Skip to main content
Log in

Insecticidal and fungicidal performance of bio-fabricated silver and gold nanoparticles

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The current article focuses on the synthesis of silver and gold nanoparticles by different parts (bark, leaf, and flower) of Moringa oleifera, and their insecticidal activities against larvae of culex quinquefasciatus and Aedes aegypti mosquitoes and fungicidal activity against Aspergillus sp. Both the nanoparticles were characterized by several analytical instruments such as UV–Visible spectroscopy, transmission electron microscopy (TEM), field emission scanning electron microscope (FESEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and atomic force microscopy (AFM). A clear signature of surface plasmon resonance of both Ag and Au nanoparticles was recorded at 415 nm and 545 nm with respective salt solution and bark extract of Moringa oleifera, respectively. The non-uniform spherical size of both Ag and Au nanoparticles was confirmed from TEM, XRD, and EDX-FESEM studies. Similarly, the existence of significant functional groups was also identified by FTIR analysis. The larvicidal activity of both the nanoparticles exhibited nonsignificant difference (for both LC50 and LC90) at 24 and 48 h of incubation for both the mosquito species. However, antifungal activity of Ag and Au nanoparticles against Aspergillus sp. at higher concentration (200 mg/L) was exhibited with the inhibition zone 0.502 and 0.125 cm2, respectively. The toxicological study also revealed that both nanoparticles had no adverse effect on the nontarget species, Chironomus sp. Therefore, it could be concluded that both the synthesized nanoparticles have enough potentiality in respect of larvicidal and fungicidal activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

TEM:

Transmission electron microscopy

FESEM:

Field emission scanning electron microscope

EDX:

Energy-dispersive X-ray spectroscopy

XRD:

X-ray diffraction

FTIR:

Fourier-transform infrared spectroscopy

AFM:

Atomic force microscopy

AgNPs:

Silver nanoparticles

AuNPs:

Gold nanoparticles

NP:

Nanoparticles

Cx. quinquefasciatus :

Culex quinquefasciatus

A. aegypti :

Aedes aegypti

M. oleifera :

Moringa oleifera

SPR:

Surface plasmon resonance

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    CAS  Google Scholar 

  • Ahluwalia V, Kumar J, Sisodia R, Shakil NA, Walia S (2014) Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia. Ind Crop Prod 55:202–206

    CAS  Google Scholar 

  • Ali AM, Thbiani AA, Trivedi S, Alanazi NA, Panneerselvam C, Rowida B, Aishah A (2019) One-step synthesis of Ag nanoparticles using aqueous extracts from sundarbans mangroves revealed high toxicity on major mosquito vectors and microbial pathogens. J Clust Sci. https://doi.org/10.1007/s10876-019-01631-7

    Article  Google Scholar 

  • Amarasinghe LD, Wickramarachchi PASR, Aberathna AAAU, Sithara WS, De Silva CR (2020) Comparative study on larvicidal activity of green synthesized silver nanoparticles and Annona glabra (Annonaceae) aqueous extract to control Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Heliyon 6(6):e04322

    CAS  Google Scholar 

  • Arasua MV, Arokiyarajb S, Viayaraghavanc P, Kumarc TSJ, Duraipandiyana V, Dhabia AA (2018) One step green synthesis of larvicidal, and azo dye degrading antibacterial nanoparticles by response surface methodology. J Photochem Photo biol B 190:154–162

    Google Scholar 

  • Arjunan NK, Murugan K, Rejeeth C, Madhiyazhagan P, Barnard DR (2012) Green synthesis of silver nanoparticles for the control of mosquito vectors of Malaria, Filariasis, and Dengue. Vector Borne Zoonotic Dis 12(3):262–268

    Google Scholar 

  • Atawodi SE, Atawodi JC, Idakwo GA, Pfundstein B, Haubner R, Wurtele G, Owen RW (2010) Evaluation of the polyphenol content and antioxidant properties of methanol extracts of the leaves, stem, and root barks of Moringa oleifera Lam. J Med Food 13(3):710–716

    CAS  Google Scholar 

  • Benelli G, Mehlhorn H (2016) Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control. Parasitol Res 115(5):1747–1754

    Google Scholar 

  • Bhagat M, Anand R, Datt R, Gupta V, Arya S (2018) Green synthesis of silver nanoparticles using aqueous extract of Rosa brunonii Lindl and their morphological, biological and photocatalytic characterizations. J Inorg Organomet Polym. https://doi.org/10.1007/s10904-018-0994-5

    Article  Google Scholar 

  • Bilal M, Rasheed T, Iqbal HMN, Li C, Hu H, Zhang X (2017) Development of silver nanoparticles loaded chitosan-alginate constructs with biomedical potentialities. Int J Biol Macromol 105:393–400

    CAS  Google Scholar 

  • Camacho FP, Sousa VS, Bergamasco R, Ribau TM (2017) The use of Moringa oleifera as a natural coagulant in surface water treatment. Chem Eng J 313:226–237

    CAS  Google Scholar 

  • Chakraborty S, Singha S, Bhattacharya K, Chandra G (2013) Control of human filarial vector, Culex quinquefasciatus Say 1823 (Diptera: Culicidae) through bioactive fraction of Cayratia trifolia leaf. Asian Pac J Trop Biomed 3(12):980–984

    CAS  Google Scholar 

  • Chen TW, Rajaji U, Chen SM, Jothi RR (2019) Rapid sonochemical synthesis of silver nano-leaves encapsulated on iron pyrite nanocomposite: an excellent catalytic application in the electrochemical detection of herbicide (Acifluorfen). Ultrason Sonochem. https://doi.org/10.1016/j.ultsonch.2019.02.011

    Article  Google Scholar 

  • Choi Y, Ho N-H, Tung C-H (2007) Sensing phosphatase activity by using gold nanoparticles. Angew Chem Int Ed 46(5):707–709

    CAS  Google Scholar 

  • Chun OKKDO, Moon HY, Kang HG, Lee CY (2003) Contribution of individual polyphenolics to total antioxidant capacity of plums. J Agric Food Chem 51(25):7240–7245

    CAS  Google Scholar 

  • Clenny MN (2005) Laboratory detection and identification of Aspergillus species by microscopic observation and culture: the traditional approach. J Mycol Med 43(s1):125–128

    Google Scholar 

  • Corti M, Priarone MM, Bruni G, Maiolo E, Messina F, Santiso G, Franze O (2019) Aspergilosis: Una causa infrecuente de lesiones cerebrales focales en pacientes con sida. Neurología Argentina 12(1):53–59

    Google Scholar 

  • Czitrom V (1999) One-factor-at-a-time versus designed experiments. Am Stat 53(2):126–131

    Google Scholar 

  • Debnath P, Mondal A, Hajra A, Das C, Mondal NK (2018) Cytogenetic effects of silver and gold nanoparticles on Allium cepa roots. IJGEB. https://doi.org/10.1016/j.jgeb.2018.07.007

    Article  Google Scholar 

  • Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Mahesh KP, Nicoletti M, Suresh U (2015) Mosquitocidal and antibacterial activity of green- synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114(4):1519–1529

    Google Scholar 

  • Dos Santos CA, Seckler MM, Ingle AP, Gupta I, Galdiero S, Galdiero M, Rai M (2014) Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci 103(7):1931–1944

    Google Scholar 

  • Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277(5329):1078–1081

    CAS  Google Scholar 

  • Farhana M, Meera V (2016) Synthesis of nanosilver coated sand using plant extracts. Proc Technol 24:188–195

    Google Scholar 

  • Feroze N, Arshad B, Younas M, Afridi MI, Saqib S, Ayaz A (2019) Fungal mediated synthesis of silver nanoparticles and evaluation of antibacterial activity. Microsc res techniq. https://doi.org/10.1002/jemt.23390

    Article  Google Scholar 

  • Ghosh A, Chowdhury N, Chandra G (2012) Plant extracts as potential mosquito larvicides. Indian J Med Res 135:581–598

    CAS  Google Scholar 

  • Govindarajan M, Benelli G (2016a) α-Humulene and β-elemene from Syzygium zeylanicum (Myrtaceae) essential oil: highly effective and eco-friendly larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus (Diptera: Culicidae). Parasitol Res 115(7):2771–2778

    Google Scholar 

  • Govindarajan M, Benelli G (2016b) Facile biosynthesis of silver nanoparticles using Barleria cristata: mosquitocidal potential and biotoxicity on three non-target aquatic organisms. J Parasitol Res 115:925–935

    Google Scholar 

  • Govindarajana M, AlQahtanib FS, AlSheblyc MM, Benelli G (2016) One-pot and eco-friendly synthesis of silver nanocrystals using Adiantum raddianum: toxicity against mosquito vectors of medical and veterinary importance. J Appl Biomed. https://doi.org/10.1016/j.jab.2016.10.004

    Article  Google Scholar 

  • Guarner J, Brandt ME (2011) Histopathologic diagnosis of fungal infections in the 21st century. Clin Microbiol Rev 24(2):247–280

    Google Scholar 

  • Hajra A, Mondal NK (2016) Phytofabrication of silver nanoparticles using Elephantopus scaber and Azadirachta indica leaf extract and its effect on larval and pupal mortality of Culex quinquefasciatus. Asian Pac J Trop Dis 6(12):979–986

    Google Scholar 

  • Hajra A, Dutta S, Mondal NK (2015) Mosquito larvicidal activity of cadmium nanoparticles synthesized from petal extracts of marigold (Tagetes sp.) and rose (Rosa sp.) flower. J Parasitol 40(4):1519–1527

    Google Scholar 

  • Hollman PCH, Katan MB (1999) Health effects and bioavailability of dietary flavonols. Free Radic Res 31:75–80

    Google Scholar 

  • Hurst SJ, Lytton-Jean AKR, Mirkin CA (2006) Maximizing DNA loading on a range of gold nanoparticle sizes. Anal Chem 78(24):8313–8318

    CAS  Google Scholar 

  • Ilgin P, Ozay O, Ozay H (2018) A novel hydrogel containing thioether group as selective support material for preparation of gold nanoparticles: synthesis and catalytic applications. Appl Catal B Environ. https://doi.org/10.1016/j.apcatb.2018.09.066

    Article  Google Scholar 

  • Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P (2013) Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crop Prod 45:423–429

    CAS  Google Scholar 

  • Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074

    CAS  Google Scholar 

  • Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B Biointerfaces 76(1):50–56

    CAS  Google Scholar 

  • Kumar D, Kumar G, Das R, Agrawal V (2018) Strong larvicidal potential of silver nanoparticles [AgNPs] synthesized using Holarrhena antidysenterica [L.] Wall. bark extract against malarial vector, Anopheles stephensi Liston. Process Saf Environ 116:137–148

    CAS  Google Scholar 

  • Lade BD, Patil AS (2017) Silver nano fabrication using leaf disc of Passiflora foetida Linn. Appl Nan osci 7(5):181–192

    CAS  Google Scholar 

  • Laird M (1988) The natural history of larval mosquito habitats. Academic Press, New York

    Google Scholar 

  • Lateef A, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Oladipo IC, Beukes LS (2016) Biogenic synthesis of silver nanoparticles using a pod extract of Cola nitida: antibacterial and antioxidant activities and application as a paint additive. JTUSCI 10(4):551–562

    Google Scholar 

  • Lingaraju K, Raja NH, Manjunath K, Basavaraj RB, Nagabhushana H, Nagaraju G, Suresh D (2015) Biogenic synthesis of zinc oxide nanoparticles using Ruta graveolens (L.) and their antibacterial and antioxidant activities. Appl Nanosci 6(5):703–710

    Google Scholar 

  • Manikandan G, Yuvashree M, Sangeetha A, Bhuvana KP, Nayak SK (2020) Liver tissue regeneration using nano silver impregnated sodium alginate/PVA composite nanofibres. Sci Med J 2(1):16–21

    CAS  Google Scholar 

  • Mathalaimuthu B, Saud A, Saad A, Daoud A, Kuppusamy E, Jeganathan P, Kaliyamoorthy K, Mohan R, Marimuthu G (2020) Phytochemical analysis and fabrication of silver nanoparticles using Acacia catechu: an efficacious and ecofriendly control tool against selected polyphagous insect pests. Saudi J Biol Sci. https://doi.org/10.1016/j.sjbs.2020.09.024

    Article  Google Scholar 

  • Medda S, Hajra A, Dey U, Bose P, Mondal NK (2015) Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp. Appl Nanosci 5(7):875–880

    CAS  Google Scholar 

  • Menazea AA (2019) Femtosecond laser ablation-assisted synthesis of silver nanoparticles in organic and inorganic liquids medium and their antibacterial efficiency. Radiat Phys Chem. https://doi.org/10.1016/j.radphyschem.2019.108616

    Article  Google Scholar 

  • Mondal NK, Chowdhury A, Dey U, Mukhopadhya P, Chatterjee S, Das K, Datta JK (2014) Green synthesis of silver nanoparticles and its application for mosquito control. Asian Pac J Trop Dis 4:S204–S210

    CAS  Google Scholar 

  • Mondal A, Hajra A, Shaikh WA, Chakraborty S, Mondal NK (2019) Synthesis of silver nanoparticle with Colocasia esculenta (L.) stem and its larvicidal activity against Culex quinquefasciatus and Chironomus sp. Asian Pac J Trop Biomed 9:510–517

    CAS  Google Scholar 

  • Mondal A, Debnath P, Mondal NK (2020) Nanoparticles: a new tool for control of mosquito larvae. Intell Environ Data Monit Pollut Manag. https://doi.org/10.1016/B978-0-12-819671-7.00003-8

    Article  Google Scholar 

  • National Vector Borne Disease Control Programme (2018) nvbdcp.gov.in

  • Parsa N, Khajouei G, Masigol M, Hasheminejad H, Moheb A (2018) Application of electrodialysis process for reduction of electrical conductivity and COD of water contaminated by composting leachate. Civil eng 4(5):1034–1045

    Google Scholar 

  • Pauw DB, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, Calandra T, Bennett JE (2008) Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Arch Clin Infect Dis 46(12):1813–1821

    Google Scholar 

  • Peter KV (2008) Underutilized and underexploited horticultural crops, vol 4, New India

  • Pfaller MA, Diekema DJ (2012) Progress in antifungal susceptibility testing of Candida spp. by use of clinical and laboratory standards institute broth microdilution methods, 2010 to 2012. Clin Microbiol Infect 50(9):2846–2856

    CAS  Google Scholar 

  • Pirtarighat S, Ghamadnia M, Baghshahi S (2019) Green synthesis of silver nanoparticles polyphenolics to antioxidant capacity of Plums. J Agri Food Chem 51:7240–7245

    Google Scholar 

  • Poynton HC, Lazorchak JM, Impellitteri CA, Blalock BJ, Rogers K, Allen HJ, Govindasmawy S (2012) Toxicogenomic responses of nanotoxicity in daphnia magna exposed to silver nitrate and coated silver nanoparticles. Environ Sci Technol 46(11):6288–6296

    CAS  Google Scholar 

  • Rezaee M, Ghomesheh PK, Hosseini AM (2017) Electrokinetic remediation of zinc and copper contaminated soil: a simulation-based study. Civil Eng 3(9):690–700

    Google Scholar 

  • Rolim WR, Pelegrino MT, de Araújo LB, Ferraz LS, Costa FN, Bernardes JS, Seabra AB (2018) Green tea extract mediated biogenic synthesis of silver nanoparticles: characterization, cytotoxicity evaluation and antibacterial activity. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2018.08.203

    Article  Google Scholar 

  • Shaikh WA, Chakraborty S, Islam RU (2019) Photocatalytic degradation of rhodamine B under UV irradiation using Shorea robusta leaf extract-mediated bio-synthesized silver nanoparticles. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-019-02473-6

    Article  Google Scholar 

  • Shanmugasundaram T, Balagurunathan R (2013) Mosquito larvicidal activity of silver nanoparticles synthesised using actinobacterium, Streptomyces sp. M25 against Anopheles subpictus, Culex quinquefasciatus and Aedes aegypti. J Parasitol 39(4):677–684

    Google Scholar 

  • Sharma A, Tripathi P, Kumar S (2020) One-pot synthesis of silver nanocomposites from Achyranthes aspera: an eco-friendly larvicide against Aedes aegypti L. Asian Pac J Trop Biomed 10:54–64

    Google Scholar 

  • Siddhuraju P, Becker K (2003) Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J Agric Food Chem 51:2144–2155

    CAS  Google Scholar 

  • Soni N, Prakash S (2011) Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 110(1):175–184

    Google Scholar 

  • Soni N, Prakash S (2014) Silver nanoparticles: a possibility for malarial and filarial vector control technology. Parasitol Res 113(11):4015–4022

    Google Scholar 

  • Steinbach WJ, Cramer RA, Perfect BZ, Asfaw YG, Sauer TC, Najvar LK, Perfect JR (2006) Calcineurin controls growth, morphology, and pathogenicity in Aspergillus fumigatus. Eukaryot Cell 5(7):1091–1103

    CAS  Google Scholar 

  • Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Kumar PM, Benelli G (2015) Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach? Environ Sci Pollut Res 22(24):20067–20083

    CAS  Google Scholar 

  • Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Dinesh D, Kumar PM (2016) Multipurpose effectiveness of Couroupita guianensis synthesized gold nanoparticles: high antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators. Environ Sci Pollut Res 23(8):7543–7558

    CAS  Google Scholar 

  • Suman TY, Radhika RSR, Ramkumar R, Rajthilak C, Perumal P (2014) The Green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L. Spectrochim Acta A 118:11–16

    CAS  Google Scholar 

  • Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Kumar PM, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri—mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114(4):1551–1562

    Google Scholar 

  • Sutthanont N, Attrapadung S, Nuchprayoon S (2019) Larviicidal activity of synthesized silver nanoparticles from Curcuma zedoaria essential oil against C. quinquefasciatus. Insects 10(1):27

    Google Scholar 

  • Theingi M, Tun KT, Aung NN (2019) Preparation, characterization and optical property of LaFeO3 nanoparticles via sol–gel combustion method. Sci Med J 1(3):151–157

    Google Scholar 

  • Tian Y, Liu Y, Pang F, Wangb F, Zhangb X (2014) Green synthesis of nanostructed Ni reduced graphene oxide hybrids and their application for catalytic reduction of 4 nitrophenol. Colloids Surf A Physicochem Eng Asp 464:96–103

    Google Scholar 

  • Valsalam S, Paul A, Arasu MV, Al-Dhabi NA, Ghilan AKM, Kaviyarasu K, Arokiyaraj S (2018) Rapid biosynthesis and characterization of silver nanoparticles from the leaf extract of Tropaeolum majus L and its enhanced in-vitro antibacterial, antifungal, antioxidant and anticancer properties. Photoch Photobio B. https://doi.org/10.1016/j.jphotobiol.2018.12.010

    Article  Google Scholar 

  • Venkattan E, Shahid M, Khalid AG, Chakkaravarthy E, Fahad AM, Zubair A, Marimuthu G (2020) Novel biogenic synthesis of silver nanoparticles using Alstonia venenata leaf extract: an enhanced mosquito larvicidal agent with negligible impact on important eco-biological fish and insects. J Clust Sci. https://doi.org/10.1007/s10876-02001808-5

    Article  Google Scholar 

  • Vishwasrao C, Momin B, Ananthanarayan L (2018) Green synthesis of silver nanoparticles using sapota fruit waste and evaluation of their antimicrobial activity. Waste Biomass Valori. https://doi.org/10.1007/s12649-018-0230-0

    Article  Google Scholar 

  • War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant signal behav 7(10):1306–1320

    Google Scholar 

  • Williams DF (2009) On the nature of biomaterials. Biomaterials 30(30):5897–5909

    CAS  Google Scholar 

  • Yasmin A, Ramesh K, Kumar SR (2014) Optimization and stabilization of gold nanoparticles by using herbal plant extract with microwave heating. Nano Converg 1(12):1–7

    Google Scholar 

  • Yeo S, Lee H, Jeong S (2003) Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J Mater Sci 38:2143–2147

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge their sincere thanks to the funding agency, WBDST Memo No: 126 [Sanc.]/ST/P/S&T/15G-10/2015 and WBDST-BOOST, Govt. of West Bengal (39/WBBDC/1p-2/2013, dt: 25.03.2015) for providing necessary funds for conducting the present research. Authors also extend their sincere gratitude to all the faculty members and staff of Department of Environmental Science and University Instrumentation Centre, The University of Burdwan, for their moral support and valuable suggestions for preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Mondal.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Editorial responsibility: Hari Pant.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOC 450 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, A., Chowdhury, S., Mondal, N.K. et al. Insecticidal and fungicidal performance of bio-fabricated silver and gold nanoparticles. Int. J. Environ. Sci. Technol. 19, 1573–1592 (2022). https://doi.org/10.1007/s13762-021-03181-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-021-03181-w

Keywords

Navigation