Skip to main content

Advertisement

Log in

Nitrate removal using Purolite A520E ion exchange resin: batch and fixed-bed column adsorption modelling

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Removing excessive nitrate from water is essential because it causes eutrophication which in turn has a harmful effect on aquatic life, resulting in a reduction in biodiversity and posing a danger to people’s health when the water is used for drinking. In this study, nitrate removal from aqueous solutions was studied using an ion exchange resin (Purolite A520E) in batch and fixed-bed column experiments. Batch adsorption kinetics was very well described by pseudo-first-order, pseudo-second-order and homogeneous surface diffusion models for resin doses 1.5 and 3.0 g/L at a nitrate concentration 20 mg N/L. Column kinetic data satisfactorily fitted to the empirical Thomas model and a numerical model based on advection–dispersion equation for filtration velocities 2.5 and 5.0 m/h at a column height of 12 cm and inlet concentration 20 mg N/L. The experimental and Thomas model predicted breakthrough adsorption capacity ranges for the two filtration rates were 12.0–13.5 and 8.2–9.7 mg N/g, respectively, whereas the maximum adsorption capacity determined using Langmuir adsorption isotherm model in the batch study was 32.2 mg N/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad AA, Hameed BH (2010) Fixed bed adsorption of reactive azo dye onto granular activated carbon prepared from waste. J Hazard Mater 175:298–303

    Article  CAS  Google Scholar 

  • Ahmad RT, Nguyen TV, Shim WG, Vigneswaran S, Moon H, Kandasamy J (2012) Effluent organic matter removal by Purolite®A500PS: experimental performance and mathematical model. Sep Purif Technol 98:46–54

    Article  CAS  Google Scholar 

  • Aksu Z, Gonen F (2004) Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Process Biochem 39:599–613

    Article  CAS  Google Scholar 

  • Aliabadi M, Khazaei I, Fakhraee H, Mousavian MTH (2012) Hexavalent chromium removal from aqueous solution by using low-cost biological wastes: equilibrium and kinetic studies. Int J Environ Sci Technol 9:319–326

    Article  CAS  Google Scholar 

  • Awual MR, Urata S, Jyo A, Tamada M, Katakai A (2008) Arsenate removal from water by a weak-base anion exchange fibrous adsorbent. Water Res 42:689–696

    Article  CAS  Google Scholar 

  • Awual MR, Hossain MA, Shenashen MA, Yaita T, Suzuki S, Jyo A (2013) Evaluating of arsenic (V) removal from water by weak-base anion exchange adsorbents. Environ Sci Pollut Res 20:421–430

    Article  CAS  Google Scholar 

  • Bhatnagar A, Sillanpää M (2011) A review of emerging adsorbents for nitrate removal from water. Chem Eng J 168:493–504

    Article  CAS  Google Scholar 

  • Brown PN, Byrne GD, Hindmarsh AC (1989) VODE: a variable coefficient ODE solver. SIAM J Sci Stat Comput 10:1038–1051

    Article  Google Scholar 

  • Bulgariu L, Ceica A, Lazar L, Cretescu I, Balasanian I (2010) Equilibrium and kinetics study of nitrate removal from water by Purolite A100 resin. Rev Chim 61:1136–1141

    CAS  Google Scholar 

  • Chiu HF, Tsai SS, Yang CY (2007) Nitrate in drinking water and risk of death from bladder cancer: an ecological case–control study in Taiwan. J Toxicol Environ Health 70:1000–1004

    Article  CAS  Google Scholar 

  • Danny DK, Ko KF, Porter JF, McKay G (2001) Film pore diffusion model for the fixed-bed sorption of copper and cadmium ions onto bone char. Water Res 35:3876–3886

    Article  Google Scholar 

  • Fatima T, Nadeem R, Masood A, Saeed R, Ashraf M (2013) Sorption of lead by chemically modified rice bran. Int J Environ Sci Technol 10:1255–1264

    Article  CAS  Google Scholar 

  • Fewtrell L (2004) Drinking-water nitrate, methemoglobinemia, and global burden of disease: a discussion. Environ Health Perspect 112:1371–1374

    Article  Google Scholar 

  • Gu B, Ku Y-K, Jardine PM (2004) Sorption and binary exchange of nitrate, sulphate and uranium on an anion-exchange resin. Eniron Sci Technol 38:3184–3188

    Article  CAS  Google Scholar 

  • Guo WS, Shim WG, Vigneswaran S, Ngo HH (2005) Effect of operating parameters in a submerged membrane adsorption hybrid system: experiments and mathematical modelling. J Membr Sci 247:65–67

    Article  CAS  Google Scholar 

  • Hekmatzadeh AA, Karimi-Jashani A, Talebbeydokhti N, Klove B (2012) Modeling of nitrate removal for ion exchange resin in batch and fixed bed experiments. Desalination 284:22–31

    Article  CAS  Google Scholar 

  • Helfferich F (1995) Ion exchange. McGraw-Hill, New York

    Google Scholar 

  • WHO (2006) Guidelines for drinking-water quality. World Health Organization, Geneva

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  • Hoek JP, Hoek WF, Klapwijk A (1988) Nitrate removal from ground water—use of a nitrate selective resin and a low concentrated regenerant. Water Air Soil Pollut 37:41–53

    Article  Google Scholar 

  • Johir MAH, George J, Vigneswaran S, Kandasamy J, Grasmick A (2011) Removal and recovery of nutrients by ion exchange from high rate membrane bio-reactor (MBR) effluent. Desalination 275:197–202

    Article  CAS  Google Scholar 

  • Kapoor A, Viraraghavan T (1997) Nitrate removal from drinking water—review. J Environ Eng 123:371–380

    Article  CAS  Google Scholar 

  • Loganathan P, Vigneswaran S, Kandasamy J, Bolan NS (2014) Removal and recovery of phosphate from water using sorption. Crit Rev Environ Sci Technol. doi:10.1080/10643389.2012.741311

    Google Scholar 

  • Najm IN (1996) Mathematical modeling of PAC adsorption processes. J Am Water Works Assoc 88:79–89

    CAS  Google Scholar 

  • Nur T, Johir MAH, Loganathan P, Vigneswaran S, Kandasamy J (2012) Effectiveness of purolite A500PS and A520E ion exchange resins on the removal of nitrate and phosphate from synthetic water. Desalin Water Treat 47:50–58

    Article  CAS  Google Scholar 

  • Nur T, Johir MAH, Loganathan P, Nguyen T, Vigneswaran S, Kandasamy J (2014) Phosphate removal from water using an iron oxide impregnated strong base anion exchange resin. J Ind Eng Chem. doi:10.1016/j.jiec.2013.07.009

    Google Scholar 

  • Orlando US, Baes AU, Nishijima W, Okada M (2002) Preparation of agricultural residue anion exchangers and its nitrate maximum adsorption capacity. Chemosphere 48:1041–1046

    Article  CAS  Google Scholar 

  • Phillips DH, Gu B, Watson DB, Parmele CS (2008) Uranium removal from contaminated groundwater by synthetic resins. Water Res 42:260–268

    Article  CAS  Google Scholar 

  • Pintar A, Batista J, Levec J (2001) Integrated ion exchange/catalytic process for efficient removal of nitrates from drinking water. Chem Eng Sci 56:1551–1559

    Article  CAS  Google Scholar 

  • Primo O, Rivero M, Urtiaga A, Ortiz I (2009) Nitrate removal from electro-oxidized landfill leachate by ion exchange. J Hazard Mater 164:389–393

    Article  CAS  Google Scholar 

  • Purolite (2013) www.purolite.com. Technical data, ISO 9002. Accessed March 2013

  • Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New York

    Google Scholar 

  • Samatya S, Kabay N, Yuksel U, Arda M, Yuksel M (2006) Removal of nitrate from aqueous solution by nitrate selective ion-exchange resins. React Funct Polym 66:1206–1214

    Article  CAS  Google Scholar 

  • Sigmaaldrich (2013) www.sigmaaldrich.com. Accessed March 2013

  • Thomas HC (1944) Heterogeneous ion exchange in a flowing system. J Am Chem Soc 66:1664–1666

    Article  CAS  Google Scholar 

  • Valincius G, Niaura G, Kazakevicˇieneù B, Talaikyteù Z, Kazˇemeù kaiteù M, Butkus E, Razumas V (2004) Anion effect on mediated electron transfer through ferrocene-terminated self-assembled monolayers. Langmuir 20:6631–6638

    Article  CAS  Google Scholar 

  • Verma DK, Hasan SH, Ranjan D, Banik RM (2014) Modified biomass of Phanerochaete chrysosporium immobilized on luffa sponge for biosorption of hexavalent chromium. Int J Environ Sci Technol. doi:10.1007/3/3762-013-0345-6

  • Villadsen J, Stewart WE (1967) Solution of boundary value problems by orthogonal collocation. Chem Eng Sci 22:1483–1501

    Article  Google Scholar 

  • Xu X, Gao BY, Yue GY, Zhong QQ (2010) Preparation of agricultural by-product based anion exchanger and its utilization for nitrate and phosphate removal. Bioresour Technol 101:8558–8564

    Article  CAS  Google Scholar 

  • Zagorodni AA (2007) Ion exchange materials properties and applications. Elsevier BV, Amsterdam

    Google Scholar 

Download references

Acknowledgments

This work was funded by Australian Research Council Discovery Research Grant (DP 1092603). The authors thank Vitachem for supplying Purolites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Vigneswaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nur, T., Shim, W.G., Loganathan, P. et al. Nitrate removal using Purolite A520E ion exchange resin: batch and fixed-bed column adsorption modelling. Int. J. Environ. Sci. Technol. 12, 1311–1320 (2015). https://doi.org/10.1007/s13762-014-0510-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-014-0510-6

Keywords

Navigation