time and thus provides a rapid and efficient method for MPs 
analysis (Zhang et al. 2019a, b). Similarly, Fenton’s reagent 
(a mixture of  H2O2 and ferrous ion,  Fe2+) was used to isolate 
MPs from organic‐rich wastewater, reduce the time during 
the sample preparation and identification process as well as 
offer a simple, high‐speed, and low‐cost method for pro-
cessing MPs present within environmental samples (Tagg 
et al. 2017).

Moreover, the visual techniques are insufficient to provide 
MPs type and other information. Similarly, spectroscopic 
technologies could not solve the problem adequately due to 
time-consuming and efficient sample preparation methods 
that need to be implied. In such cases, FTIR and Raman 
spectroscopy alone cannot facilitate the scrutiny process of 
MPs in different samples. For instance, Zhang et al. provided 
an efficient technique to overcome these circumstances, and 
a custom-made portable Pyr-MS has been developed. This 
device measures the MPs particles in a wide range and is not 
limited by the shape, size, and color like FTIR and Raman 
do. Furthermore, it avoids the complex extraction and sepa-
ration procedures of the pyrolysis/thermogravimetric–gas 
chromatography–mass spectrometry (Pyr/TGA-GC-MS). 
It realizes the rapid analysis of MPs in 5 min (Zhang et al. 
2020a, b). Another novel method related to spectroscopy 
was developed called Raman Tweezers (RTs), namely 

Fig. 3  FTIR (A–D) and images (E–H) of the most prevalent types of 
MPs found in samples; adopted from (Hu et al. 2018); copyright 2018 
American Chemical Society
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optical tweezers combined with Raman spectroscopy, as 
an analytical tool for the study of MPs and nanoplastics in 
seawater; could have the potential to strongly impact future 
research on micro- and nanoplastics environmental pollution 
(Gillibert et al. 2019).

Life cycle of MPs

MPs are introduced to the environment through atmospheric 
deposition, land-based sources, fertilizers, artificial turf, 
road, landfill and air transportation, textiles, tourism activi-
ties, marine vessels, and aquaculture (Lambert et al. 2014). 

Table 1  MPs occurrence and detection techniques

Identification techniques Items MPs range References

Visual techniques
Dissection microscope at 30 × mag-

nification
Honey and sugar Colored fibers: 166 ± 147/kg of 

honey
Fragments: 9 ± 9/kg of honey
Colored fibers: 217 ± 123/kg of 

sugar
32 ± 7/kg of sugars

Liebezeit and Liebezeit (2013)

Visual microscopy Seawater 452 fibers and 827 particles, later 
confirmed by Raman spectra

Lenz et al. (2015)

Stereomicroscopy Air 2–355 particles/m2/day Dris et al. (2017)
SEM Atmospheric fallout 175–313 particles/m2/day Cai et al. (2017)
Fluorescence microscopy Atmospheric deposition 136.5–512.0 MPs particles per  m2/

day
Klein and Fischer (2019)

Optical Microscopy/SEM/EDS Freshwater sport Fish 16 MPs particles were identified 
in the 30 fish, and the sizes of 
MPs fragments ranged from 50 to 
1500 μm

Wagner et al. (2019)

Spectroscopic techniques
FTIR and Raman spectroscopy Raw and treated drinking water Raw: 1473 ± 34 to 3605 ± 497 

particles/L
Treated: 338 ± 76 to 628 ± 28 

particles/L

Pivokonsky et al. (2018)

Micro-Raman spectroscopy Tap water 440 ± 275 particles/L Tong et al. (2020)
FTIR Surface water and Australian fresh-

water Paratya australiensis
Surface water: 0.40 ± 0.27 items/L
Shrimp: 0.52 ± 0.55 items/and 

(24 ± 31 items/g)

Nan et al. (2020)

Soil sample 0.34 ± 0.36 particles per kilogram 
dry weight of soil

Piehl et al. (2018)

Ocean trawl and fish gut Of the 46 trawl particles, 20 were 
MPs. All 28 particles extracted 
from GI tracts were MPs

Wagner et al. (2017)

Sea-surface water 110 particles/m3 Kosore et al. (2018)
Alpine glacier 74.4 ± 28.3/kg Ambrosini et al. (2019)
Table salt products 9.77 MPs particles/kg Lee et al. (2019)

Chromatographic techniques
 Liquid chromatography–tandem 

mass spectrometry
Pet foods Cat foods: < 1500 ng/g to 

12,000 ng/g
Dog foods: < 1500 to 4600 ng/g

Zhang et al. (2019a, b)

Microfiltration Honey, milk, soft drinks, and beer On average, 40 MPs/L Diaz-Basantes et al. (2020)
MFs-Millipore™ 0.45 µm pore size 

mixed cellulose esters membrane 
filters

Himalayan surface water  ≤ 5 mm to ≥ 250 µm in three one-
liter surface water

Simpson (2019)

Pyrolysis–gas chromatography–
mass spectrometry (Py-GC/MS)

Lake sediments 43 plastics debris/16 sediments Castelvetro et al. (2021)
WWTP sample 0.003 to 0.060 mg PS/m3 Funck et al. (2020)

Liquid Chromatography–Tandem 
Mass Spectrometry

Indoor dust; Clams digestive 
residues

246 and 430 mg/kg PC and PET 
type MP; 63.7 mg/kg of PC and 
127 mg/kg of PET MPs

Wang et al. (2017)
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In addition, degradations such as physicochemical activity, 
UV, and bacteria degrade plastic that enters the environment 
into micro-nanosizes (Lee et al. 2014); however, the rate of 
fragmentation is dependent on environmental conditions. 
Terrestrial ecosystems are among the most commonplace 
where MPs are prevalent due to improper waste manage-
ment and are found to highly deteriorate the quality of soil 
(Machado et al. 2018). They then build up in the deep sea, 
virgin polar regions, and ice sheets. They are ingested by 
live species and impact their feeding, digesting excretion, 
and reproduction processes (Amelia et al. 2021); however, 
the marine-based contribution is still considerable and 
underappreciated.

As mentioned in the background section, marine organ-
isms can swallow plastic either directly from the seawater 
or through the ingestion of an organism that has already 
been exposed to it. As a result, plastic waste has been found 
in seafood intended for human consumption and fish and 
shellfish purchased from markets (Woods et al. 2021). In 
this way, MPs get into human foods (Barboza et al. 2018) 
and drinking water (Schymanski et al. 2018) and are among 
the most common intake pathways of MPs into the human 
body, causing negative impacts on health. The more detailed 

MPs origin, separation, and segregation cycle are depicted 
in Fig. 4.

Effects of MPs on the environment

The MPs fragments have been found in the environment and 
pose a significant problem in different ecology sectors. Other 
studies found that MPs reached the top of the world (Mount 
Everest) (Napper et al. 2020) to the deep ocean (Bergmann 
et al. 2017; Cunningham et al. 2020). Almost 80% of MPs 
originated from land, and less than 20% from water. The 
mortality and injury of aquatic birds, fish, mammals, and 
reptiles caused by plastic aggregation and digestion are 
among the effects of MPs on the environment (Sana et al. 
2020). The primary environmental concern to terrestrial, 
aquatic, and public health have been conspicuous topics in 
recent decades, and the detailed impacts on different envi-
ronment sectors are discussed below.

Fig. 4  Life cycle of MPs (from origin to disposal)
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Impact on the terrestrial ecosystem

MPs are a scourge to the environment, reflecting how plasti-
cized our lives have become and can have potential adverse 
effects on the terrestrial ecosystem (Alberts 2020). While 
MPs in marine environments have been extensively studied, 
research on MPs in terrestrial ecosystems is just starting 
to gain momentum (He et al. 2020; Machado et al. 2018). 
MPs are more likely to interact with the biota in terrestrial 
systems, potentially affecting the geochemistry and bio-
physical environment and producing environmental toxic-
ity. This section presents new insights into MPs as a global 
change stressor in terrestrial systems, especially in soil and 
air environments.

MPs are found in soils worldwide, especially in agricul-
tural soils (Kumar et al. 2020; Li et al. 2020; Möller et al. 
2020; van den Berg et al. 2020). They enter the soil environ-
ment in diverse ways, such as irrigation, sewage sludge, lit-
tering, and atmospheric deposition (van den Berg et al. 2020; 
Yang et al. 2021a, b). MP’s vertical and horizontal mobility 
within the soil is regulated by various factors, including soil 
biota and soil characteristics. When MPs are integrated into 
soil aggregates, they alter the structure of the soil (Guo et al. 
2020). Because of soils’ low light and oxygen conditions, 
MPs may survive for decades. As a result, MPs may interact 

with soil fauna by altering their biophysical environment, 
affecting their fitness and soil function. They can, of course, 
be uptaken by plants and transported along the food chain 
once they accumulate in the soil. For instance, impacts of 
MPs (biodegradable polylactic acid (PLA), conventional 
high-density polyethylene (HDPE), and MPs clothing fib-
ers) have been observed on the germination of seeds that 
are exposed to fibers or PLA MPs along with a reduction 
in shoot height (Boots et al. 2019). Lwanga et al. observed 
the decline in growth, as well as mortality among Lumbri-
cus terrestris (Oligochaeta, Lumbricidae), exposed to MPs 
(PE, < 150 μm) in different concentrations (Huerta Lwanga 
et al. 2016). MPs affected the bulk density, water holding 
capacity, and the functional relationship between microbial 
activity and water-stable aggregates (de Souza Machado 
et al. 2019). Machado et al. identified MPs effects on soil 
health and performance of spring onion (Allium fistulosum), 
changes in plant biomass, elemental tissue composition, root 
traits, and soil microbial activities (de Souza Machado et al. 
2019). Further, soil microorganisms like earthworms (Lum-
bricus terrestris) can easily ingest MPs and accumulate via 
the intestine in casts. Burrows may cause long-term eco-
logical effects to not only its species but also other different 
organisms as it forms the bases for many food chains (Huerta 
Lwanga et al. 2016). Similarly, Lin et al. studied the impact 

Fig. 5  Conceptual diagram 
showing the various mecha-
nisms via which MPs could 
affect the terrestrial ecosystem
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of MPs on soil organisms and found that with the increment 
in MPs, worms and microarthropods populations decreased 
(Lin et al. 2020). Also, the insertion of polyethylene frag-
ments in the field significantly affected the composition and 
abundance of microarthropod and nematode communities. 
The impact of MPs on the terrestrial ecosystem is depicted 
in Fig. 5.

Likewise, the widespread use of face masks during the 
COVID-19 emergency provides proof of the environmental 
disorder in both the terrestrial and aquatic world and that the 
global pandemic has not diminished the threat of ecological 
plastic contamination (Acharya et al. 2021; Aragaw 2020). 
The surgical face masks, which have been used to control 
COVID-19, can easily show the effect on the higher organ-
ism, which will affect the food chain and ultimately chronic 
health problems to humans and the environment (Aragaw 
2020; Fadare and Okoffo 2020). However, researchers sug-
gested that further study of its potential effects on human 
health is needed.

MPs have also been observed in atmospheric fallouts, as 
well as in indoor and outdoor environments. However, there 
still exist questions regarding the occurrence, fate, transport, 
and effect of atmospheric MPs due to limited physical analysis 
and lack of standardized sampling and identification methods 
(Gasperi et al. 2018; Zhang et al. 2020a, b). A study, for the 
first time, investigated the MPs fibers in indoor and outdoor 
air (Dris et al. 2017). They showed that the indoor concentra-
tions ranged between 1.0 and 60.0 fibers/m3 and outdoor con-
centrations were significantly lower as they vary between 0.3 
and 1.5 fibers/m3. Allen et al. observed atmospheric MPs in 
the Pristine mountain watershed. They analyzed samples col-
lected over five months that represent atmospheric wet and dry 
deposition, identifying 249 fragments, 73 films, and 44 fib-
ers per square meter deposited on the catchment daily (Allen 
et al. 2019). Likewise, Dris et al. and Cai et al. highlighted 
the range between 2 and 355 particles/m2/day and 175–313 
particles/m2/day in the atmospheric fallout, respectively (Cai 
et al. 2017; Dris et al. 2017). The number of MPs in the air 
could vary widely between different areas in the same envi-
ronment. Similarly, one study detected 136.5–512.0 MP par-
ticles per  m2/day, showing high concentrations in rural sites 
of the Metropolitan area of Hamburg, Germany (Klein and 
Fischer 2019). Some natural phenomena such as wind speed, 
direction, convection, and turbulence affect MPs’ transporta-
tion and deposition. These phenomena result in the transport 
of MPs particles to ocean surface air and even remote sites.

Impact on the aquatic ecosystem

MPs are prevalent in the marine environment due to hydro-
dynamic processes and wind and ocean currents trans-
portation, which has contributed to exponential scientific 

concern in recent decades. Approximately 70% of marine 
plastic debris is deposited in sediments, 15% floats in coastal 
areas, and the remainder floats on the surface seawater. Due 
to their tiny sizes, MPs can be ingested accidentally by 
marine organisms such as fish, mussels, zooplankton, sea 
birds, and so on (Cole et al. 2013; Wieczorek et al. 2019; 
Yang et al. 2021a, b). Table 2 depicts some experimental 
scenarios that demonstrate the presence and effects of MPs 
on oceanic species.

MPs have been detected in various organisms, from 
large mammals to small molluscs and their effects have 
been explored. For instance, the ingestion of debris by three 
benthic-foraging fish species in Sydney Harbour, Australia, 
has been reported (Halstead et al. 2018). They investigated 
that debris ingestion at the time of sampling ranged from 21 
to 64% for the three species, and the debris number ranged 
from 0.2 to 4.6 items per fish for the different species, with 
∼ 53% of debris being MPs. Lu et al. found that 5 μm and 
70 nm polystyrene (PS) MPs caused inflammation and lipid 
accumulation in the liver of Danio rerio (Lu et al. 2016). 
MPs can also exert size-dependent toxicity. The moder-
ate size of polystyrene particles, i.e., 1.0 µm, resulted in 
the most prominent toxicity on surviving, development, 
and motor-related neurons in Caenorhabditis elegans (Lei 
et al. 2018a, b). MPs may also serve as a carrier for harm-
ful elements such as dichlorodiphenyltrichloroethane (DDT) 
and hexachlorobenzene and ultimately end up in the living 
organism that consumes them (Laskar and Kumar 2019). It 
can alter the feeding capacity of the Calanus helgolandicus, 
a key trophic link between primary producers and higher 
trophic marine organisms (Cole et al. 2013, 2015).

According to the study, MPs and their smaller fragments, 
NPs are easily ingested by some aquatic species. They tend 
to acquire gastrointestinal toxicity, liver toxicity, neurotox-
icity, and reproductive toxicity (Chang et al. 2020). On the 
exposure of 70 μm polyamide, PE, PP, PVC, and PS parti-
cle exposure, species such as zebrafish and nematode suf-
fered from villi cracking and splitting of enterocytes due to 
gastrointestinal toxicity (Lei et al. 2018a, b). Furthermore, 
studies have explored that 0.5 μm PS microplastics induced 
dysbiosis, microbiota, and inflammation in the gut of adult 
zebrafish (Jin et al. 2018) and causes significant histological 
changes and a strong inflammatory response to the ingestion 
of PE microplastics in the blue mussel Mytilus edulis L. (von 
Moos et al. 2012). Upon MPs ingestion, oxidative stress was 
observed in the liver of Eriocheir sinensis (Yu et al. 2018a, 
b). Lu et al. studied that PS MPs prompted oxidative stress 
in zebrafish, causing the change in metabolic paths, leading 
to disrupted lipid and energy metabolism (Lu et al. 2016).

Heavy metal toxicity of plastic in aquatic ecosystems 
is another significant concern to scientific circles. Plastic 
contains different types of heavy metals used for the manu-
facturing process and ultimately go to an environment and 
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pollute the environment. Metals like cadmium, zinc, and 
lead have been used for heat stabilizers and slip agents in 
plastic manufacturing. These metals, which comprise up 
to 3% of the polymer composition, can show detrimental 
effects (Munier and Bendell 2018). Moreover, this study 
indicated that PVC is likely one of the main culprits of heavy 
metal contamination from plastic waste in our oceans, based 
on 144 samples analyzed.

Microplastics as a public health concern

With recent advancements in tools that enabled the char-
acterization of MPs in food, water, and air, we have seen 
colossal data sets generating strong evidence concerning 
MPs nature, chemical composition, reactivity, and structures 
(Kik et al. 2020; Lo Brutto et al. 2021; Ripken et al. 2021).

In the last few years, MPs effect on human health and 
small vertebrates are a concerning topic to the research-
ers and have seen many epidemic examples where MPs 

are found in their organisms and affect their life. Few stud-
ies already set the landmark step and showed that MPs are 
easily excess to the different (small to large) parts of the 
body; however, significant problems due to these are very 
low. To date, many studies have classified various possible 
diseases that are caused due to suspected MPs and need to 
do more research in the future. Yan et al. recently discov-
ered microplastics in the feces of people with inflammatory 
bowel disease (IBD), including Crohn’s disease and ulcera-
tive colitis, and discovered significant links between these 
two. They claim that MPs can cause intestinal inflamma-
tion, gut microbiome disruptions, and other issues in ani-
mals (Yan et al. 2022). According to the researchers, it is 
still unknown whether this exposure causes or contributes 
to IBD or whether people with IBD accumulate more fae-
cal microplastics due to their disease. Although it was once 
thought that microplastics passed harmlessly through the 
gastrointestinal tract and out of the body, new research sug-
gests that even the tiniest pieces can cross cell membranes 
and enter circulation. Microplastic exposure can cause cell 

Table 2  Experimental designs for detecting impacts of MPs in aquatic organisms

S. 
No

Organisms Plastic types Concentrations Exposed duration Results References

1 Mytilus edulis PE, Polyhydroxy 
butyrate(PHB)

Dispersed in 5 ml of 
0.1% Tween80 solution

96 h Decreased activity 
levels of CAT and 
GST in gills, SOD 
in digestive glands, 
and SeGPx in both 
tissues

Magara et al. (2019)

2 Ciona intestinalis PS 50 mg particles/ml, 
was diluted 1:1000 in 
filtered seawater (FSW) 
to produce a stock sus-
pension of 50 µg/ml

8 days Delayed develop-
ment due to lower 
food intake and 
insufficient energy 
supply

Barnes et al. (2009)

3 Ruditapes philippi-
narum

PET 0.125 or 12.5 µg/ml 7 days No histological 
effects

Messinetti et al. 
(2019)

4 Daphnia
Magna

PE 20; 40; 80; 160 and
320 mg/L

96 h No toxic effects Castro et al. (2020)

5 Caenorhabditis 
elegans

PS 1.0 mg/L 3 days The lowest survival 
rate, the most 
significant decrease 
in body length, and 
the shortest average 
life span

Lei et al. (2018a, b)

6 Tubifex tubifex Microfibers/MPs 
fragments

56–2544
particles kg-1

– Trophic transfer and 
biomagnification of 
MPs up the aquatic 
food chain

Hurley et al. (2017)

7 Mytilus galloprovin-
cialis

PS alone or mixture 
with carbamazepine 
(Cbz)

PS (from 0.05 up to 
50 mg/ L), to Cbz 
(6.3 μg/L) alone and to 
the mixture of PS + Cbz 
(0.05 mg/L + 6.3 μg/L)

96 h Increased total anti-
oxidant capacity, 
genotoxicity, and 
lipid peroxidation

Brandts et al. (2018)

8 Tadpole PES & PP 0 to 2.73 items indi-
vidual − 1

Hu et al. (2018)
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death, inflammation, and metabolic disorders in cells and 
laboratory animals.

Similarly, plastics particles are recently found in human 
blood samples where polyethylene terephthalate, polyeth-
ylene, and polymers of styrene are the major ones, while 
polypropylene is in below the limits to quantification in 
number (Leslie et al. 2022). This groundbreaking human 
biomonitoring study demonstrated that plastic particles are 
bioavailable for uptake into the human bloodstream and 
the associated risk. We believe these particles cause some 
other malfunction in the body, which has yet to be identified. 
Likewise, in one study conducted by Yong et al., cellular 
physiology was influenced to varying degrees by MPs, and 
NPs concentrations found it would be a sort of cellular stress 
(Yong et al. 2020).

Furthermore, Gastric exposure, Pulmonary exposure, 
and Dermal exposure are one of the main routes by which 
microplastics and nanoplastics enter the human body and 
cause negative impacts on human health (Table 2). How-
ever, the exposure pathway of human cells depends on the 
particles’ size and the surface’s chemistry (Yee et al. 2021). 
Since the explosive effect of MPs on human health is not 
conclusive to date, researchers have started the experiment 
on the mammalian model to predict MPs toxicity to relate 
it to humans. On the exposure of PS MPs to mice for about 
28 days, it was found to be accumulated in the kidney, guts, 
and liver leading to the problems like liver inflammation and 

lipid metabolism disorder (Deng et al. 2017). In vitro study 
on PS NPs revealed cationic polystyrene nanoparticles were 
found to cause reactive oxygen species (ROS) generation and 
endoplasmic reticulum (ER) stress in mice leading to apop-
tosis of macrophage (RAW 264.7) and epithelial (BEAS-
2B) cells (Xia et al. 2008). One of the studies found that PS 
nanoplastics reduced the viability of human gastric adeno-
carcinoma cells and were reported to induce the expression 
of inflammatory genes such as IL‐6 and IL‐8 (Forte et al. 
2016). Aside from that, transcriptome results revealed that 
prolonged MPs exposure altered the transcription levels of 
gut-related genes and several essential metabolic pathways 
and life processes (Wu et al. 2020). Hwang and team mem-
bers investigated that PS and PP particles were potential 
immune stimulants to cause health problems by inducing 
the production of cytokines from immune cells (Hwang et al. 
2019, 2020). Evidence showed the different types of effects 
on human beings due to the over-exposure of MPs as por-
trayed in Fig. 6 (Table 3).

However, most studies that have established the asso-
ciative link between specific diseases and MPs either have 
poor study design (McCormick et al. 2014) or have a paucity 
of data to back the asserted claim (Fournier et al. 2020). 
Despite the insufficiency of reliable clinical data, some 
biological experiments, at least in vitro, have reported the 
detrimental effect of MPs exposure on the living system 
(Chen et al. 2021; Fournier et al. 2020; Magrì et al. 2021; 

Fig. 6  Potential threat to human 
health due to environmental 
exposure to MPs
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Mahadevan and Valiyaveettil 2021). Again, the relevance of 
these in vitro studies, which utilize single cell type; almost 
always with immortal cell line, makes it non-ideal evidence 
to relate to human complexities with multi-organelle func-
tionality. Nevertheless, phagocytic cell uptake of MPs has 
gained some evidence in supporting the removal through the 
cellular excretory pathway relevant to in vivo (Ramsperger 
et al. 2020). As expected, MPs without any biological traces 
are most often ignored by the human immune surveillance; 
however, other additive effects as blood vessel dilation, infil-
tration, and congestion as a result of MPs structural architec-
ture is another expected effect of MPs as shown in an in-vivo 
model of small animal (Araújo et al. 2020); however, it has 
not yet been reported in humans.

In contrast to MPs ingested through food and water, occu-
pational exposure to airborne MPs has been documented, 
and its amount is correlative to the pathology observed 
among MP exposed human workers (Araújo et al. 2020; Atis 
2005; Barroso et al. 2002; Eschenbacher et al. 1999; Kern 
et al. 2000). MPs have also been shown to be associated with 
increased chronic bronchial constriction and asthma-like 
clinical features, thus yielding an overall decrease in qual-
ity of life among workers who have had prolonged exposure 
to MPs (Kern et al. 2000). Although exact pathophysiology 
is not known, chronic airway irritants including some form 
of MPs might disassemble the existing immune tolerance 
in the respiratory tract, which at a time would certainly be 
dose-dependent along with numerous confounding human 
physiological factors that would influence the outcome such 
as human genetics (Powell et al. 2007).

In summary, the pathophysiology, spectrum of illness, 
and long-term effect due to prolonged exposure to MP have 
yet to be elucidated, evidence of which must be derived from 
well-designed clinical-epidemiological studies. Neverthe-
less, based on data on small mammals, invertebrates, and 

in-vitro human cell toxicity, we can partially assume that 
MPs do have the potential to exacerbate human physiology 
and homeostasis, but the evidence to assert this claim is very 
weak; thus more evidence is needed in this topic.

Challenges to control the MPs

Although several detrimental effects of MPs are on the vari-
ous environmental sectors, its management is an arduous 
job; it seems that every step toward the MPs inspection, 
including sampling, extraction, isolation, and detection, 
implies a hurdle to large-scale surveillance. Some of the 
significant challenges of MPs in terms of their identification, 
quantification, and management are listed as follows:

1. One of the significant challenges is comprehending the 
physicochemical properties of MPs that are heterogene-
ous and may possess an ecotoxicity effect (Lambert et al. 
2014).

2. MPs management becomes more challenging as public 
perceptions, attitudes, and behavioral preferences toward 
MPs remain underexplored (Deng et al. 2020).

3. The lack of reliable analytical techniques, proper iden-
tification, and quantification of MPs in complex matri-
ces such as food products is another matter of concern 
(Hermsen et al. 2018).

4. The policy formulated for the resistance to the interven-
tion of banning the use of plastics got breached once it 
got implemented (Sharp et al. 2010).

5. Owing to the lack of standard established policies and 
procedures for natural environmental datasets, it is hard 
to assess MPs, or nanoplastics (Yu et al. 2018a, b).

6. The lack of a specialized database that comprises dis-
tinct spectra of polymeric materials has limited plastics 

Table 3  Some of the potentially toxic effects of MPs and NPs on human health are listed below in the table

Toxicity effect Plastics Size of plastics Results References

Oxidative stress PVC
PMMA (poly 

methyl meth-
acrylate)

120 nm
140 nm

Increases reactive oxygen species (ROS), and reduce cell 
feasibility

Mahadevan and 
Valiyaveettil 
(2021)

Cationic PS NPs 60 nm Increases reactive oxygen species (ROS) generation and 
endoplasmic reticulum (ER) stress

Chiu et al. (2015)

Gastrointestinal effect PS NPs 50 nm and 200 nm Alter intestinal ion transport Mahler et al. (2012)
PS MPs 0.5 µm and 5 µm Increased metabolic disorder risk in the offspring Luo et al. (2019)
PS MPs 0.5 and 50 μm Induce mouse hepatic lipid disorder Lu et al. 2018
PS MPs 5 µm Reduces intestinal mucus secretion and induce gut micro-

biota dysbiosis
Jin et al. (2019)

Neurotoxicity PS MPs 5 and 20 μm Increase in AChE activity in the liver, and may lead to the 
reduction in cholinergic neurotransmission efficiency

Deng et al. (2017)

PS NPs 38.92 nm Decreased locomotor activity Rafiee et al. (2018)
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modification studies. The infrared spectra of different 
polymers change when they interact with the environ-
ment (Fotopoulou and Karapanagioti 2019).

7. The real issues of plastic recycling are indeed aligned 
with the level of plastic purity. Plastics are produced by 
more than one polymer type or may be fused with an 
additive to improve strength; however, extracting desired 
plastic materials is complicated. In addition, PE consists 
of a linear and highly stable carbon–carbon (C–C) back-
bone, making it resistant to degradation and creating 
a significant challenge for plastic waste biodegradation 
(Gao and Sun 2021).

8. It is difficult to collect adequate quantities of MPs parti-
cles for chemical analysis in complex samples, coupled 
with low detection frequencies and high detection limits 
for the tiny MPs. Therefore, multi-residual analytical 
tools aim to resolve these pragmatic challenges (Hong 
et al. 2017).

Controlling measures of MPs and global 
strategies

Production of the lavish amount of plastic worldwide 
poses great challenges to control. Source control is the 
most acceptable method to control MPs pollution (Ruan 
et al. 2018). Society needs to limit unnecessary single-use 
of plastic items like water bottles, plastic shopping bags, 
straws, and utensils in the momentary term. The government 
should focus on garbage collection and recycling systems 
to reduce waste in the environment. Standardized analyti-
cal methods for the reliable identification and quantifica-
tion of MPs and nanoplastics in different matrices should 
be developed (Andrady 2011). Environmentally friendly 
and economical substitutes for plastics must be promoted 
(Zhang et al. 2018); in the long term, researchers need to 
conceive ways to break down its basic units, which can be 
remodeled into new materials (Thompson 2018). Research-
ers have discovered the mutant enzyme that takes a few days 
to break down the plastic drinks bottle and is far faster than 
the centuries it takes in oceans (Carrington 2018). These are 
the common steps we can put forward when we will inhibit 
plastic problems.

Some studies have highlighted the effectiveness of plastic 
degrading bacteria in the most recent years. In turn, Ide-
onella sakaiensis is a bacterium from the genus Ideonella 
and the family Comamonadaceae, which can break down 
and consume plastic polyethylene terephthalate (PET) 
as a sole carbon and energy source (Yoshida et al. 2016). 
These bacteria help recycle plastic. They use two enzymes 
sequentially to break down PET into terephthalic acid and 
ethylene glycol; the two substances from which it is manu-
factured are not harmful to the environment (Bornscheuer 

2016). Similarly, Gao and sun isolated three types of bac-
teria genera named Exiguobacterium sp., Halomonas sp., 
Ochrobactrum sp.; however, notably, SEM observations 
on their research indicated the mixture of Exiguobacterium 
sp., Halomonas sp. and Ochrobactrum sp. had a greater 
degradation efficiency on both PET and PE films as com-
pared to single isolates (Gao and Sun 2021). Moreover, for 
the first time, photocatalytic robots were able to efficiently 
degrade different synthetic microplastics using an active 
photocatalytic degradation procedure based on intelligent 
visible-light-driven microrobots capable of capturing and 
degrading microplastics. Polylactic acid and polycaprolac-
tone, in particular, were degraded using microrobots with 
hybrid wireless capabilities, demonstrating for the first time 
the possibility of efficient degradation of ultra-small plastic 
particles in confined complex spaces, which has implica-
tions for microplastic treatment research (Beladi-Mousavi 
et al. 2021).

In another part of the same scenario, heavy metals found 
on aquatic environmental samples coming from plastics are 
also an inevitable problem in recent years which have been 
burgeoning day by day. Different heavy metals are detected 
during the experiment of different samples, and some heavy 
metals are coming from plastics additives and their fillers. 
Several studies have been carried out to detect the heavy 
metal in aquatic and other biota and removing them is an 
essential step. Awual et al. studied the simultaneous detec-
tion and removal of Pb (II) ion in a naked-eye manner by 
organic ligand functionalized composite material employing 
a simple one-step capture operation. The composite material 
was successfully fixed onto mesoporous silica, and the Pb(II) 
ion was quantified in a simple, rapid, repeatable, sensitive, 
and selective manner (Awual et al. 2020). Similarly, lead can 
be effectively removed by ligand-based composite materi-
als; cesium metal can be removed from wastewater using 
bio-slag effectively (Khandaker et al. 2020); Cu(II) ions can 
be removed from environmental samples using ligand sup-
ported mesoporous silica. Furthermore, heavy metals that 
severely affect aquatic environments can be removed by 
several methods, and various research has been conducted.

Moreover, the omnipresence of plastic demands an alter-
nate solution that could be renewable, environmentally sus-
tainable, and biodegradable. Unregulated and mismanaged 
bioplastics could cause another environmental mayhem, 
close to traditional plastics. Therefore, it is a critical moment 
to leverage the force of legislation to set relevant criteria 
with a high threshold for the classification of bioplastics 
that can be aspired to by firms and trusted by consumers 
(Bhagwat et al. 2020). Biodegradable plastics based on cel-
lulose and polyolefins should be promoted due to their low 
cost, high mechanical strength, and easy decomposition in 
the environment (Ammala et al. 2011). Recently, research-
ers developed a plant-based, scalable material that may be 
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used to replace single-use plastics in a variety of consumer 
products and a polymer film that mimicked the qualities of 
spider silk. The new material is as robust as several popular 
plastics on the market today and might be used to replace 
plastic in various everyday items.

Furthermore, the material was developed utilizing a novel 
method for combining plant proteins into molecularly similar 
materials to silk. The energy-efficient technology produces a 
plastic-like free-standing film that can be manufactured on 
an industrial scale using sustainable components (Kamada 
et al. 2021). Further, other bioplastics require industrial 
composting facilities to break down; however, this mate-
rial can be composted at home. In addition, the Cambridge-
developed substance does not require any chemical altera-
tions to its natural building components, allowing it to break 
down safely in most natural settings. It is an alternative to 
single-use plastic and MPs will commercialize this product.

Synthetic plastics, which have been used widely due to 
their physiochemical properties and good economic feasi-
bilities, are mostly derived from petroleum products that 
show resistance to biodegradation (Rendón-Villalobos et al. 
2016). Thus, the synthetic plastics that release hazardous 
substances and cause several pollutions are attributed to their 
low biodegradability and are, therefore, one of the challeng-
ing issues. To resolve the issue, biopolymers originating 

from plants, animals, or microbes should be sustainably 
used as some of the biopolymers like polylactic acid has 
been found naturally biodegradable and been applicable in 
the fields like packaging, disposable goods, bottles, goods 
with high durability along with nano-medicine, surgical, 
drug delivery, and therapeutic applications, and hi-tech 
fields (Kabir et al. 2020; Vink et al. 2004). The utilization of 
biopolymers has been shown to have much potential for pre-
serving natural ecosystems and preventing further environ-
mental deterioration (Hall and Geoghegan 2018). Though 
the high cost of biopolymers is a baring issue to compete 
with synthetic polymers, further research on technological 
advancement and innovative efforts is required to make it 
more feasible for customers worldwide users.

In addition, Brazil has recently been practicing produc-
ing bio-ethylene from 1G bioethanol which has the same 
physical and chemical properties as petrochemical ethylene. 
A recent study claim: the prospect of manufacturing bio eth-
ylene from 2G bioethanol catalytic dehydration is a major 
challenge that needs further study and optimization of the 
processes involved, such as the proper use of well-stabilized 
catalysts capable of achieving large conversions of ethanol 
and ethylene selectivity. Moreover, the conversion of bio eth-
ylene to bio-polyethylene does not present an apparent com-
plexity until the latter is completed. However, bioplastics 

Fig. 7  Pathways of MPs controlling techniques
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should be synthesized from biomass of the second genera-
tion instead of the first generation. Due to their inherited 
smaller carbon footprint, they should replace petro-plastics 
in as many applications as possible. In applications need-
ing superior properties of petro-plastics, the petro-plastic 
itself should be extracted from renewable materials instead 
of substituting them for mechanically inferior bioplastic 
(Mendieta et al. 2020). Moreover, waste plastic has poten-
tial use in bituminous road construction as its addition in 
small doses (about 5–10% by weight of bitumen) helps in 
substantial improvement of stability, strength, fatigue life, 
and other desirable properties of bituminous mixes, lead-
ing to the improved longevity and pavement performance 
(Kalantar et al. 2012). The vacuum gasification condensa-
tion technique should be adopted for controlling the MPs 
and pollutants from printing toner (Ruan et al. 2018). The 
outline of recent solutions that could be the best strategies 
for plastic problems is shown in Fig. 7.

It is imperative to introduce specific legislative solid 
rules and policies that could monitor the excessive use of 
plastics; otherwise, the ecosystem’s health will worsen over 
time. Efficient management, recycling, and an environmen-
tally friendly disposal system would help make the envi-
ronment free of plastics. Substantial policies are formulated 
in developing countries against plastics and their products, 
such as a complete ban on plastic bags and plastic bottles, 
a fine imposed on plastics. (Gopinath et al. 2020). Over the 
last three decades, legislation has been developed world-
wide to address the dangers and consequences of plastics 
and increasing plastic waste (Table 4). Several strategies to 
reduce the use of MPs and microbeads have been promptly 
translated into international and national regulatory direc-
tives by international and intergovernmental policymakers. 
The following are some of these acts summarized:

Future perspectives

MPs have the potential to be exposed to human beings via 
soil, water, food and are globally dispersed in every ecosys-
tem. Current researchers are actively working on potential 
risks of MPs in public health and the environment. There 
are numerous examples throughout history of reducing the 
threat of MPs, which might be considered landmark devel-
opments in MPs management. Alternatives to plastics have 
been the subject of numerous studies, but none have proven 
effective.

To mitigate the impacts of MPs, very thin plastic, plas-
tic shopping bags with fewer than 40 microns should be 
banned, and an efficient recycling system for plastic bags 
should be implemented. Furthermore, effective law enforce-
ment, different strategies/acts have been put forward, and 
various countries are actively doing better work. Plastic litter 

is already dumped in non-manageable ways, and disposal 
through waste-to-energy will be crucial in minimizing the 
environmental impact of plastics. Alternative solutions like 
bioplastic, fuel research, biopolymer, chemical degradation 
techniques, bacterial degradation techniques are actively 
involved in research topics. However, effective and poten-
tial steps that can completely replace plastic products in the 
future are arduous jobs now.

Moreover, future research should assess whether micro-
bial enzymes involved in plastic degradation could be uti-
lized for minimizing MPs pollution to the environment. 
Additionally, the adequately designed human study is of a 
dire need to establish appropriate evidence on MPs’ expo-
sure and associated health risk. Specifically, a long-term 
follow-up study will be particularly valuable for insight into 
chronic exposure to MPs. Evidence of such shall be help-
ful to inform policy and thus to design intervention needed 
to reduce the MPs exposure to humans and its impact on 
health. Besides, awareness-raising through schools, colleges, 
universities, various governmental and non-governmental 
organizations, and networks regarding the chronic effects of 
MPs pollution through programs and campaigns and educat-
ing individuals responsibility to minimize plastic by choos-
ing to reject, reduce, reuse, and recycle plastics will help 
attenuate the MPs pollution.

In conclusion, if management processes are not handled 
appropriately, MP’s pollution will impact the animal popula-
tion and disrupt the ecosystem’s balance, as we already dis-
cussed. Consequently, it might trigger an ecological imbal-
ance that would make a precarious environment for survival. 
Therefore, solid policies and efficient management are much 
more required in future perspectives. More scientific innova-
tion should also be encouraged, facilitating the production 
of environmentally friendly derivatives instead of plastics.
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