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Abstract
Since the hippocampus is predominantly susceptible to injuries caused by COVID-19, there are increasing data indicating 
the likelihood of post-infection memory loss and quickening neurodegenerative disorders, such as Alzheimer’s disease. This 
is due to the fact that the hippocampus has imperative functions in spatial and episodic memory as well as learning. COVID-
19 activates microglia in the hippocampus and induces a CNS cytokine storm, leading to loss of hippocampal neurogenesis. 
The functional and structural changes in the hippocampus of COVID-19 patients can explain neuronal degeneration and 
reduced neurogenesis in the human hippocampus. This will open a window to explain memory and cognitive dysfunctions 
in “long COVID” through the resultant loss of hippocampal neurogenesis.
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Introduction

At the beginning of the coronavirus disease 2019 (COVID-
19) outbreak, it was urgent to manage the acute complica-
tions of the disease; however, the management of the long-
term sequelae of COVID-19 has become a major concern 
afterward [1–5].

Post-COVID syndrome, also known as “long COVID” 
or “persistent COVID,” typifies a broad collection of com-
plaints stated by COVID-19 patients after “severe acute res-
piratory syndrome coronavirus 2” (SARS-CoV-2) infection 
[1–11].

Studies have extensively illustrated that “long COVID” 
after discharge from hospital consist of an assortment of 
neuropsychiatric complaints, such as defective instant verbal 
memory and learning, deferred verbal memory difficulties, 
verbal fluency problems, working memory issues, anxi-
ety, depression, and post-traumatic stress disorder (PTSD) 
[5, 12]. These complaints can persist for at least one year 
[13]. In some COVID-19 patients, cognitive impairments 
can even deteriorate over time [14]. Although several 

pathological mechanisms have been proposed [3], the patho-
logical basis of these complaints remains unidentified.

Long-term outcomes of other inflammatory circum-
stances (e.g., sepsis, after major surgery, or respiratory dif-
ficulties, such as pneumonia and acute respiratory distress 
syndrome) have been found to negatively affect an individ-
ual’s life in numerous features [15–19]. This is also the case 
for patients with “long COVID” due to neuroinflammation 
[1–5]. These include a number of aspects of daily activities, 
such as employment, education, housework, and hobbies, 
even years after the initial inflammatory involvement has 
been cleared [5, 20].

A better understanding of the pathological factors causing 
these long-term complications will help in targeted therapy 
selection at an appropriate stage of the disease [1–5].

Since the hippocampus is predominantly susceptible to 
injuries caused by COVID-19 [3], there are increasing data 
indicating the likelihood of post-infection memory loss and 
quickening neurodegenerative disorders, such as Alzhei-
mer’s disease [5, 21]. This review discusses the involve-
ment of the hippocampus in COVID-19 patients, especially 
those patients with “long COVID.” This will help identify 
the pathological factors associated with long-term neuropsy-
chiatric complications of COVID-19. In addition, this can 
provide an insight into the pathobiology of neurodegenera-
tive disorders, such as Alzheimer’s disease.
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The hippocampus

The hippocampus, as an extension of the temporal com-
ponent of the cerebral cortex [22, 23], is a complex brain 
component located deep into the temporal lobe [23, 24]. 
The hippocampus is a component of “the hippocampal 
formation” and contains several limbs [23].

The hippocampus has imperative functions in spatial 
and episodic memory [24] as well as learning [23]. The 
persistent creation of new neurons in the adult hippocam-
pus has long been reported [25]. These new neural cells 
are derived from self-reproducing multipotent adult neural 
stem cells (NSCs) located in the subgranular zone (SGZ) 
of the dentate gyrus (DG) [26, 27]. Neurogenesis in the 
adult dentate gyrus grants an assortment of forms of hip-
pocampus-dependent learning and memory [27–32]. As a 
vulnerable configuration, the hippocampus can be upset by 
a range of neurological and psychiatric disorders [23, 33].

COVID‑19 activates microglia in the hippocampus 
and induces a CNS cytokine storm, leading to loss 
of hippocampal neurogenesis

Microglia, which are highly complex cells with very active 
and driving processes even in the state of non-pathological 
circumstances, represent resident macrophage-like cells 
in the central nervous system (CNS) [34–37]. Microglia 
are responsible for synaptic structuring and restoration 
of neuronal maintenance for the period of development 
[34–36]. They perform phagocytosis of apoptotic cells in 
the developing brain, myelin revenue, regulation of neu-
ronal excitability (a large and fast alteration of membrane 
voltage in reaction to a very small stimulus), phagocytic 
debris elimination, brain defense, and renovate [34–36]. 
Even though they monitor the cerebral microenvironment 
to provide the homeostasis of the CNS and proper modi-
fication of neuronal processes by eradicating dendritic 
spines and synapses for the period of neuronal develop-
ment, microglia can shift to an activated, neurotoxic status 
[34, 35, 37].

The activation of microglia in the hippocampus of 
deceased patients with “long COVID” and cognitive 
impairments as well as mild COVID-19 animal model, 
which was illustrated to be regulated by elevated levels of 
C–C motif chemokine ligand 11 (CCL11), was found to 
be connected with inhibited neurogenesis [37]. The inhib-
ited neurogenesis in the hippocampus can clarify impaired 
memory formation in patients with “long COVID” and 
cognitive impairments [37]. In addition, CCL11 has 
been linked to aging and inhibition of neurogenesis [38]. 
In agreement with these findings, patients with “long 

COVID” and cognitive impairments showed higher levels 
of serum CCL11 than those with “long COVID” who did 
not have cognitive deficits [37].

The result of CCL11 on microglial activation in the hip-
pocampus and prevention of neurogenesis necessitates sup-
plementary examinations of the implications of chemokines 
and cytokines distinctive of brain networks to offer an out-
line to manage the neurologic and psychiatric complaints of 
“long COVID.” Therefore, CCL11 levels in the plasma or 
cerebrospinal fluid can be used as a biomarker to potentially 
identify COVID-19 patients with cognitive deficits.

Tumor necrosis factor alpha (TNF-α), interleukin-1 alpha 
(IL-1α), complement component 1q (C1q), and IL-1β are 
inflammatory mediators secreted by activated pro-inflam-
matory microglia [34, 35, 39]. They can then activate pro-
inflammatory astrocytes and fuel a secondary inflammatory 
response [34, 35, 39–41]. After microglial and astrocytic 
activation, neuroinflammation results in reactive oxygen 
species (ROS) and oxidative stress production [34, 35, 39]. 
This consequently disturbs hippocampal neuronal cells, 
leading to memory difficulties and neuronal apoptosis [35, 
39, 42–44]. These results can explain the potential damag-
ing consequences of SARS-CoV-2-linked glial activation, 
neuroinflammation, and apoptosis.

Other studies have also reported that animals and humans 
deceased from COVID-19 showed evidence of reduced neu-
rogenesis in the hippocampal dentate gyrus through micro-
glial activation and microglial and neuronal expression of 
IL-1β and IL-6 [45]. Notably, IL-1β and IL-6, which are ele-
vated in COVID brains, have antineurogenic effects on the 
hippocampus [45]. Therefore, anti-IL-6 and anti-IL-1β treat-
ments [46] may be useful in restricting an expanded cytokine 
storm in COVID-19 patients. These reports advocate the 
concept that the COVID-19 cytokine storm is mainly respon-
sible for neuroinflammation and neuronal injury, leading to 
distorted neurotransmission and brain function.

COVID‑19 results in neuronal degeneration 
and reduced neurogenesis in the human 
hippocampus

When hippocampal tissue samples collected from deceased 
COVID-19 patients were examined, hippocampal samples 
showed enormous degeneration of neuronal cells and irregu-
larities in glial cell morphology [39]. Hippocampal tissue 
samples showed morphological alterations in pyramidal 
cells, an escalation in cell death, a decrease in neurogenesis, 
and irregularity in the spatial allocation of neurons in the 
pyramidal and granular layers [39]. The death of pyramidal 
cells and apoptosis of granular cells in the hippocampus of 
the COVID-19 group were also recorded [39].

Morphological features and allocation of astrocytes and 
microglial cells were also shown to change in these samples 
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[39]. Therefore, memory impairment secondary to these 
changes in the hippocampus may cause a long-term neuro-
logical complication in patients with “long COVID.”

Furthermore, neurogenesis was reduced in the COVID-
19 group, and these neural stem cells may have encountered 
apoptosis [39]. This can be due to the microglial activation 
and the subsequent production of inflammatory cytokines, 
such as TNF-α, IL-6, and IL-1β, which can cause neuroin-
flammation, leading to impaired neurogenesis and reduced 
inhabited neural stem cells proliferation [5, 39]. This even-
tually results in cognitive decline due to the destruction of 
spatial memory and learning [5, 39, 47, 48].

A reported decrease in the dendritic length and number 
of dendritic spines of pyramidal neurons in the hippocampus 
of the COVID-19 group also revealed a decrease in synaptic 
plasticity and, accordingly, memory loss [39].

Changes in gray matter volumes in neuropsychiatric 
long COVID syndrome

Although confirmation for long-term brain constructional 
alterations (i.e. on the neural correlates of the neuropsychi-
atric complaints of “long COVID”) is limited, one inves-
tigation found brain architectural irregularities in “long 
COVID” (three months after acute COVID-19), which were 
enlarged bilateral gray matter volumes in olfactory cortices, 
hippocampi, insulas, left Rolandic operculum, left Heschl's 
gyrus, and right cingulate gyrus in COVID-19 patients com-
pared to healthy controls [14]. They also recorded a link 
between gray matter volume changes and indications of 
memory decline and loss of smell [14]. Another investiga-
tion, which was performed 6 months after acute COVID-19, 
acknowledged enlarged gray matter volumes in the bilateral 
hippocampus and amygdala, with gray matter volumes of the 
left hippocampus and amygdala being contrarily interrelated 
to post-traumatic stress symptoms [49]. In a recent cross-
sectional study [50], gray matter volume in patients with 
“long COVID” was noticeably enlarged in a number of clus-
ters (spanning fronto-temporal areas, insula, hippocampus, 
amygdala, basal ganglia, and thalamus in both hemispheres) 
than in healthy controls. The enlargement of gray matter 
volumes in patients with “long COVID,” when compared 
to healthy controls, may indicate compensatory or recovery 
properties [50]. Two processes may explain the enlargement 
of gray matter volumes in patients with “long COVID.” This 
may be due to the migration of neuroblasts or an amplified 
functional process leading to hypertrophy of neurons and 
augmentation of dendritic links [3, 50–52]. Apart from these 
compensatory or recovery properties, another explanation 
for enlarged gray matter volumes in COVID-19 patients 
may be the continuing inflammatory processes, leading to 
endothelial activation, microvascular impairment, and vaso-
genic boost of tissue water [3, 50, 53].

In contrast, others reported no gray matter volume alter-
ations in patients with “long COVID” when compared to 
non-infected individuals [54]. A longitudinal investigation 
also recorded reduced cortical thickness in the orbitofrontal 
and parahippocampal gyrus in individuals formerly infected 
with SARS-CoV-2 compared to their pre-infection condi-
tions [55].

Longitudinal neurocognitive profile of “long COVID”

The hippocampus has been called as one of the earliest 
and most distressed configurations of the brain through-
out acute or chronic inflammatory circumstances owing to 
its specific susceptibility to neuroinflammatory incidents 
[1–5, 20, 35, 56]. This is in agreement with several animal 
replicas where cognitive defects (particularly learning and 
memory) are induced after the resolution of the primary 
inflammatory reaction [57–60]. This may be explained by 
the close anatomical links between the limbic system, which 
is accountable for both emotional reactions and many cogni-
tive functions, and the hypothalamus, which is vital for the 
immune-brain bond [61].

The initial results of a longitudinal investigation [20] on 
the assessment of episodic verbal memory have illustrated 
weaker performance in COVID-19 patients than in healthy 
controls. They also recorded reduced brain volumes in par-
ticular brain regions of patients with severe COVID-19 com-
pared with healthy controls and asymptomatic patients [20].

Outstandingly, a longitudinal brain imaging survey [55], 
which compared magnetic resonance imaging (MRI) probes 
before and after the COVID-19 outbreak in both cases of 
positive infection with SARS-CoV-2 and healthy controls, 
reported a larger loss of gray matter in COVID-19 patients, 
particularly in the orbitofrontal cortex and parahippocampal 
gyrus, higher indications of tissue injury in areas linked to 
taste and smell, and a greater decrease in general brain size, 
even in mild to moderate COVID-19 patients compared to 
controls [55]. Patients with “long COVID” also had poorer 
overall results in cognitive assessments compared with the 
control group [55].

Neurogenesis is disturbed in human hippocampal 
progenitor cells when they are exposed to serum 
samples from hospitalized COVID‑19 patients 
with neurological complaints

In comparison to serum specimens of sex- and age-matched 
COVID-19 patients without delirium, an in vitro experimen-
tal investigation found that serum from hospitalized COVID-
19 patients with delirium decreased hippocampal-dependent 
neurogenic, cell proliferative, and neuronal differentiation 
mechanisms while increasing apoptosis, and this ending was 
illustrated to be controlled by IL-6-induced secretion of the 
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downstream inflammatory cytokines IL-12 and IL-13 [62]. 
These findings support the notion that the brain construc-
tion of cytokines in reaction to peripheral inflammation is 
an imperative manner for the development of neurological 
complaints caused by COVID-19 [5, 62]. These findings are 
in agreement with other findings that high concentrations of 
in vitro IL-6 [63, 64], which resemble the peripheral blood 
of COVID-19 patients [65, 66], IL-1β, and interferon-alpha 
(IFN-α) [67–70] can decrease neurogenesis and amplify cell 
death in human hippocampal progenitor cells. Since higher 
amounts of IL-6 have also been recorded in the periphery 
and cerebrospinal fluid (CSF) of COVID-19 patients [66, 
71–74], anti-IL-6 may be generally an imperative therapeu-
tic idea for COVID-19 complications.

Furthermore, matching of cellular replica with serum 
specimens from patients in receipt of IFN-α therapy for 
hepatitis C also decreased neurogenesis and boosted cell 
death [75], suggesting the development of IFN-α-induced 
depression [34, 35, 62, 76]. Remarkably, in a similar man-
ner to COVID-19 patients, individuals in receipt of IFN-α 
therapy can also experience cognitive defects, distraction, 
memory decline, and confusion [77].

Hippocampal‑prefrontal connectivity prior 
to the COVID‑19 pandemic may be used to predict 
stress reactivity

Adolescence is a developmental era outlined by the onset of 
puberty and is distinguished by the maturation of cognitive 
and affective networks [78, 79]. The social experiences of 
this developmental era play an important role in the onset 
of critical plasticity and maturation of the association cortex 
[80]. For instance, a study of children who witnessed Hur-
ricane Irma in Florida reported decreased neurogenesis and 
distorted memory function in the hippocampus compared 
with non-exposed children [81].

Studies support the notion that stress influences systems 
that undergo considerable maturation during adolescence [3, 
5, 82]. These systems include the hippocampus and amyg-
dala and their connectivity to the prefrontal cortex areas [5, 
82]. For example, the hippocampus, which is principally 
involved in cognitive operations such as memory, can be 
distressed by chronic stress, resulting in changes in volume 
[83], microstructure [81], utility [81, 84], and connectivity 
with other areas, especially the prefrontal cortex [83, 84]. 
Likewise, the amygdala, which is implicated in dealing with 
emotion, exhibits considerable changes following chronic 
stress at the neuronal level [85] as well as in its connectivity 
with the prefrontal cortex [86–88]. Remarkably, the resting-
position operational connectivity of both the amygdala and 
hippocampus with the prefrontal cortex illustrates prolonged 
expansion for the duration of adolescence [82].

In this regard, when the functional connectivity of the 
hippocampus and amygdala subareas with the prefrontal 
cortex in two different periods, pre-pandemic compared to 
the COVID-19 pandemic, were comparatively examined in 
a cohort of adolescents and young adults [82], older partici-
pants experienced higher grades of COVID-specified stress, 
worry, and anxiety throughout the COVID-19 outbreak. 
These results showed that the existence of more adult-like 
connectivity between “posterior hippocampus” and “anterior 
ventromedial prefrontal cortex” earlier than the onset of the 
COVID-19 outbreak was related to higher grades of self-
reported anxiety for the duration of the COVID-19 outbreak 
[82]. Since stress hormone receptors are highly located in 
the hippocampus [89], the expanded neurogenesis in the hip-
pocampus may be disturbed by steroid hormones produced 
throughout stress [90, 91].

The explanation of memory and cognitive 
dysfunctions in “long COVID” through the loss 
of hippocampal neurogenesis

The hippocampus, a delicate structure within the brain, has 
various functions, especially in adult neurogenesis [3, 5, 11, 
23]. Therefore, some of the long-standing complications of 
COVID-19, such as “brain fog” or cognitive impairment, can 
be suggestive of hippocampal injury [3, 5, 11, 23, 92, 93].

The hippocampus is involved in many functions, such 
as memory, spatial working memory through transient high 
gamma synchrony [94], executive functions, path integra-
tion, and spatial processing [3, 5, 35, 45, 94]. These hip-
pocampal abilities rely on adult hippocampal neurogenesis 
[3, 5, 45, 95]. Notably, IL-1β and IL-6, which are elevated 
in COVID brains, have antineurogenic properties in the hip-
pocampus [3, 5, 45]. Therefore, hippocampal injury may 
cause post-acute sequelae of COVID-19 (PASC) symptoms 
[3, 5, 45]. This is confirmed by neuroimaging probes in post-
acute COVID-19 patients where disturbances in fractional 
anisotropy and diffusivity are indicative of microstructural 
and operational changes in the hippocampus [14].

Investigations have illustrated hippocampal hyperinten-
sity and atrophy on brain MRI scans [96]. Even though no 
viral RNA of COVID-19 was directly isolated in the brain, 
the hippocampus in these investigations exhibited micro-
glial activation, T lymphocyte infiltration, and elevations 
in the levels of IL-1 and IL-6, which are indicative of neu-
roinflammation [11]. In this regard, in addition to changes 
in the cellular morphology, spatial and structural changes 
occurred in the neuronal, microglial, and astrocytic cellular 
populations [97].

Prolonged inflammation, neuronal expression of interleu-
kins, blood–brain barrier disturbance, and microglia acti-
vation were found to lead to distorted neurotransmission, 
impaired neurogenesis, and neuronal injury in the brains 
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of COVID-19 patients, thereby describing neuropsychiat-
ric complaints of COVID-19 patients compared with unin-
fected healthy controls [45]. These implications on the hip-
pocampus, especially the loss of hippocampal neurogenesis 
in the brains of COVID-19 patients, also elucidate learning, 
memory, and executive impairments in COVID-19 patients 
compared with uninfected healthy controls [45].

Decedents with depressive illness, who died from suicide, 
had elevated proinflammatory and reduced neurogenesis 
indicators in the postmortem hippocampus [98], accom-
panied by a smaller dentate gyrus, fewer granule neurons, 
and neural progenitor cells [99]. Thus, neuroinflammation 
is evidently involved in the pathogenesis of neuropsychiatric 
complaints, declining neurotransmitters and neurotrophins, 
and increasing excitotoxicity [3, 5, 100, 101].

Alzheimer's disease can be initiated or deteriorated 
in COVID‑19 patients due to reduced hippocampal 
neurogenesis

The hippocampus, which is a brain structure involved in 
learning and memory, is particularly susceptible to injury 
in the early phases of Alzheimer's disease, an age-related 
neurodegenerative disease attributed to a gradual decline 
in memory and worsening of cognitive abilities [5, 27]. 
Changes in neurogenesis in the adult hippocampus signify 
an early vital incident in the course of Alzheimer's dis-
ease [5, 27]. Since hippocampal neurogenesis functions in 
structural plasticity and neural preservation, aberrant neu-
rogenesis may exacerbate neuronal susceptibility to injury 
in Alzheimer's disease and lead to memory decline [5, 27]. 
This is due to the observations that encouragement of adult 
hippocampal neurogenesis advances pattern separation and 
spatial memory [30, 31], while a decrease in neurogenesis 
causes cognitive deficits related to aging and neurodegen-
erative diseases, including Alzheimer's disease [95, 102]. 
This is also supported by the finding that the hippocampus 
is one of the earliest areas to be distressed in Alzheimer's 
disease [103].

Histological brain analyses of post-mortem humans 
[104–106] and experimental animals [107] have specified 
that SARS-CoV-2 infection damages the neurogenic route in 
the hippocampus due to neuroinflammation. In this regard, 
the neuroinflammation-induced decline in hippocampal neu-
rogenesis was also shown to act on the onset and progression 
of dementia in COVID-19 patients [108].

The proliferation and neuronal differentiation of neu-
ral stem cells can be suppressed by increased amounts of 
proinflammatory cytokines due to the pathogenic course 
of neurological disorders and anomalous amounts of stress 
hormones [5, 35, 108]. These factors can also interrupt the 
efficient incorporation of newborn neurons in the hippocam-
pus in due course [5, 35, 108–112]. Impaired neurogenesis 

is known to be coupled with memory loss in neurological 
disorders due to neuroinflammation [3, 113]. This is also the 
case for COVID-19 where SARS-CoV-2 has the potential 
to infect neural stem cells in the hippocampus and brain 
organoids [3, 65, 108, 114, 115]. Clinical data also support 
the notion that Alzheimer’s disease can be initiated [116] or 
deteriorated [117] in COVID-19 patients.

The high rate of “long COVID” symptoms, especially 
cognitive impairment, can justify the need 
for therapeutic interventions in affected individuals

The incidence of “long COVID” is anticipated at 10–30% of 
non-hospitalized patients, 50–70% of hospitalized patients 
[118, 119], and 10–12% of vaccinated patients [120]. “Long 
COVID” can be related to all ages and acute phase disease 
severities [121]. Other studies have estimated that 31–69% 
of COVID-19 survivors experience “long COVID” symp-
toms after initial recovery from SARS-CoV-2 infection [122, 
123].

In a UK retrospective cohort study of 236,379 confirmed 
COVID-19 patients, one in three patients reported neu-
ropsychiatric complaints six months after SARS-CoV-2 
infection [124]. In a meta-analysis, fatigue and cognitive 
impairment were reported in 32 and 22% of patients with 
COVID-19, respectively, 12 weeks after infection [119]. 
Fatigue, cognitive impairment, joint pain, anxiety, and 
depression were found to be the primary clinical symptoms 
of “long COVID” in a meta-analysis of 36 studies [125]. 
Fatigue, malaise, and cognitive impairment were also 
reported to be the most prevalent symptoms experienced by 
“long COVID” patients [126].

Moreover, cognitive related symptoms were found to 
develop at later “long COVID” stages [127]. The persis-
tent symptoms of “long COVID” reveal chronic damages 
to multiple organs [127]. Such health conditions impose a 
considerable burden on the quality of life of COVID survi-
vors [128–130]. Mental health conditions, such as anxiety 
and depression, returned to normal over time in people with 
a history of COVID-19; however, increased risks of cogni-
tive impairment (brain fog), seizures, dementia, psychosis, 
and other neurocognitive conditions continued for at least 
2 years [131].

When objective versus subjective measures were used, 
higher rates of cognitive impairment were reported [119], 
indicating that a subset of those with cognitive impairment 
may not know and/or report their impairment.

Since a large number of patients with “long COVID” are 
unable to return to work [126], this scale of newly disabled 
people can contribute to labor shortages. Cognitive impair-
ments in “long COVID” were found to be devastating, at 
the same magnitude as intoxication in the UK drink driving 
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limit or 10 years of cognitive aging [132], and may increase 
over time [121].

Although there are presently no effective treatments for 
“long COVID,” treatments for certain “long COVID” symp-
toms have been effective for subsets of populations [121]. 
For example, a proposal to apply brain injury recovery treat-
ments for cognitive impairment in COVID-19 survivors has 
been proposed by the author [1].

Since the current results advocate that cognitive impair-
ment is related to neuroinflammation, anti-inflammatory 
therapies have been applied. However, in a prospective 
observational study of patients (median age, 61 years) who 
survived intensive care unit (ICU) admission due to severe 
COVID-19, researchers found that administration of IL-6 
receptor antagonists and/or dexamethasone (a long-acting 
synthetic corticosteroid) did not change the overall incidence 
of cognitive impairment or subjective long-term results at 
six months post-ICU [133]. Objective cognitive impairment 
did not correlate with subjective cognitive impairment in 
this study [133], which was also reported in another cogni-
tion study [134].

Although these key clinical findings are vital to have a 
better perspective of “long COVID,” especially cognitive 
impairment, current diagnostic and therapeutic selections 
are still inadequate, and clinical trials need to be scheduled 
to investigate leading hypotheses.

Conclusion

The hippocampus, which is important in memory, spa-
tial working memory through transient high gamma syn-
chrony, executive functions, path integration, and spatial 
processing, is recognized as one of the earliest and most 
distressed configurations of the brain throughout acute or 
chronic inflammatory circumstances owing to its specific 
susceptibility to neuroinflammatory incidents. This is also 
the case in COVID-19, which activates microglia in the hip-
pocampus and induces a CNS cytokine storm, leading to the 
loss of hippocampal neurogenesis. The details of functional 
and structural changes of the hippocampus in COVID-19 
patients, which were explored in this review, explain mem-
ory and cognitive dysfunctions in “long COVID” through 
the loss of hippocampal neurogenesis. The initial results of 
a longitudinal investigation on the assessment of episodic 
verbal memory have also practically illustrated weaker per-
formance in COVID-19 patients than in healthy controls. 
This clinical outcome additionally confirms the role of the 
hippocampus in cognitive function in COVID-19 patients.

A better perspective of the cellular features of COVID-
19 brain injury could assist in interventions to ease long-
term neuropsychiatric complaints. These therapeutic aids 
may include antagonists of cytokines or other pathway 

modulators. Alleviating the long-term post–COVID-19 com-
plications of cognition, emotion, and behavior would help 
reduce the disease burden. The neuropathology of COVID-
19 may provide a replica for decoding the neurodegenera-
tive mechanisms related to neuroinflammation in other brain 
diseases and for developing new therapeutic methods.
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