Skip to main content
Log in

Siphoviridae bacteriophage treatment to reduce abundance and antibiotic resistance of Pseudomonas aeruginosa in wastewater

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Wastewater contaminated with the antibiotic-resistant bacteria, Pseudomonas aeruginosa, can contribute to human community-acquired infections when released into receiving waters. This study outlines a novel process of phage application that can reduce the reservoir of P. aeruginosa in both primary wastewater (PWW) and secondary wastewater (SWW). The phage PA25 was first successfully isolated from SWW and is a double-stranded DNA phage, classified as a Siphoviridae family as defined by plaque morphology, electron microscopy and host range. Bacteria such as Pseudomonas are the natural host of this virus; the addition of Siphoviridae PA25 has resulted in the greatest reduction of bacteria from unsterilized PWW compared to unsterilized SWW. Experimental results showed a bacterial reduction of 5ULog discharge in PWW compared only 3ULog in SWW. The addition of PA25 to wastewater can also eliminate streptomycin resistance in P. aeruginosa ATCC strain 27853. Infected P. aeruginosa showed decreased resistance to the antibiotics gentamicin and rifampicin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

taken from the primary domestic and from the secondary wastewater according to the addition or not of the phage PA25. (Pg): phage PA25, StDW: Sterilized distilled water + P. aeruginosa. StDW + Pg: Sterilized distilled water + P. aeruginosa + Phage PA25 StPWW = Sterilized Primary wastewater + P. aeruginosa StPWW + Pg: Sterilized Primary wastewater + P. aeruginosa + Phage PA25. UstPWW: Unsterilized primary wastewater + P. aeruginosa UstPWW + Pg: Unsterilized primary wastewater + P. aeruginosa + Phage PA25. StSWW = Sterilized Secondary wastewater + P. aeruginosa StSWW + Pg = Sterilized Secondary wastewater + P. aeruginosa + Phage PA25. UstSWW:Unsterilized secondary wastewater + P. aeruginosa UstSWW + Pg Unsterilized secondary wastewater + P. aeruginosa + Phage PA25

Fig. 4

Similar content being viewed by others

References

  • Abedon ST (2020) Phage-phage, phage-bacteria, and phage-environment communication in biocommunication of phages. Springer, pp 23–70

    Google Scholar 

  • Acar JF (2000) Antibiotic synergy and antagonism. Med Clin North Am 84(6):1391–1406

    CAS  Google Scholar 

  • Ackermann HW (2001) Frequency of morphological phage descriptions in the year 2000. AdvVirol 146(5):843–857

    CAS  Google Scholar 

  • Ackermann HW (2007) 5500 Phages examined in the electron microscope. Arch Virol 152:227–243. https://doi.org/10.1007/s00705-006-0849-1

    Article  CAS  Google Scholar 

  • Ackermann HW (2009) Basic phage electron microscopy. Humana press, pp 113–126

    Google Scholar 

  • Ackermann HW (2012) Bacteriophage electron microscopy. Adv Virus Res 82:1–32

    CAS  Google Scholar 

  • Ackermann HW, DuBow MS (1987) Viruses of prokaryotes. CRC Press, General properties bacteriophages 1:86

    Google Scholar 

  • Adams MH (1959) Methods of study of bacterial viruses Bacteriophages. Interscience Publishers

    Google Scholar 

  • Al-Abri M, Al-Ghafri B, Bora T, Dobretsov S, Dutta J, Castelletto S, Boretti A (2019) Chlorination disadvantages and alternative routes for biofouling control in reverse osmosis desalination. NPJ Clean Water 2(1):1–16

    Google Scholar 

  • Alisky J, Iczkowski K, Rapoport A, Troitsky N (1998) Bacteriophages show promise as antimicrobial agents. J Infect 36(1):5–15

    CAS  Google Scholar 

  • Aprea G, ARDPrencipe VA, Migliorati G (2015) Bacteriophage morphological characterization by using transmission electron microscopy. J Life Sci 9:214–220

    CAS  Google Scholar 

  • Aprea G, D’Angelantonio D, Boni A, Connerton P, Connerton I, Scattolini S, Marotta F, Pomilio F, Migliorati G, D’Alterio N, Di Giannatale E (2018) Isolation and morphological characterization of new bacteriophages active against campylobacter jejuni. Am J ClinMicrobiolAntimicrob 1(1):1004

    Google Scholar 

  • Al-Rekabi WS, Qiang H, Qiang WW (2007) Improvements in wastewater treatment technology. Pak J Nutr 6(2):104–110

    Google Scholar 

  • Armon R, Kott Y (1993) A simple, rapid and sensitive presence/absence detection test for bacteriophage in drinking water. J ApplBacteriol 74(4):490–496

    CAS  Google Scholar 

  • Berglund B (2015) Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Infect EcolEpidemiol 5(1):1–28564

    Google Scholar 

  • Bradbury J (2004) My enemy’s enemy is my friend Using phages to fight bacteria. Lancet 363:624–625

    Google Scholar 

  • Brizou F (1972) Famille de Pseudomonacae dans « bactériologie médicale ». Editions médicales Flammarison, 469–1523.

  • Broniewski JM, Meaden S, Paterson S, Buckling A, Westra ER (2020) The effect of phage genetic diversity on bacterial resistance evolution. ISME J 14(3):828–836

    Google Scholar 

  • Brüssow H, Kutter E (2005) Phage ecology. Bacteriophages BiolAppl 70:129–164

    Google Scholar 

  • Brussow H, Canchaya C, Hardt WD (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. MicrobiolMolBiol 68(3):560–602

    Google Scholar 

  • Burmeister AR, Fortier A, Roush C, Lessing AJ, Bender RG, Barahman R et al (2020) Pleiotropy complicates a trade-off between phage resistance and antibiotic resistance. Proc Nat Acad Sci 117(21):11207–11216

    CAS  Google Scholar 

  • Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8(7):1137–1144

    CAS  Google Scholar 

  • Cabral JP (2010) Water microbiology bacterial pathogens and water. Int J Environ Res Publ Health 7(10):3657–3703

    Google Scholar 

  • Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, Darst SA (2001) Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104(6):901–912

    CAS  Google Scholar 

  • Cervantes-Vega C, Chávez J, Rodríguez MG (1986) Antibiotic susceptibility of clinical isolates of Pseudomonas aeruginosa. Antonie Van Leeuwenhoek 52:319–324

    CAS  Google Scholar 

  • Cisek AA, Dąbrowska I, Gregorczyk KP, Wyżewski Z (2017) Phage therapy in bacterial infections treatment: one hundred years after the discovery of bacteriophages. CurrMicrobiol 74(2):277–283

    CAS  Google Scholar 

  • Comeau AM, Tétart F, Trojet SN, Prère MF, Krisch HM (2008) La « synergiephages-antibiotiques » Un enjeu pour la phagothérapie. Médecine/sciences 24(5):449–451

    Google Scholar 

  • Courvalin P (2001) Resistance aux antibiotiques. SocMicrobiol 45:1007–1031

    Google Scholar 

  • Danovaro R, Fonda US, Pusceddu A (2009a) Climate change and the potential spreading of marine mucilage and microbial pathogens in the Mediterranean Sea. PLoS ONE 4:e7006. https://doi.org/10.1371/journal.pone.0007006

    Article  CAS  Google Scholar 

  • Danovaro R, Umani SF, Pusceddu A (2009) Climate change and the potential spreading of marine mucilage and microbial pathogens in the Mediterranean Sea. Plos One 4(9):256

    Google Scholar 

  • Dean CR, Visalli MA, Projan SJ, Sum PE, Bradford PA (2003) Efflux mediated resistance to tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 47(3):972–978

    CAS  Google Scholar 

  • Ebrahimi A, Arvaneh Z, Mahzounieh M, Lotfalian S (2017) Antibiotic resistance induction by benzalkonium chloride exposure in nosocomial pathogens. Int J Infect 4(2):e40296. https://doi.org/10.5812/iji.40296

    Article  Google Scholar 

  • Gerba CP, Pepper IL (2019) Municipal wastewater treatment in environmental and pollution science. Academic Press

    Google Scholar 

  • Golkar Z, Bagasra O, Pace DG (2014) Bacteriophage therapy: a potential solution for the antibiotic resistance crisis. J Infect Develop Ctries 8(02):129–136

    Google Scholar 

  • Kadurugamuwa JL, Clarke AJ, Beveridge TJ (1993) Surface action of gentamicin on Pseudomonas aeruginosa. J Bacteriol 175(18):5798–5805

    CAS  Google Scholar 

  • Kamizoulis G, Saliba L (2004) Development of coastal recreational water quality standards in the Mediterranean. Environ Int 30(6):841–854

    CAS  Google Scholar 

  • Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson RP (2009) Enumeration of bacteriophages by double agar overlay plaque assay in bacteriophages. Humana Press, pp 69–76

    Google Scholar 

  • Labrie M, Reguiba N, Tremblay N (2009) ManuelleApprentissage par problèmes à l’Université du Québec à Montréal (UQAM). Point Biolo 3:1–16

    Google Scholar 

  • León M, Bastías R (2015) Virulence reduction in bacteriophage resistant bacteria. Front Microbiol 6:1–343

    Google Scholar 

  • Leverentz B, Conway WS, Janisiewicz W, Camp MJ (2004) Optimizing concentration and timing of a phage spray application to reduce Listeria monocytogenes on honeydew melon tissue. J Food Prot 67(8):1682–1686

    Google Scholar 

  • Levin BR, Bull JJ (1996) Phage therapy revisited: the population biology of a bacterial infection and its treatment with bacteriophage and antibiotics. Am Nat 147(6):881–898

    Google Scholar 

  • Lister PD, Wolter DJ, Hanson ND (2009) Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. ClinMicrobiol Rev 22(4):582–610

    CAS  Google Scholar 

  • Mansour W (2018) Tunisian antibiotic resistance problems: three contexts but one health. Afr Health Sci 18(4):1202–1203

    Google Scholar 

  • Merril CR, Scholl D, Adhya SL (2003) The prospect for bacteriophage therapy in Western medicine. Nat Rev Drug Discovery 2(6):489–497

    CAS  Google Scholar 

  • Moghadam MT, Amirmozafari N, Shariati A, Hallajzadeh M, Mirkalantari S, Khoshbayan A, Jazi FM (2020) How phages overcome the challenges of drug resistant bacteria in clinical infections. Infection and Drug Resistance 13:1–45

    Google Scholar 

  • Nassar MS, Hazzah WA, Bakr WM (2019) Evaluation of antibiotic susceptibility test results: how guilty a laboratory could be? J Egypt Public Health Assoc 94(1):4

    Google Scholar 

  • Olivares E, Badel-Berchoux S, Provot C, Prévost G, Bernardi T, Jehl F (2020) Clinical impact of antibiotics for the treatment of Pseudomonas aeruginosa biofilm infections. Front Microbiol 10:2894

    Google Scholar 

  • Petrovski S, Seviour RJ, Tillett D (2011) Genome sequence and characterization of the Tsukamurella bacteriophage TPA2. Appl Environ Microbiol 77(4):1389–1398

    CAS  Google Scholar 

  • Prieto MD, Lopez B, Juanes JA, Revilla JA, Llorca J, Delgado-Rodriguez M (2001) Recreation in coastal waters: health risks associated with bathing in sea water. J Epidemiol Community Health 55(6):442–447

    CAS  Google Scholar 

  • Pukatzki S, Kessin RH, Mekalanos JJ (2002) The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyosteliumdiscoideum. ProcNatlAcadSci 99(5):3159–3164

    CAS  Google Scholar 

  • Rivera-Utrilla J, Sánchez-Polo M, Ferro-García MÁ, Prados-Joya G, Ocampo-Pérez R (2013) Pharmaceuticals as emerging contaminants and their removal from water. Rev Chemos 93(7):1268–1287

    CAS  Google Scholar 

  • Saidi N, Kouki S, Mehri I, Benrajeb A, Bellila A, Abdennaceur H, Ouzari HI (2011) Biofilm and siderophore effects on secondary waste water disinfection. CurrMicrobiol 63:337–340

    CAS  Google Scholar 

  • Schwartz T, Armant O, Bretschneider N, Hahn A, Kirchen S, Seifert M, Dötsch A (2015) Whole genome and transcriptome analyses of environmental antibiotic sensitive and multi-resistant Pseudomonas aeruginosa isolates exposed to waste water and tap water. MicrobBiotechnol 8(1):116–130

    CAS  Google Scholar 

  • Sepúlveda-Robles O, Kameyama L, Guarneros G (2012) High diversity and novel species of Pseudomonas aeruginosa bacteriophages. Appl Environ Microbiol 78(12):4510–4515

    Google Scholar 

  • Silva YJ, Costa L, Pereira C, Cunha Â, Calado R, Gomes NC, Almeida A (2014) Influence of environmental variables in the efficiency of phage therapy in aquaculture. MicrobBiotechnol 7(5):401–413

    CAS  Google Scholar 

  • Slekovec C, Plantin J, Cholley P, Thouverez M, Talon D, Bertrand X, Hocquet D (2012) Tracking down antibiotic-resistant Pseudomonas aeruginosa isolates in a wastewater network. PloS one 7(12):e49300

    CAS  Google Scholar 

  • Sorum H (2006) Antimicrobial drug resistance in fish pathogens. In: Aarestrup FM (ed) Antimicrobial resistance in bacteria of animal origin. American Society for Microbiology Press, pp 213–238

    Google Scholar 

  • Sulakvelidze A, Kutter E (2005) Bacteriophage therapy in humans bacteriophages biology and applications. CRC Press

    Google Scholar 

  • Sulakvelidze A, Morris JG (2001) Bacteriophages as therapeutic agents. Ann Med 33:507–509

    CAS  Google Scholar 

  • Summers WC (2005) Bacteriophage research: early history. Bacteriophages: Biology and applications., pp. 5-27

  • Tan X, Li H, Li X, Sun W, Jin C, Chen L, Sun C (2020) A novel isophorone wastewater treatment technology-wet electrocatalytic oxidation and its degradation mechanism study. J Hazard Mater 1:122035

    Google Scholar 

  • Torres-Barceló C, Arias-Sánchez FI, Vasse M, Ramsayer J, Kaltz O, Hochberg ME (2014) A window of opportunity to control the bacterial pathogen Pseudomonas aeruginosa combining antibiotics and phages. PloS one 9(9):1056

    Google Scholar 

  • Tsamba L, Correc O, Couzinet A (2020) Chlorination by-products in indoor swimming pools: development of a pilot pool unit and impact of operating parameters. Environ Int 137:105566

    CAS  Google Scholar 

  • Van Houte S, Ekroth AK, Broniewski JM, Chabas H, Ashby B, Bondy-Denomy J, Westra ER (2016) The diversity-generating benefits of a prokaryotic adaptive immune system. Nature 532(7599):385–388

    Google Scholar 

  • Wang Z, Zheng P, Ji W, FuQYan WHY, Sun J (2016) SLPW: A virulent bacteriophage targeting methicillin-resistant Staphylococcus aureus in vitro and in vivo. Front Microbiol 7:1–934

    Google Scholar 

  • Watts S, Julian TR, Maniura-Weber K, Graule T, Salentinig S (2020) Colloidal transformations in MS2 virus particles: driven by pH, influenced by natural organic matter. ACS Nano 14(2):1879–1887

    CAS  Google Scholar 

  • Withey S, Cartmell E, Avery LM, Stephenson T (2005) Bacteriophages—potential for application in wastewater treatment processes. Sci Total Environ 339(1–3):1–18

    CAS  Google Scholar 

  • Wong CW, Delaquis P, Goodridge L, Lévesque RC, Fong K, Wang S (2020) Inactivation of Salmonellaenterica on post-harvest cantaloupe and lettuce by a lytic bacteriophage cocktail. Curr Res Food Sci 2:25–32

    Google Scholar 

  • Yee Y, Kisslinger B, Yu V, Jin D (1996) A mechanism of rifamycin inhibition and resistance in Pseudomonas aeruginosa. Antimicrob Chemoth 38:133–137

    CAS  Google Scholar 

  • Yuan Y, Qu K, Tan D, Li X, Wang L, Cong C, Xu Y (2019) Isolation and characterization of a bacteriophage and its potential to disrupt multi-drug resistant Pseudomonas aeruginosa biofilms. MicrobPathog 128:329–336

    CAS  Google Scholar 

  • Zhang L, Mah TF (2008) Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J Bacteriol 190(13):4447–4452

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from Tunisian Ministry of Higher Education and Scientific Research in the ambit of LR19CERTE04 (2o19_2022 Programs). Authors are Grateful for technical team of CERTE, particularly to Miss Nessrine Chourabi. We thank Pr. Sylvain Moineau and Pr Josée Harel and members of their teams for discussion at the beginning of the project and for phage identification. Also, authors are grateful for Pr Steven Aust for revision and English improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Saidi.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Editorial Responsiblity: Parveen Fatemeh Rupani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grami, E., Salhi, N., Sealey, K.S. et al. Siphoviridae bacteriophage treatment to reduce abundance and antibiotic resistance of Pseudomonas aeruginosa in wastewater. Int. J. Environ. Sci. Technol. 19, 3145–3154 (2022). https://doi.org/10.1007/s13762-021-03366-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-021-03366-3

Keywords

Navigation