Skip to main content
Log in

Chicken litter: a potential source of arsenic in agricultural soil and its contamination in Cajanus cajan

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

A most widely used organoarsenical compound known as Roxarsone is used as chicken feed additive which consists of both arsenic (III) and arsenic (V) including many other forms of arsenic. The present study highlighted a comprehensive evaluation of chicken litter with respect to the leaching of arsenic under a different pH, contamination of agricultural soil, and accumulation of arsenic in different parts of Pigeon pea (Cajanus cajan). Study results revealed that arsenic leaching from chicken litter is highly pH dependent and alkaline pH is a favourable condition for leaching of arsenic from litter. Depthwise arsenic distribution results indicate litter-mediated arsenic distributed in different layers through leaching process. Moreover, a pot experiment was conducted to investigate the uptake, translocation and distribution of total arsenic in Pigeon pea (Cajanus cajan) using different doses of poultry litter. Pot experiment results revealed that maximum arsenic is accumulated in the shoot than root and leaf (p < 0.05) at lower dose. However, at higher dose, root accumulation is significantly (p < 0.05) higher than shoot and leaf. Moreover, results also revealed that the translocation factor of Cajanus cajan is less than 1. Finally, it can be concluded that Roxarsone-mediated arsenic can discharge from the chicken body through litter and ultimately pollute our environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Antoniadis V, Golia EE, Liu YT, Wang SL, Shaheen SM, Rinklebe J (2019) Soil and maize contamination by trace elements and associated health risk assessment in the industrial area of Volos. Greece Environ Int 124:79–88

    Article  CAS  Google Scholar 

  • Arai Y, Lanzirotti AS, Sutton JA, Davis DL, Spark K (2003) Arsenic speciation and reactivity in poultry litter. Environ Sci Technol 37:4083–4090

    Article  CAS  Google Scholar 

  • Armendariz AL, Talano MA, Travaglia AL, Racagni C, Reinoso GEH, Agostini E (2016) Arsenic stress induces changes in lipid signaling and evokes the stomata closure in soybean. Plant Physiol Biochem 14:10345–10352

    Google Scholar 

  • Arnon D (1949) Copper enzymes isolated chloroplasts, polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  Google Scholar 

  • Bajpai R, Mishra KG, Mohabe S, Marg R, Upreti D, Nayaka S (2011) Determination of atmospheric heavy metals using two lichen species in Katni and Rewa cities. J Environl Biol 32:195–199

    CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free praline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bennett JP, Chriboga E, Coleman J, Waller DM (2000) Heavy metals in wild rice from Northern Wisconsin. Sci Total Environ 246:261–269

    Article  CAS  Google Scholar 

  • Bhakat PB, Gupta AK, Ayoob S (2007) Feasibility analysis of As(III) removal in a continuous flow fixed bed system by modified calcined bauxite (MCB). J Hazard Mater B139:286–292

    Article  CAS  Google Scholar 

  • Bhattacharya P, Samal AC, Majumdar J, Santra SC (2009) Transfer of arsenic from groundwater and paddy soil to rice plant (Oriyza sativa L.): a microlevel study in West Bengal. India Wold J Agri Sci 5:425–431

    CAS  Google Scholar 

  • Black CA (1965) Method of soil analysis part II agronomy monograph No, 9. American Society of Agronomy, Madison, p 148

    Google Scholar 

  • Bradford JM (1986) Penetrability. In: Klute A (ed) Methods of soil analysis, Part 1, 2nd edn. Agronomy Monograph 9. Amer. Soc. Agronomy and Soil Sci. Soc. Amer., Madison, Wisconsin, pp 463–478

  • Casado M, Anawar HM, Garcia-Sanchez A (2007) Arsenic bioavailability in polluted mining soils and uptake by tolerant plants (El Cabaco mine, Spain). Bull Environ Contam Toxicol 79:29–35

    Article  CAS  Google Scholar 

  • Castaneda LF, Coreno O, Nava JL (2020) Simultaneous elimination of hydrated silica, arsenic and phosphates from real groundwater by electrocoagulation using a cascade-shaped up-flow reactor. Electrochim Acta 331:135365

    Article  CAS  Google Scholar 

  • Catarecha P, Segura MD, Franco-Zorrilla JM, García-Ponce B, Lanza M, Solano R, Paz-Ares J, Leyva A (2007) A mutant ofthe Arabidopsis phosphate transporter PHT1;1displays enhanced arsenicaccumulation. Plant Cell 19:1123–1133

    Article  CAS  Google Scholar 

  • Chang CY, Yu HY, Chen JJ, Li FB, Zhang HH, Liu CP (2014) Accu-mulation of heavy metals in leaf vegetables from agricultural soils and associatedpotential health risks in the Pearl River Delta, South China. Environ Monit Assess 186:1547–1560

    Article  CAS  Google Scholar 

  • Chao DY, Chen Y, Chen J, Shi S, Chen Z, Wang C, Danku JM, Zhao FJ, Salt DE (2014) Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants. PLoS Biol 12:e1002009

    Article  Google Scholar 

  • Chattopadhyay A, Singh AP, Rakshit A (2017) Bioreclamation of arsenic in the soil-plant system: a review. Sci Int. https://doi.org/10.17311/sciint.2017.30.41

    Article  Google Scholar 

  • Chen WR, Huang CH (2012) Surface adsorption of organoarsenic roxarsone and arsanilic acid on iron and aluminum oxides. J Hazard Mater 227(228):378–385

    Article  CAS  Google Scholar 

  • Choudhary B, Souvik M, Biswas AK (2010) Regulation of sugar metabolism in rice (Oryza sativa L.). Physiol Moll Biol Plants 16(1):59–68

    Article  Google Scholar 

  • D’Angelo E, Zeigler G, Beck EG, Grove J, Sikora F (2012) Arsenic species in broiler (Gallus gallus domesticus) litter, soils, maize (Zea mays L.), and groundwater from litter-amended fields. Sci Total Environ 438:286–292

    Article  CAS  Google Scholar 

  • Dasgupta T, Hossai HA, Meharg AA, Price AH (2004) An arsenate tolerance gene on chromosome 6 of rice. New Phytol 163:45–49

    Article  CAS  Google Scholar 

  • De la Fuente C, Clemente R, Alburquerque JA, Elez DV, Bernal MP (2010) Implications of the use of as-rich groundwater for agricultural purposes and the effects of soil amendments on as solubility. Environ Sci Technol 44:9463–9469

    Article  CAS  Google Scholar 

  • de Freitas-Silva L, de Araújo TO, da Silva LC, de Oliveira JA, de Araujon JM (2016) Arsenic accumulation in Brassicaceae seedlings and its effects on growth and plant anatomy. Ecotoxicol Environ Safety 140:1–9

    Article  CAS  Google Scholar 

  • Dey U, Mondal NK (2016) Ultrastructural deformation of plant cell under heavy metal stress in Gram seedlings. Cogent Environ Sci 2:1196472–2196472

    Article  CAS  Google Scholar 

  • Feathermeal (2011) Food and Agricultural Organisation if the United Nations. Hydrolyzed feather meal, poultry meal, hydrolyzed poultry feather meal, keratin meal. Rome, Italy.

  • Fisher DJ, Yonkos LT, Staver KW (2015) Environmental concerns of roxarsone in broiler poultry feed and litter in Maryland, USA. Environ Sci Technol 49:1999–2012. https://doi.org/10.1021/es504520w

    Article  CAS  Google Scholar 

  • Garbarino JR, Bednar AJ, Rutherford DW, Beyer RS, Wershaw RL (2003) Environmental fate of roxarsone in poultry litter. I. Degradation of roxarsone during composting. Environ Sci Technol 37:1509–1514

    Article  CAS  Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedures for agriculture research, 2nd edn. Willey, New York

    Google Scholar 

  • Gupta K, Srivastava A, Srivastava S, Kumar A (2020) Phyto-genotoxicity of arsenic contaminated soil from Lakhimpur Kheri, India on Vicia faba L. Chemosphere 241:125063

    Article  CAS  Google Scholar 

  • Han FX, Kinger WL, Selim HM, Gerard PD, Cox MS, Oldhama JL (2004) Arsenic solubility and distribution in poultry waste and long-term amended soil. Sci Total Environ 320:51–61

    Article  CAS  Google Scholar 

  • Hochmuth G, Hochmuth R, Mylavarapu R (2016) Using Composted poultry manure (Litter) in mulched vegetable production, revised ed.; University of Florida (UF) IFAS Extension SL 293: Gainesville, FL, USA, 2016; pp. 1–8.

  • Hopanhayn C (2006) Arsenic in drinking water: impact on human health. Elements 2:103–107

    Article  Google Scholar 

  • Hu Y, Zhang W, Cheng H, Tao S (2017) Public health risk of arsenic species in chicken tissues from live poultry markets of Guangdong province, China. Environ Sci Technol 51:35508–43517

    Article  Google Scholar 

  • Huang B, Kuo S, Bembenek R (2005) Availability to lettuce of arsenic and leadfrom trace element fertilizers in soil. Water Air Soil Pollut 164:223–239

    Article  CAS  Google Scholar 

  • Huang RQ, Gao SF, Wang WL, Staunton S, Wang G (2006) Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, southeast China. Sci Total Environ 368:531–541

    Article  CAS  Google Scholar 

  • Huang LX, Yao LX, He ZH, Zhou CM, Li GL, Yang BM, Li YF (2013) Uptake of arsenic species by turnip (Brassica rapa L.) and lettuce (Lactuca sativa L.) treated with roxarsone and its metabolites in chicken manure. Food Addit Contam Part A 30:1546–1555

    Article  CAS  Google Scholar 

  • Jackson BP, Bertsch PM (2001) Determination of arsenic speciation in poultry wastes by IC-ICP-MS. Environ Sci Technol 35:4868–4873

    Article  CAS  Google Scholar 

  • Jackson BP, Cabrera M, Camberato J, Seaman J, Wood C (2003) Trace element species in poultry litter. J Environ Qual 32:535–540

    Article  CAS  Google Scholar 

  • Jackson BP, Seaman JC, Bertsch PM (2006) Fate of arsenic compounds in poultry litter upon land application. Chemosphere 65:2028–2034

    Article  CAS  Google Scholar 

  • Jha AB, Dubey RS (2004) Carbohydrate metabolism in growing rice seedlings under arsenic toxicity. J Plant Physiol 161:867–872

    Article  CAS  Google Scholar 

  • Jiang Y, Chao S, Liu J, Yang Y, Chen Y, Zhang A, Cao H (2017) Source apportionmentand health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere 168:1658–1668

    Article  CAS  Google Scholar 

  • Itabashi T, Li J, Hashimoto Y, Ueshima M, Sakanakura H, Yasutaka T, Imoto Y, Hosomi M (2019) Speciation and fractionation of soil Arsenic from natural and anthropogenic sources: chemical extraction, scanning electron microscopy, and micro-XRF/XAFS investigation. Environ Sci Technol 53(24):14186–14193

    Article  CAS  Google Scholar 

  • Karimi N, Ghaderian SM, Schat H (2013) Arsenic in soil and vegetation of acontaminated area. Int J Environ Sci Technol 10:743–752

    Article  CAS  Google Scholar 

  • Khan MA, Stroud JL, Zhu YG, McGrath SP, Zhao FJ (2010) Arsenic bioavailability to rice is elevated in Bangladeshi paddy soils. Environ Sci Technol 44:8515–8521

    Article  CAS  Google Scholar 

  • Kim S, Kim H-B, Kwon EE, Baek K (2020) Mitigating Translocation of Arsenic from Rice Field to Soil PoreSolution by Manipulating the Redox Conditions. Sci Total Environ 762:143124

    Article  CAS  Google Scholar 

  • Kpomblekou-A K, Ankumah R, Ajwa H (2002) Trace and nontrace element contents of broiler litter. Commun Soil Sci Plant Anal 33:1799–1811

    Article  CAS  Google Scholar 

  • Kyakuwaire M, Olupot G, Amoding A, Nkedi-Kizza P, Basamba TA (2019) How safe is chicken litter for land application as an organic fertilizer? A review. Int J Environ Res Public Health 16:3521

    Article  Google Scholar 

  • Lasky T (2004) Mean total arsenic concentrations in chicken 1989–2000 and estimated exposures for consumers of chicken. Environ Health Perspect 112(1):18–21

    Article  CAS  Google Scholar 

  • Li RY, Stroud JL, Ma JF, Mcgrath SP, Zhao FJ (2009a) Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ Sci Technol 43:3778–3783

    Article  CAS  Google Scholar 

  • Li RY, Ago Y, Liu WJ, Mitani N, Feldmann J, McGrath SP, Ma JF, Zhao FJ (2009b) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150:2071–2080

    Article  CAS  Google Scholar 

  • Li S, Zou D, Li L, Wu L, Liu F, Zeng X, Wang H, Zhu Y, Xiao Z (2020). Evolution of heavy metals during thermal treatment of manure: a critical review and outlooks.Chemosphere 247:125962

  • Liang T, Ke Z, Chen Q, Li L, Chen G (2014) Degrradation of roxxarsone in a silt loam soil and its toxicity assessment. Chemosphere 112:128–133

    Article  CAS  Google Scholar 

  • Liang XQ, Chen LL, Liu ZW, Jin Y, He MM, Zhao ZY, Liu CL, Niyungeko C, Arai Y (2018) Composition of microbial community in pig manure biochar-amended soils and the linkage to the heavy metals accumulation in rice at harvest. Land Degrad Dev 29:2189–2198

    Article  Google Scholar 

  • Liu CW, Lin CC, Jang CS, Sheu GR, Tsui L (2009) Arsenic accumulation by rice grown in soil treated with roxarsone. J Plant Nutr Soil Sci 172:550–556

    Article  CAS  Google Scholar 

  • Liu Z, Zhuang Z, Yu Y, Wang Q, Wan Y-N, Li H-F (2020) Arsenic transfer and accumulation in the soil-rice system with sulfur application and different water managements. Chemosphere 269:128772

    Article  CAS  Google Scholar 

  • Logoteta B, Xu XY, Macnair MR, McGrath SP, Zhao FJ (2009) Arsenite efflux is not enhanced in the arsenate-tolerant phenotype of Holcus lanatus. New Phytol 183:340–348

    Article  CAS  Google Scholar 

  • Lowery OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protine measurement folin phenol reagent. J Biol Chem 193:265–275

    Article  Google Scholar 

  • Ma J, Chen Y, Antoniadis V, Wang K, Huang Y, Tian H (2020) Assessment of heavy metal(loid)s contamination risk and grain nutritionalquality in organic waste-amended soil. J Hazards Matter 399:123095

    Article  CAS  Google Scholar 

  • Malik EP, Singh MB (1980) Plant enzymology and hittoenzymology, 1st edn. Kalyani Publishers, New Delhi, p 286

    Google Scholar 

  • Mandal KB, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201– 235

    Article  CAS  Google Scholar 

  • Mondal NK, Das C, Datta JK (2015) Effect of mercury on seedling growth, nodulation and ultrastructural deformation of Vigna radiata (L) Wilczek. Environ Monitor Assess 187:241. https://doi.org/10.1007/s10661-015-4484-8

    Article  CAS  Google Scholar 

  • Mangalgiri KP, Adak A, Blaney L (2015) Organoarsenicals in poultry litter: detection, fate, and toxicity. Environ Int 75:68–80

    Article  CAS  Google Scholar 

  • Marin AR, Pezeshki SR, Masscheleyn PH, Choi HS (1993) Effect of dimethylarsinic acid (DMAA) on growth, tissue arsenic and photosynthesis of rice plants. J Plant Nutr 16:865–880

    Article  CAS  Google Scholar 

  • Mascher R, Lippmann B, Holzinger S, Bergmann H (2002) Arsenate toxicity, effects on oxidative stress response molecules and enzymes in red clover plants. Plant Sci 163:961–969

    Article  CAS  Google Scholar 

  • McCready RM, Guggolz J, Silviera V, Owens HS (1950) Determination of starch and amylase in vegetables. Anal Chem 22:1156–1158

    Article  CAS  Google Scholar 

  • Mehmood S, Saeed DA, Rizwan M, Khan MN, Aziz O, Bashir S, Ibrahim M, Ditta A, Akmal M, Mumtaz MA, Waqas Ahmed W, Irshad S, Imtiaz M, Tua S, Shaheen A (2018) Impact of different amendments on biochemical responses of sesame (Sesamum indicum L.) plants grown in lead-cadmium contaminated soil. 132:345–355

  • Missimer TM, Teaf CM, Beeson WT, Maliva RG, Woolschlager J, Covert DJ (2018) Natural background and anthropogenic arsenic enrichment in Florida soils, surface water, and groundwater: a review with a discussion on public health risk. Int J Environ Res Public Health 15:2278. https://doi.org/10.3390/ijerph15102278

    Article  CAS  Google Scholar 

  • Morrison JL (1969) Distribution of arsenic from poultry litter in broiler chickens, soil and crops. J Agric Food Chem 17:1288–1290

    Article  CAS  Google Scholar 

  • Nachman KE, Baron PA, Raber G, Francesconi K, Navas-Acien A, David C (2013) Roxarsone, inorganic arsenic, and other arsenic species in chicken: A U.S.-based market basket sample. Environ Health Perspect 121(7):818–824

    Article  CAS  Google Scholar 

  • Panaullah GM, Alam T, Hossai MB, Loeppert RH, Lauren JG, Meisner CA (2009) Arsenic toxicity to rice (Oryza sativa L.) in Bangladesh. Plant Soil 317:31–39

    Article  CAS  Google Scholar 

  • Punshon T, Jackson BP, Meharg AA, Warczack T, Scheckel K, Gucrino ML (2017) Understanding arsenic dynamics in agronomic systems to predict and prevent uptake by crop plants. Sci Total Environ 581(582):209–220

    Article  CAS  Google Scholar 

  • Rahaman S, Sinha AC, Mukhopadhyay D (2011) Effect of water regimes and organic matters on transport of arsenic in summer rice (Oryza sativa L.). J Environ Sci 23(4):633–639

    Article  CAS  Google Scholar 

  • Rauf MA, Hakim MA, Hanafi MM, Islam MM, Rahman GKMM, Panaullah GM (2011) Bioaccumulation of arsenic (As) and phosphorous by transplanting Aman rice in arsenic-contaminated clay soils. Austra J Crop Sci 5(12):1678–1684

    CAS  Google Scholar 

  • Romero-Freire A, Sierra-Aragon M, Ortiz-Bernad I, Martin-Peinado FJ (2014) Toxicity of arsenic in relation to soil properties:implications to regulatory purposes. J Soils Sediments 14:968–979

    Article  CAS  Google Scholar 

  • Ruiz-Chancho MJ, López-Sánchez JF, Schmeisser E, Goessler W, Francesconi KA, Rubio R (2008) Arsenic speciation in plants growing in arsenic contaminated sites. Chemosphere 71:1522–1530

    Article  CAS  Google Scholar 

  • Rutherford DW, Bednar AJ, Garbarino JR, Needham R, Staver KW, Wershaw RL (2003) Environmental fate of roxarsone in poultry litter. Part II. Mobility of arsenic in soils amended with poultry litter. Environ Sci Technol 37:1515–1520

    Article  CAS  Google Scholar 

  • Sahoo PK, Mukherjee A (2014) Arsenic fate and transport in the groudwater soil-plant system: an understanding of suitable rice paddy cultivation in arsenic enriched areas in recent trends in modelling of environmental contaminants. Springer, India, pp 21–44

    Google Scholar 

  • Serbula SM, Kalinovic TS, Ilic AA, Kalinovic JV, Steharnik MM (2013) Assessment of airborne heavy metal pollution using Pinus spp. and Tilia spp. Aero-Sol Air Qual Res 13:563–573

    Article  CAS  Google Scholar 

  • Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi MM, Zheng B (2019) Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24:2452. https://doi.org/10.3390/molecules24132452

    Article  CAS  Google Scholar 

  • Shi GL, Zhu S, Meng JR, Qian M, Yang N, Lou LQ, Cai QS (2015) Variation in arsenic accumulation and translocation among wheat cultivars: therelationship between arsenic accumulation, efflux by wheat roots and arsenate toler-ance of wheat seedlings. J Hazard Mater 289:190–196

    Article  CAS  Google Scholar 

  • Shin H, Shin HS, Dewbre GR, Harrison MJ (2004) Phosphatetransportin Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 39:629–642

    Article  CAS  Google Scholar 

  • Somashekaraih BV, Padmaja A, Prasad ARK (1992) Lead induced lipid peroxidation and antioxidant defense components of developing chick embryo. Free Radic Biol Med 13:107–114

    Article  Google Scholar 

  • Srivastava S, Sharma YK (2014) Arsenic induced changes in growth and metabolish of black gram seedlings (Vigna radiate L.) and the role of phosphate as an ameliorating agent. Environ Process 1:431–445

    Article  CAS  Google Scholar 

  • Srivastava PK, Singh M, Singh N, Tripathi CD (2013a) Soil Arsenic pollution: threat to crops. J Biorem Biodegra 4:7

    Google Scholar 

  • Srivastava S, Srivastava AK, Singh B, Suprasanna P, D’souza SF (2013b) The effect of arsenic on pigment composition and photosynthesis in Hydrilla verticillata. Biol Planta 57(2):385–389

    Article  CAS  Google Scholar 

  • Srivastava A, Barla A, Singh S, Mandraha S, Bose S (2016) Arsenic contamination in agricultural soils of Bengal deltaic region of West Bengal and its higher assimilationin monsoon rice. J Hazard Mater 324(ptB):526–534

    Google Scholar 

  • Srivastava S, Sinha P, Sharma YK (2017) Status of photosynthetic pigments, lipid peroxidation and antioxidative enzymes in Vigna mungo in presence of arsenic. J Plant Nutr 40:298–306

    Article  CAS  Google Scholar 

  • Strawn DG (2018) Review of interactions between phosphorus and arsenic in soils from four case studies. Geochem Trans 19:10. https://doi.org/10.1186/s12932-018-0055-6

    Article  CAS  Google Scholar 

  • Stoeva MP, Uzunova K, Popova ED, Stoyanova K (2005) Patterns and levels of variation within section Phacocystis of genus Carex (Cyperaceae) in Bulgaria. Phytol Balc 11:45–62

    Google Scholar 

  • Tang R, Wang Y, Yuan S, Wang W, Yue Z, Zhan X, Hu Z-H (2021) Organoarsenic feed additives in biological wastewater treatment processes: Removal, biotransformation, and associated impacts. J Hazard Mater 406:124789

    Article  CAS  Google Scholar 

  • Tao SS, Bolger PM (1999) Dietary arsenic intake in the United States: FDA total diet study, September 1991–december 1996. Food Add Conta 16:465–472

    Article  CAS  Google Scholar 

  • Villalba E, Tanjal C, Borzi G, Páez G, Carol E (2020) Geogenic arsenic contamination of wet-meadows associated with a geothermal system in an arid region and its relevance for drinking water. J Environ Sci 720:137571

    CAS  Google Scholar 

  • Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter, and proposed modification of the chromic acid tritation method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Wang S, Mulligan C (2006) Effect of natural organic matter on arsenic release from soil and sediments into groundwater. Environ Geochem Health 28(3):197–214

    Article  CAS  Google Scholar 

  • Wang QR, Cui YS, Liu XM, Dong YT, Christie P (2003) Soil contamination and plant uptake of heavy metals at polluted sites in China. J Env Sci Health Part A Toxicol Hazard Subst Environ Eng 38:823–838

    Article  CAS  Google Scholar 

  • Wang FM, Chen ZL, Zhang L, Gao YL, Sun YX (2006) Arsenic uptake and accumulation in rice (Oryza sativa L.) at different growth stages following soil incorporation of roxarsone and arsenilic acid. Plant Soil 285:359–367

    Article  CAS  Google Scholar 

  • Wang S, Wu W, Liu F, Liao R, Hu Y (2017) Accumulation of heavy metals in soilcrop systems: a review for wheat and corn. Environ Sci Pollut Res Int 24:15209–15225

    Article  CAS  Google Scholar 

  • Wilcox LV (1950) Electrical conductivity. Am Water Work Assoc J 42:775–776

    Article  CAS  Google Scholar 

  • Xu Y, Wang K, Zhou Q, Zhang L, Qian G (2020) Effects of humus on the mobility of arsenic in tailing soil and the thiol-modification of humus. Chemosphere 259:127403

    Article  CAS  Google Scholar 

  • Yañez LMJ, Alfaro A, Carreras-Avila NME, Bovi Mitre G (2019) Arsenic accumulation in lettuce (Lactuca sativa L.) and broad bean (Vicia faba L.) crops and its potential risk for human consumption. Heliyon 5(1):e01152

    Article  Google Scholar 

  • Yang K, Barnett MO, Jardine PM, Basta NT, Casteel SW (2002) Adsorption, sequest ration, and bioaccess ibility of As(V) in soil. Environ Sci Technol 36(21):4562–4569

    Article  CAS  Google Scholar 

  • Yang JK, Barnett MO, Zhuang J, Scott J, Scott EF, Philip MJ (2005) Adsorption, oxidation, and bioaccessibility of As(lll) in soil. Environ Sci Technol 41(11):62–69

    Google Scholar 

  • Yang Z, Pong H, Lu X, Liu Q, Huang R, Hu B, Kachangoski G, Zuidhof MJ, Le XC (2006) Arsenic metabolities, including N-Acetyl-4-hydroxy-m-arsanilic acid, in poultry litterfrom a Roxarsone feeding study involving 1600 chicken. Environ Sci Technol 50:6737–6743

    Article  CAS  Google Scholar 

  • Yang S, Zhao J, Chang SX, Collins C, Xu J, Liu X (2019) Status assessment and probabilistic health risk modelling of metals accumulation in agriculture soils across China: a synthesis. Environ Int 128:165–174

    Article  CAS  Google Scholar 

  • Yang Y, Zhang L, Huang X, Zhou Y, Quan Q, LiLi Y, et al (2020) Response of photosynthesis to different concentrations of heavy metals in Davidia involucrata. PLoS ONE 15(3):e0228563. https://doi.org/10.1371/journal.pone.0228563

    Article  CAS  Google Scholar 

  • Yao LX, Li GL, Dang Z, He ZH, Zhou CM, Yang BM (2009) Arsenic speciation in turnip as affected by application of chicken manure bearing roxarsone and its metabolites. Plant Soil 316:117–124

    Article  CAS  Google Scholar 

  • Yao L, Li G, Dang Z, Yang B, He Z, Zhou C (2010) Uptake and transport of roxarsone and its metabolites in water spinach as affected by phosphate supply. Environ Toxicol Chem 29:947–951

    Article  CAS  Google Scholar 

  • Zaman S, Rajonee AA, Huq SMI (2017) Arsenic in Bangladesh soils and it relationship with water soluble soil organic carbon. Open J Soil Sci 7:77–85

    Article  CAS  Google Scholar 

  • Zhang P, Zhang Z, Li B, Zhang H, Jin Hu J, Zhao J (2020) Photosynthetic rate prediction model of newborn leaves verifed by core fuorescence parameters. Sci Report 10:3013. https://doi.org/10.1038/s41598-020-59741-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Both the authors want to express their sincere thanks to the all staff members of Burdwan Seed Multiplication Farm, Burdwan, West Bengal. Authors also extend their sincere thanks to all facility member of the Department of Environmental Science, Burdwan University, West Bengal, India.

Funding

Both the authors like to express their heartfelt thanks to the University authority for providing necessary fund (M.Sc/Diss/2010-2012/Env (3)) to conduct the research work in the form of M.Sc. dissertation work and Department of Science and Technology, Government of India (DST File No: SR/̄PURSE Phase 2/34; DST-FIST-No. SR/FST/ESI-141/2015 (C)), and Department of Science and Technology, Government of West Bengal (Grant No. 126 [Sanc.]/ST/P/S&T/15G-10/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Mondal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editorial responsibility:R Saravanan.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 734 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, N.K., Debnath, P., Sen, K. et al. Chicken litter: a potential source of arsenic in agricultural soil and its contamination in Cajanus cajan. Int. J. Environ. Sci. Technol. 19, 7359–7372 (2022). https://doi.org/10.1007/s13762-021-03548-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-021-03548-z

Keywords

Navigation